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1. Introduction

Topology, disorder and strong correlations in low dimensional systems are paradigmatic
concepts in modern condensed matter physics. A central example of materials in which the
combination of these concepts plays a fundamental role are two dimensional Z2 topological
insulators [1, 2, 3, 4, 5]. Z2 topological insulators (TIs) are novel phases of quantum matter
which cannot be adiabatically connected to conventional insulators and semiconductors.
They are characterized by an insulating gap in the bulk and a pair of mutually time reversed
gapless edge or surface states. These edge states differ fundamentally from conventional
one-dimensional quantum liquids described by the Tomonaga-Luttinger liquid (LL) in
the sense that they are topologically protected against elastic backscattering due to the
combination of strong spin-orbit coupling (SOC) and conserved time reversal invariance
(TRI). Furthermore the quasiparticles’ spin and momentum are locked due to the spin-
orbit interaction. Because of this well-defined projection of spin onto the momentum
direction the one-dimensional edge state was termed helical Luttinger liquid (HLL).

This new class of materials has been experimentally realized in HgTe/CdTe quantum
wells [5], which exhibit two distinct topological phases, both having a gap in the bulk
spectrum but differing by edge properties. While the topologically trivial insulator has
no edge states, the edge of the topologically nontrivial insulator is described by gapless
helical fermions. Such a system shows the quantum spin Hall effect first predicted in the
context of graphene with a spin-orbit coupling term [3]. The phase transition between the
two topologically nonequivalent phases is driven by increasing the thickness of the HgTe
quantum well beyond some critical value, which leads to a band gap inversion [4]. In this
situation the edge channels’ conductance is close to twice the conductance quantum G =
2e2/h as expected for ballistic transport. However, this universal value is only approached
in very short samples (less than 1 µm long). Conductance of longer samples is in fact
lower [6], indicating electron backscattering or possibly, localisation effects. Mechanisms
of electron backscattering are a matter of ongoing debate. Possible sources - two-particle
backscattering and Kondo impurities - have been discussed in Refs. [7, 8, 9, 10]. Recently,
it has also been proposed that inelastic scattering processes could lead to deviations from
universal conductance [11, 12]. However, all of these studies have been constricted to short
edge channels and long samples have yet to be studied theoretically.

Aside from 2D Z2 TI, other classes of materials can have topological character too. First,
3D counterparts of the Z2 TI have been experimentally observed in samples of Bi1−xSbx
compounds e.g. in Ref. [13]. In this case the surface constitutes a two-dimensional topo-
logically protected metal that emerges due to the inversion of the 3D bulk gap [14]. Not

1



2 1. Introduction

only insulators but also superconductors may have topological character. In this case the
system has a superconducting gap in the bulk but gapless excitation on the surface. In the
case of spin-triplet superconductors (symmetry classes D and DIII) these excitations have
a character of Majorana fermions [15]. These systems have received a striking amount of
attention in the context of topological quantum computation.

In this thesis we study how the interplay of interactions and disorder affects the transport
properties of long samples of 2D TI. Apart from the relevance to fundamental physics, the
study of interaction and disorder in edge states of 2D TI is also of prime importance for
possible technological applications e.g. in the field of spintronics. To this end we derive a
microscopic model describing helical fermions with broken Sz symmetry subject to weak
disorder and interactions. We then proceed to calculate the AC and DC conductivity of this
system using a kinetic equation approach in different regimes of temperature. This enables
us to make statements about the robustness of topological protection and the relevance
of different scattering mechanisms. Furthermore, we include Luttinger liquid effects that
naturally arise due to the low dimensionality of the system under consideration.

1.1. Outline

This work is organized as follows: In the first part, Ch. 2-4, we lay the groundwork for
this thesis.

Chapter 2 is devoted to topological insulators. First we give an overview of the general
role of topology in condensed matter physics in Sec. 2.1 before introducing the physical
system under consideration, Z2 topological insulators, in Sec. 2.2. There we find that the
gapless edge modes at the system’s boundary can be described by one-dimensional helical
fermions.

This gives the motivation to remind ourselves of some basics of one-dimensional physics
in Ch. 3. There we discuss effects of interaction (Sec. 3.5) and disorder (Sec. 3.6) in low
dimensional systems as well as important theoretical tools (Sec. 3.1, Sec. 3.4) and models
(Sec. 3.2) to describe them.

Lastly, in Ch. 4 we introduce the Keldysh formalism for treating nonequilibrium systems.
We start by deriving the kinetic equation for fermions from the more fundamental nonequi-
librium theory in Sec. 4.3 and then apply the developed formalism to the model of helical
fermions in Sec. 4.4. The results motivate the treatment of helical edge states by a kinetic
equation which will be carried out in the main part.

The main goal of this work is to study transport properties of helical edge states in the
presence of disorder and interaction. This goal is achieved in three steps. First we calculate
the AC conductivity of helical fermions in a long wire in Ch. 5 by using a kinetic equation
approach. This analysis is perturbative and gives us insight into the main scattering
mechanisms that determine the transport properties of the system. We complement this
treatment by deriving an effective Hamiltonian, encapsulating the most relevant scattering
terms, by using methods of conformal field theory. In Ch. 6 we use a combination of
exact analytical manipulations and numerical treatment to solve the integro-differential
equations obtained from the kinetic equation. This enables us to make predictions about
the DC conductivity of the edge modes. Finally, we include Luttinger liquid effects into our
treatment in Ch. 7 by using simple scaling arguments in combination with bosonization.

2



1.2. Definitions and conventions 3

1.2. Definitions and conventions

Troughout the thesis the following conventions are used:

• Unless stated otherwise, we use units where ~ = kB = vF = c = 1.

• Second quantized operators will be denoted with a hat to distinguish them from
quantum fields or other objects. An exception is Ch. 4, where a hat denotes matrix
structure in Keldysh space.

• The Hamiltonian will be defined as “grand canonical”, i.e. the chemical potential is
already included in the definition of the Hamiltonian as Ĥ = Ĥ ′ − µN̂ . Here Ĥ ′ is
the “conventional” Hamiltonian.

• The ratio of Fermi energy and temperature is denoted by ζ = kF /T . The quantum
number for chirality is generally denoted by η. If η appears as a multiplicative factor
we choose the convention η = +1 for right movers and η = −1 for left movers.

• The Fermi-Dirac distribution is given by f0
η,k = (1 + exp{(εη,k − µ)/T})−1, where

εη,k = ηk is the dispersion relation of helical fermions. If we measure momentum
in units of temperature we choose the variables x,y,z and the Fermi distribution is
denoted by n(x) = (1 + ex)−1. Note that x,y are also used as real space coordinates.
However, we believe it is always clear from the context what is meant.

• We adopt the bosonization conventions as well as the notation for bosonic fields
from Sénéchal [16]. Notation conventions in the chapter about non-equilibrium field
theory are adopted from Kamenev [17]

• We choose the following representation of Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

• Integrals without specified limits represent integration over the whole real axis:∫
dx ≡

∫∞
−∞dx

• Commonly used abbreviations:

– TI: topological insulator.

– SOC: spin-orbit coupling, TRI: time reversal invariance.

– QHE: quantum Hall effect, QSHE: quantum spin Hall effect.

– LL: Luttinger liquid, HLL: helical Luttinger liquid.

– IP: integration by parts, OPE: operator product expansion.

– RG: renormalization group, CFT: conformal field theory.

– SIA: structural inversion asymmetry, BIA: bulk inversion asymmetry.

3





2. Topological insulators

In this chapter we give a short introduction into topological insulators in condensed matter
physics and derive the effective model for the gapless states that emerge at their edges.
For a further study of the field we refer the reader to one of the many good reviews on the
topic of topological materials [1, 2, 18, 19, 20].

Let us begin by defining what we mean by topological insulator. A topological insulator
(superconductor) is a gapped system in d dimensions that is characterized by the following
two properties:

1. If one brings the TI in contact with a topologically trivial state (e.g. the vacuum),
gapless edge states emerge at the boundary (see Fig 2.1).

2. The gapless degrees of freedom are completely robust against disorder. That means
we can add any random perturbation or potential of arbitrary strength to the Hamil-
tonian and the edge states will not develop a gap (as long as the perturbations
preserve basic symmetries such as time reversal and do not close the bulk gap).

The most famous example of a TI is the quantum Hall (QH) insulator. In a two-dimensional
electron system at low temperatures and high magnetic fields the bulk of the system is
insulating while the edges carry quantized current. The gapless fermions at the edge can
only move in one direction (since time reversal invariance is broken by the magnetic field)
and realize the chiral Luttinger liquid (CLL). Because they can only move in one direction
the edge states are “topologically protected” from scattering off disorder and any form of
localization is impossible.

topological insulator

boundary

topologically trivial insulator
           / vacuum

Figure 2.1.: Interface between a TI and a topologically trivial insulator with gapless edge states.

5



6 2. Topological insulators

QH

chiral Luttinger liquid

QSH

helical Luttinger liquid

Figure 2.2.: Cartoon of the quantum Hall effect (a) and quantum spin Hall effect (b) as well as the
emerging one-dimensional edge states. The dot in figure (a) symbolizes a impurity
that does not affect transport due to the topological protection of the edge states.

The system is characterized by a topological invariant, the Chern number ν, that corre-
sponds to the number of edge modes and thus determines the Hall conductivity

σxy = ν
e2

h
, ν ∈ Z. (2.1)

The system we are interested in is the quantum spin Hall (QSH) state that exists in band
insulators in d = 2, 3 dimensions with conserved TRI and strong SOC. These systems can
be experimentally realized in HgTe/CdTe quantum wells. Qualitatively one can think of
these systems as two copies of the QH state in opposite magnetic field. Therefore, there
exist two counterpropagating gapless edge modes that carry opposite spin. Because of
the well-defined projection of spin onto the momentum direction the one-dimensional edge
state was named helical Luttinger liquid (HLL).

Similar to the QHE the edge states cannot be backscattered by nonmagnetic impurities,
because in order to backscatter a right moving particle with spin up the process would
have to flip the spin to get a left moving particle with spin down. Therefore, one uses the
terminology that edge states are “topologically protected”. As in the QHE this protection
can be described by a topological invariant. In this case it is a Z2 number that specifies if
there is an even (topologically trivial state) or odd (topologically nontrivial state) number
of Kramers partners at the edge. Since each one-dimensional channel carries a conductance
quantum e2/h the edge conductance in the QSH state is:

G = 2
e2

h
. (2.2)

The comparison of QHE and QSHE is depictet in Fig. 2.2.

2.1. Topology in condensed matter systems

In order to get more insight into the role that topology plays in condensed matter systems
we start by introducing some concepts of topological materials and their classification,
following mostly Ref. [19].

2.1.1. Symmetry classification of Hamiltonians

Consider the gapped Hamiltonian and the corresponding groundstate of a d-dimensional
TI. As already discussed, the topological properties we are interested in do not change if
we add arbitrary perturbations to the Hamiltonian, as long as we do not close the bulk gap
or break any fundamental symmetries. It is clear that these properties are not classified
by ordinary symmetries which are represented by unitary operators that commute with

6



2.1. Topology in condensed matter systems 7

Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A(unitary) 0 0 0 U(N) U(2n)/U(n)× U(n)
AI(orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII(symplectic) -1 0 0 U(2N)/Sp(2N) O(2n)/O(n)× O(n)
AIII(chiral unit.) 0 0 1 U(N+M)/U(N)× U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N+M)/O(N)× O(M) U(2n)/Sp(2n)
CII(ch. sympl.) -1 -1 1 Sp(N+M)/Sp(N)× Sp(M) U(2n)/O(2n)
D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 -1 0 Sp(2N) Sp(2n)/U(n)
DIII (BdG) -1 +1 1 SO(2N)/U(N) O(2n)
CI (BdG) +1 -1 1 Sp(2N)/U(N) Sp(2n)

Table 2.1.: Listed are the ten symmetry classes of single particle Hamiltonians, classified according
to the behavior under time reversal (T ), charge conjugation (C) and chiral symmetry
(S). The column “Hamiltonian” lists the symmetric space of which the quantum me-
chanical time evolution operator exp(itH) is an element and the first column is the
name of the corresponding space in the mathematical classification by Cartan. The
last column lists the (compact sectors of the) target space of the Non linear σ model
describing Anderson localization physics in the low energy sector in this symmetry
class.

the Hamiltonian. Consider for example spin rotation invariance in the z-direction. If Sz
is conserved, the Hamiltonian takes block diagonal form, where the blocks correspond to
Sz =↑, ↓ respectively. Then it is sufficient to study one of the two equivalent copies and
Sz symmetry has given us no additional information. This block decomposition can be
performed with any operator that commutes with the Hamiltonian. Therefore, one must
study the symmetry properties of these blocks of irreducible Hamiltonians in terms of
the most basic symmetries. These are time reversal T and charge conjugation (particle-
hole symmetry) C, which are represented by antiunitary operators when acting on the
single particle Hilbert space. Every antiunitary operator can be expressed through the
combination of a unitary matrix U and complex conjugation K. In our case T = UTK and
C = UCK. Now consider the Hamiltonian of non-interacting fermions in second quantized
language

Ĥ =
∑
α,β

ψ̂†αHα,βψ̂β, (2.3)

where α, β are arbitrary quantum numbers and Hα,β is the first quantized Hamiltonian.
When regularized, i.e. put on a lattice, Hα,β is a N × N matrix. Symmetry under time
reversal or charge conjugation can be expressed in terms of H:

U †TH∗UT = +H, (2.4)

U †CH∗UC =−H. (2.5)

It is easy to see that there are 10 ways for a system to respond to the action of time
reversal and charge conjugation. Time reversal can either be absent (T=0) or present. If
the system is time reversal invariant the antiunitary operator T can square to ±1 which
one usually denotes by T = ±1. The same applies for charge conjugation and therefore
we are left with 3 × 3 = 9 possible classes. To completely specify the behavior under T
and C one also has to introduce the combined operation S = T C (chiral symmetry), which
is unitary. The behavior under S is always uniquely fixed except for the case T = C = 0,
where either S = 0 or S = 1. Here we write S = 1 if S is a symmetry of the Hamiltonian

7



8 2. Topological insulators

and S = 0 if it is not. The resulting classification of random Hamiltonians is very general
and can in particular be used to classify topological states of matter in all dimensions.
The 10 symmetry classes are depicted in Tab. 2.1.

2.1.2. Origin of topology in band insulators

For simplicity let us consider a translationally invariant band insulator. Due to the transla-
tion invariance Bloch’s theorem holds i.e. eigenstates of the Hamiltonian are characterized
by the crystal momentum k ∈ 1.BZ and the band index n:

H(k)|un(k)〉 = εn(k)|un(k)〉. (2.6)

We define the projector onto the filled Bloch states for any k ∈ 1.BZ as

P (k) =
filled∑
n

|un(k)〉〈un(k)|. (2.7)

It turns out to be more useful to work with the “simplified Hamiltonian” Q(k) defined as

Q(k) = 1− 2P (k), (2.8)

which is obtained from H by assigning to the m filled states the eigenvalue (+1) and
to the l empty states the eigenvalue (-1), while leaving the eigenfunctions unchanged. If
we are only interested in topological properties, we can always deform H(k) by adding
perturbations until it acquires the form of Q(k). Let us see how we can use the matrix
Q to identify topological materials by considering the simplest class, class A, where no
symmetry conditions are imposed on the Hamiltonian. Then H is an arbitrary Hermitian
matrix and Q a unitary matrix Q ∈ U(m + l). However, because relabelling filled and
empty states amongst themselves leaves the physics unchanged, Q is actually a map from
the 1.BZ to the so called Grassmannian U(m+ l)/ [U(m)× U(l)]:

Q : 1.BZ → U(m+ l)/ [U(m)× U(l)] ,

k → Q(k).
(2.9)

Let us summarize. As long as the bulk gap is not closed we can deform the Hamiltonian
of the system by adding perturbations until it takes the form of Q. If we want to ask the
question how many distinct gapped phases a system posseses this is equivalent to asking
how many different maps Q(k) there are that can’t be continously deformed into each
other. The answer to this question is given by homotopy theory.

Let us quickly review some mathematical basics. In quantum field theory we are mostly in-
terested in mappings from compactified d-dimensional space time1 into the target manifold
M of fields φ of the theory, i.e.

φ : Sd → M,

x → φ(x).
(2.10)

We will consider two fields to be equivalent, φ1 ∼ φ2, if they can be continously deformed
into each other, i.e. if there exists a continous mapping (“homotopy”) Φ,

Φ : Sd × [0, 1] → M,

(x, a) → Φ(x, a),
(2.11)

1The fields φ take values in spacetime Rd. However, to keep the action finite we have to impose the
condition φ(x) → const. for ‖x‖ → ∞. Thus the base manifold of the fields is actually isomorphic to
the d-dimensional unit sphere Rd ∪ {∞} ' Sd.

8



2.2. Z2 topological insulators 9

such that Φ(x, 0) = φ1(x) and Φ(x, 1) = φ2(x). The equivalence class containing all fields
homotopic to φ is denoted by [φ]. The set of all topological equivalence classes {[φ]} of
mappings φ : Sd → M is called the d-th homotopy group Πd(M). The homotopy groups
of the target manifold in the above case are well-known and in d=2,3 dimensions we have

Π2(U(m+ l)/ [U(m)× U(l)]) = Z, (2.12)

Π3(U(m+ l)/ [U(m)× U(l)]) = {1} . (2.13)

Therefore, for any integer ν ∈ Z there exists a band insulator in d=2 dimensions in
symmetry class A. These insulators cannot be continuously deformed into one another
without crossing a quantum phase transition. This state of matter is the quantum Hall
effect and the topological invariant ν denotes the number of chiral edge modes. When this
number changes we indeed have a quantum phase transition - the quantum Hall transition.
The fact that the third homotopy group is trivial also tells us that there are no quantum
Hall effects in 3 dimensions.

2.2. Z2 topological insulators

After discussing the general case we will now concentrate on TIs of the class AII with
conserved TRI and strong SOI. Because of the great relevance of TRI and SOI we start by
reviewing some basic results of quantum mechanics before we delve deeper into physical
realisations of Z2 TI.

2.2.1. Time reversal symmetry

The time reversal operator is an antiunitary operator that squares to (+1) in the case of
integer total angular momentum and (-1) in the case of half integer total angular momen-
tum [21]. In our case we are interested in spin 1/2 fermions. Therefore, T 2 = −1 and we
choose the representation:

T = iσyK. (2.14)

Its action can be roughly summarized as T (x, k, σ) = (x,−k,−σ). We know from Noether’s
theorem that any unitary symmetry leads to a conserved quantity (e.g. translation invari-
ance leads to momentum conservation). Although there is no such theorem for antiunitary
operators they still have important consequences for the physics of the system. In the case
of time reversal, this is Kramer’s degeneracy:

“For systems with half integer total angular momentum each eigenstate of the Hamilto-
nian is twice degenerate.”

To show this, consider the eigenvalue problem

Ĥ|En〉 = En|En〉. (2.15)

If the Hamiltonian commutes with the time reversal operator [T̂ , Ĥ] = 0, there are two
eigenstates {|En〉, T̂ |En〉} for the energy En. We will show that these are distinct states
by proof by reductio ad absurdum.
If the two states were the same, they would differ at most by a phase factor

T̂ |En〉 = eiδ|En〉, (2.16)

hence,

T̂ 2|En〉 =T̂ eiδ|En〉 = e−iδT̂ |En〉 = |En〉. (2.17)

9



10 2. Topological insulators

However, since T̂ 2 = −1:

T̂ 2|En〉 =− |En〉. (2.18)

This is a contradiction to our assumption that |En〉 is an eigenstate (in particular it is
nonzero). Therefore, every energy eigenvalue is at least twice degenerate in the presence
of time reversal symmetry and the corresponding eigenkets are orthogonal.

2.2.2. Spin-orbit coupling

Spin-orbit interaction is a contribution to the Hamiltonian of a spinful system that arises
naturally in the context of the Dirac equation and describes corrections to the spectrum
due to the coupling of the spin of a particle and its motion. Let us consider spin-orbit
coupling as a weak perturbation. In perturbation theory around k = 0 one expects the
lowest terms coupling to the spin to be linear in k,

ĤSO = −B(k)σ. (2.19)

Time reversal symmetry requires B(−k) = −B(k). If the system is in addition to that also
inversion symmetric, B(k) = B(-k), the only possible solution is B(k) = 0. Therefore, in
order for the spin-orbit term to be nonzero, inversion symmetry has to be broken.2

There are two possibilities to break inversion symmetry in a system:

• Structural inversion asymmetry (SIA) and

• Bulk inversion asymmetry (BIA).

In heterostructures the confinement potential and the band edge variations (different ma-
terials have different band gaps) break the inversion symmetry. This is called SIA. The
corresponding perturbation to the Hamiltonian is the Rashba SOI. This term can be de-
rived from the microscopic 8 × 8 Kane model [22, 23] but here we will only motivate it
heuristically. The Rashba effect is a consequence of inversion symmetry breaking perpen-
dicular to the 2d plane, e.g. by an electric field E = E0ez. Due to relativistic corrections
an electron moving with velocity v in the electric field will experience an effective magnetic
field in its rest frame,

B = − 1

c2
(v×E) = − E0

mc2
(k× ez) . (2.20)

The magnetic field couples to the electron’s spin as

ĤR = µBσB = −E0µB
mc2

σ (k× ez) . (2.21)

We also have to include a factor 1/2 due to the Thomas precession. Therefore, we arrive
at the Rashba term

ĤR = α (σ × k) ez, (2.22)

where α = µBE0/(2mc
2). A neat way of picturing this is to write the Rashba term as

Zeeman splitting with a momentum dependend magnetic field as in Eq. (2.19):

ĤR = −B(k)σ, B(k) = α (−ky, kx, 0) . (2.23)

2Of course we could also break TRI by applying a magnetic field. However, here we are exclusively
interested in systems with conserved TRI and therefore we will not consider this case.

10



2.2. Z2 topological insulators 11

Figure 2.3.: (A) bulk bandstructure of HgTe and CdTe and (B) schematic picture of quantum well
energy levels for different thicknesses (from [4]). For quantum well thickness d < dc
the system is in the topologically trivial phase, while gapless edge modes emerge at
the boundary between HgTe and CdTe for d > dc.

Note that while this simple argument can construct the correct form of the Hamiltonian,
the magnitude of the prefactor α is actually two orders smaller than the correct microscopic
result.

It is also possible that the intrinsic crystal structure of the bulk breaks inversions symmetry
(BIA). For example this is the case in the zincblende structure. The corresponding SOI
term is called Dresselhaus term and is given by

HD = β (kxσx − kyσy) . (2.24)

2.2.3. Physical realisations of Z2 topological insulators

The QSH state was first discovered in HgTe/CdTe quantum wells. In this section we
review the basic electronic structure of the semiconductors HgTe and CdTe and derive a
simple model, following Ref. [4], to describe the physics of the subbands of HgTe/CdTe
quantum wells that are important for the QSH effect.

For both HgTe and CdTe the important bands near the Fermi level are close to the center
of the Brillouin zone (Γ point). Quite generally one can picture the bands in solids as
combinations of atomic orbitals of the constituent atoms. If two atoms are brought close
together, the orbitals can overlap in two ways to form bonding or antibonding molecular
orbitals. Normally, one concentrates on the antibonding s-type orbitals that make up
the valence band and the bonding p-type orbitals that build the conduction band. Near
the Γ point these are twice (s-type) or sixfold (p-type) degenerate due to the spin degree
of freedom. If we take into account spin-orbit coupling, the bands become mixed and
are characterized by their total angular momentum j i.e. we have quantum numbers
(j,mj , l, s).

11



12 2. Topological insulators

The conduction band consists of the doublet |Γ6, j = 1/2,mj = ±1/2〉3 while the valence
band is made of the quadruplet |Γ8, j = 3/2,mj = ±1/2〉, |Γ8, j = 3/2,mj = ±3/2〉 and
the doublet |Γ7, j = 1/2,mj = ±1/2〉. The j = 3/2 bands are degenerate at the Γ point
and have different curvatures (effective masses) away from it. Therefore, they are referred
to as heavy and light hole bands. The Γ7 band is split off by SOI and will be disregarded
in the following.

In quantum wells grown in [001] direction the spherical symmetry is broken down to a
axial rotation symmetry in the plane. The six bands therefore combine to form the spin
up and down states of the quantum well subbands E1, H1 and L1. The L1 subband
is separated from the other two and we will neglect it, leaving an effective four band
model. At the Γ point with in-plane momentum k‖ = 0, mj is still a good quantum
number. The quantum well states |E1,mj = ±1/2〉 are then linear combinations of states
|Γ6, j = 1/2,mj = ±1/2〉 and |Γ8, j = 1/2,mj = ±1/2〉 while |H1,mj = ±3/2〉 are made
of |Γ8, j = 3/2,mj = ±3/2〉, respectively. Therefore, the quantum well states are given by
the ordered basis {|E1, ↑〉, |H1, ↑〉, |E1, ↓〉, |H1, ↓〉}.4

Note that |Γ6,mj = ±1/2〉 has even parity and |Γ8,mj = ±3/2〉 has odd parity under two-
dimensional spatial inversion. Therefore, a matrix element coupling the two states has to
have an odd power of momentum k.

These symmetry arguments lead to the following model:

H(kx, ky) =

(
h(k) 0

0 h∗(−k)

)
,

h(k) =ε(k)12 + di(k)σi,

(2.25)

where

ε(k) = C −D(k2
x+k2

y), di(k) = (Akx, −Aky, M(k)) , (2.26)

M(k) =M −B(k2
x + k2

y). (2.27)

The important point is that the band structure in HgTe is inverted because of the large
SOC in heavy materials like Hg. That means that the Γ8 lies above the Γ6 band in this
material. For small quantum well thicknesses the heterostructure should behave as CdTe
with normal band ordering. However, as we increase the thickness above some critical
value dc, the bandstructure will be determined by the properties of HgTe and become
inverted (see Fig. 2.3). Therefore, we have a quantum phase transition as a function of
quantum well thickness. In the inverted regime the bands naturally have to cross at the
boundaries which leads to the emergence of massless edge states with linear dispersion
described by the helical LL. This can be shown explicitely by solving the BHZ model with
appropriate boundary conditions [24]. In particular the edge states emerge irrespective of
the boundary conditions imposed, which underlines their topological nature.

2.2.4. Effective model for the HLL

The 1D helical system is translation invariant and momenta k are thus good quantum
numbers for the eigenstates. Furthermore, the spin degree of freedom of the excitations

3The notation Γ6, Γ8 etc. originates from the group theoretical classification of irreducible representations
of the crystal symmetries which determine the way wavefunctions transform at the Γ point.

4For Γ6 states we have l=0 which implies that mj = ±1/2 is the same as s = ±1/2. On the other hand, for
Γ8 l=1 and mj = ±3/2 is also the same as s = ±1/2 therefore we introduced the notation s = 1/2 =↑
and s = −1/2 =↓.

12



2.2. Z2 topological insulators 13

is frozen out because each chirality has a well-defined spin direction. The effective low
energy theory for the edge excitations is thus that of free spinless fermions,

Ĥ0 =
1

L

∑
k,η=R,L

η k ψ̂†k,ηψ̂k,η, (2.28)

where ψ̂k,η are fermionic operators that annihilate right or left moving excitations respec-
tively and η = +1(R),−1(L) denotes chirality. If we assume that time reversal symmetry
holds, Kramer’s theorem ensures that for any k there exist two orthogonal eigenstates,
created by fermionic operators ψ̂†R,k and ψ̂†L,−k which are related by time reversal T , e.g.

T
(
ψ̂k,R
ψ̂k,L

)
= iσyK

(
ψ̂k,R
ψ̂k,L

)
=

(
ψ̂−k,L
−ψ̂−k,R

)
. (2.29)

We also take into account interaction in the density-density channel and we model impu-
rities by a local potential that couples to the electronic density:

Ĥint =
1

L

∑
kqp

∑
σσ′

V (q)ψ̂†k,σψ̂k−q,σψ̂
†
p,σ′ψ̂p+q,σ′ , (2.30)

Ĥimp =
1

L

∑
k,p

∑
σ

U(k − p)ψ̂†σ,kψ̂σ,p. (2.31)

For a generic helical liquid spin rotation invariance around the z-direction will be broken
either by SIA or BIA effects. We therefore formulate the problem in the chiral basis (R,L)
in which the free Hamiltonian is diagonal. In order to perform this rotation we follow
Ref. [11] and derive the rotation matrix from symmetry arguments. The field operators
ψ̂σ,k of an electron with momentum k and spin projection σ along the z-axis are related

to the chiral operators ψ̂η,k by a momentum dependant SU(2) matrix Bk,(
ψ̂↑,k
ψ̂↓,k

)
= Bk

(
ψ̂R,k
ψ̂L,k

)
. (2.32)

To preserve fermionic commutation relations the matrix has to be unitary B†kBk = 1.
Moreover, time reversal invariance entails the symmetry Bk = B−k. Because of these
constraints the leading terms in Bk for small k � k0 can be written as:

Bk =

(
1− k4

2k4
0

−k2

k2
0

k2

k2
0

1− k4

2k4
0

)
, B−1

k =

(
1− k4

2k4
0

k2

k2
0

−k2

k2
0

1− k4

2k4
0

)
. (2.33)

Here, k−1
0 is the typical distance an electron can travel while retaining its spin-direction and

higher order terms in k/k0 are supposed to be small. Finally, we neglect the momentum
dependance of the interaction and impurity potentials and assume U(q) = U0 and V (q) =
V0. In the case of interactions this is justified if the potential is well screened by external
media (e.g. external gates) and for impurities we model the potential to be short-range in
real space.

If we substitute the relation (2.32): ψ̂σ,k =
∑

η=R,LBk,σηψ̂η,k into the interaction Hamil-
tonian we get:

Ĥint =
1

L

∑
kqp

∑
η1η2η3η4

V (q)
[
B†kBk−q

]
η1,η2

[
B†pBp+q

]
η3,η4

ψ̂†k,η1
ψ̂k−q,η2ψ̂

†
p,η3

ψ̂p+q,η4 . (2.34)
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R

R

L

L

g
1

backward

L

R

L

R

g
2

dispersion

R

L

L

R

g
3

Umklapp

R

R

R

R

g
4

forward

R

LR

g
5

Umklapp

R

Figure 2.4.: G-ology of interaction terms in the HLL. Fat vertices denote chirality changes that
have an additional prefactor ηin(k2in − k2out).

Therefore, we have to calculate the product

B†kBp ≈

 1 k2−p2

k2
0

−k2−p2

k2
0

1

 . (2.35)

Here, we neglected higher order terms in k/k0. This product can be written in the form[
B†kBp

]
η,η′

= δη,η′ + η δη̄,η′(k
2 − p2), (2.36)

where we use the notation R̄ = L and vice versa. Inserting (2.36) into (2.34) we get after
some simple algebra:

Ĥint =
V0

L

∑
kqp

∑
ηη′

[
ψ̂†k,ηψ̂

†
p,η′ψ̂p+q,η′ψ̂k−q,η

+ 2η

(
k2 − (k − q)2

)
k2

0

ψ̂†k,ηψ̂
†
p,η′ψ̂p+q,η′ψ̂k−q,η̄

+ ηη′
(
k2 − (k − q)2

)
k2

0

(
p2 − (p+ q)2

)
k2

0

ψ̂†k,ηψ̂
†
p,η′ψ̂p+q,η̄′ψ̂k−q,η̄

]
.

(2.37)

Note that we already normal ordered the Hamiltonian (any two particle processes that are
created due to the anticommutation relations can be absorbed in the chemical potential).
The different terms of the interaction Hamiltonian can be grouped analogously to the g-
ology of a conventional LL, which is shown explicitely in Appendix A. However, now we
have an additional Umklapp term that backscatters only one particle. For the purpose of
this thesis it will be called g5 term. All terms are depicted in Fig: 2.4.

Lastly, the impurity part in the chiral basis reads

Ĥimp =
U0

L

∑
k,p

∑
η

(
ψ̂†k,ηψ̂p,η + η

k2 − p2

k2
0

ψ̂†k,ηψ̂p,η̄

)
. (2.38)

One thing should be mentioned at this point. The parameters V0 and U0 should be
considered as effective couplings of the low energy theory after integrating out all degrees
of freedom above the UV cutoff, which is given by the bulk gap. Therefore, renormalization
effects due to high lying states are already incorporated into the coupling constants and
do not affect the physics apart from that.

14



2.2. Z2 topological insulators 15

Let us summarize:

1. The effective low energy model for the gapless edge modes of the QSH insulator is
that of spinless one-dimensional fermions in the chiral basis.

2. Each chirality changing process comes with a factor ηin(k2
in − k2

out). These factors
embody the topological protection the edge modes enjoy. First, the momentum
factors change the scaling dimensions of the operators making them irrelevant in
the RG sense. Therefore, chirality changing processes cannot open a gap. Second,
states with identical momentum but opposite spin are orthogonal due to Kramer’s
theorem. The factor (k2

in − k2
out) thus ensures that there is no scattering between

Kramers partners in the helical basis either.

Before analysing the model further, we have to gain a better understanding of one-
dimensional physics in general. Therefore, the next section will be devoted to a survey of
quantum physics in one dimension.

15





3. One-dimensional systems

One-dimensional systems of interacting particles have fascinated theorists for more than
50 years now. The profound effect of dimensionality drastically changes the behavior
of particles compared to higher dimensional counterparts. On the one hand, the one-
dimensional character leads to the possibility to solve some systems exactly while on the
other hand the interplay of interactions, disorder and the low dimensionality leads to highly
nontrivial correlation effects. In the following we will review, mostly following [16], the
powerful techniques that are at our disposal to solve problems in one dimension. For a
more detailed discussion see Refs. [16, 25, 26].

3.1. A word on conformal symmetry and the renormalization
group

3.1.1. The renormalization group

Here we will present only a very basic introduction to the renormalization group. For
further studies we refer to the literature [27, 28].

In condensed matter physics the renormalization group (RG) is a general term for meth-
ods that allow systematic investigations of a system’s behavior under scale changes. In
particular one is often interested in obtaining an effective low energy theory by integrating
out high energy degrees of freedom.
A field theory is by definition a physical model defined on the continuum instead of a
lattice. However, quantum fluctuations being at work at all scales 1, the theory is prone
to all sorts of UV or IR divergences. Therefore, a purely continous theory makes no sense
and we have to introduce an energy cutoff Λ that marks the range of applicability of the
model. Such a regularization invariably introduces a length scale Λ−1, which is part of
the theory as one of the parameters along with other coupling constants, masses, veloc-
ities and so on. One must keep in mind though that a change in the cutoff Λ (through
tracing out the high energy degrees of freedom) is accompanied by a change of all other
parameters. Thus a field theory is not characterized by a fixed set of coupling constants
but by a renormalization group trajectory in parameter space, which traces the change of
parameters as the cutoff is lowered.

1that means that the fields φ(k) take values at all momenta k ∈ {−∞,∞}.
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18 3. One-dimensional systems

Let us outline how a generic (momentum) RG step is done. The problem we face, is that
the theory is in general unaware of any clear cut separation of ”fast” and ”slow” 2 degrees
of freedom. To nonetheless implement our scheme of integrating out “fast” modes we have
to artificially define an energy Λ(1) = b−1Λ, where b>1, that separates slow (ω < Λ/b)
and fast (Λ/b < ω < Λ) variables. Now we integrate out the fast fields and arrive at
an effective action for the slow fields. The result may be twofold, either the algebraic
structure of the action is changed completely or we get a new action that is identical to
previous one except for (i) a different set of coupling constants and (ii) a decreased energy
cutoff Λ→ Λ(1) = b−1Λ. In the later case the theory is called renormalizable. To compare
the set of coupling constants with the previous ones we have to rescale momenta and
energies, such that they have the same cutoff as before (k, ω) → (bk, bω)3. Now one can
iterate the procedure until the natural cutoff of the theory is reached (e.g. if temperature
is the highest energy scale of the problem, the cutoff will be T). However, the utility of
the RG relies on the recursive reproduction of the model at each step: one step alone
already encodes all information about the renormalization properties of the model. These
properties are condensed in the generalized β function which describes the flow of the set
of parameters g under the change of control parameter

β(g) =
dg

d ln b
. (3.1)

Most important is the notion of fixed point, i.e. a point in parameter space g∗ that is
unaffected by the renormalization step (β(g∗) = 0). Exactly at a fixed point the system
is scale invariant. However, every system has at least one intrinsic length scale, the cor-
relation length ξ. Consequently, at a fixed point we must have either ξ = 0 or ξ = ∞.
On the other hand, a diverging correlation length is the hall mark of a second order phase
transition. Therefore, we can indentify fixed points as critical points of the underlying
physical model.

In the vicinity (in a pertubative sense) of a fixed point the terms in the action, char-
acterized by their coupling constants, fall into three categories: relevant, irrelevant and
marginal. Relevant parameters grow algebraically under renormalization, irrelevant pa-
rameters decrease algebraically and marginal parameters undergo logarithmic variations.

3.1.2. Conformal field theory

Conformal field theory (CFT) provides some very powerful methods for solving two-
dimensional statistical mechanics problems. We therefore feel the need to introduce some
of the basic concepts. For an exhaustive overview of the field we refer to the literature
[29, 30].

By definition the conformal group is a subgroup of coordinate transformations that leaves
the metric invariant up to a scale change, i.e.

gµν(x)→ g′µν(x′) = Ω(x)gµν(x). (3.2)

That means the transformation conserves angles, but not lengths. In d dimensions these
transformations form a finite group with (d+1)(d+2)/2 independant parameters. A theory
is called conformally invariant if its action is invariant under the conformal group.

In 2D, conformal transformations coincide with analytic coordinate transformations. It
is thus natural to define complex coordinates in terms of real space coordinate x and

2with ~ ≡ 1 energy and frequency are measured in the same units. Thus “fast” is equivalent to high
energies and “slow” to low energies.

3In a Lorentz invariant theory it makes sense to scale energy and momentum with the same factor.
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3.1. A word on conformal symmetry and the renormalization group 19

imaginary time τ = it,

z = vτ − ix, z̄ = vτ + ix. (3.3)

Here v is velocity and we have the following correspondence for the derivatives:

∂z = − i
2

(
1

v
∂t − ∂x

)
, ∂x = −i (∂z − ∂z̄) , (3.4)

∂z̄ = − i
2

(
1

v
∂t + ∂x

)
, ∂t = iv (∂z + ∂z̄) . (3.5)

Indeed under the transformation

z → f(z) , z̄ → f̄(z̄) (3.6)

the line element changes as

ds2 = dzdz̄ → |df
dz
|
2

dzdz̄. (3.7)

Therefore, comparing this expression with Eq. (3.2), we have Ω = |df/dz|2.

The peculiarity of 2D is now that one cannot only define a global conformal group as
in other dimensions but also a local conformal algebra.4 The class of analytic functions
that are invertible and defined on the whole Riemann sphere (i.e. have no branch cuts)
make up the global conformal group. In terms of complex coordinate z, global conformal
transformations have the form

z → f(z) =
az + b

cz + d
, ad− bc = 1, (3.8)

where a,b,c,d are complex numbers. However, since any analytic function is a conformal
mapping one has an infinite algebra of local conformal transformations, that have all
the properties of conformal maps except that they are not one to one. This feature of
2D CFT is what allows a complete solution of conformal field theories, even in certain
circumstances that apparently break scale invariance. For instance, the complete complex
plane (the space time used with imaginary time at zero temperature) may be mapped
onto a cylinder of circumference L via the mapping f(z) = e2πz/L. This allows for the
calculation of correlation functions in a system with a macroscopic length scale (a finite
size L at zero temperature, or a finite temperature β = L/v in an infinite system) from
the known solution in a scale-invariant situation.

Furthermore, the behavior of operators under the conformal group gives us information
about their transformation properties under scale changes, which is useful in combination
with an RG treatment. A local operator belonging to a CFT is called quasi-primary if it
scales under a conformal transformation like

O′(αz, ᾱz̄) = α−hᾱ−h̄O(z, z̄). (3.9)

The constants h, h̄ are called the right-and left-conformal dimensions, respectively and are
a fundamental property of the operator O.
Under plain dilation (α = ᾱ) the operator behaves as O′(αz, αz̄) = α−∆O(z, z̄), where
∆ ≡ h + h̄ is the ordinary scaling dimension of the operator. Under a rotation (α = eiθ,
ᾱ = e−iθ ) the operator transforms as O′(eiθz, e−iθz̄) = eisθO(z, z̄), where s ≡ h− h̄ is the
conformal spin of the operator. In general the scaling dimension appears directly in the
two point correlation function of the operator which is fixed by scaling arguments up to a
multiplicative constant:

〈O(z, z̄)O(0, 0)〉 =
1

z2hz̄2h̄
. (3.10)

4Strictly speaking the local conformal transformations don’t constitute a group since they are not invertible
on the whole Riemann sphere C ∪∞. Thus we use the word algebra here.
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20 3. One-dimensional systems

3.1.3. Effect of pertubations

Consider the perturbed action of a one-dimensional system

S = S0 + g

∫
dxdtO(x, t) (3.11)

where S0 is the fixed-point action and O is an operator of scaling dimension ∆. Let us
now perform a single RG step, that is we change the real space cutoff Λ−1 to a higher
value bΛ−1, where b > 1. In order to compare the new action with the previous one, we
have to rescale spacetime as (x, t) = (b−1x′, b−1t′), where (x, t) now have the same cutoff
as before. Thus

S′ =S0 + g

∫
dx′dt′O(x′, t′) (3.12)

=S0 + g

∫
d(bx)d(bt)O(bx, bt) (3.13)

=S0 + g b2−∆

∫
dxdtO(x, t). (3.14)

Therefore, we can read off the change of the coupling constant,

g′(b) = g b2−∆ = g(0) e(2−∆) ln(b). (3.15)

Let us assume that b = 1 + ε (ε � 1) is close to unity (which means we ”shave off” an
infinitesimal layer in momentum space in each RG step) , i.e. ln(b) ≈ ε. Then we can

encapsulate the information from the RG step in the differential equation g′−g
ε ≈ dg

dε =

g(2−∆) ≈ dg
d ln(b) . In other words the β function is given by

β(g) =
dg

d ln(b)
= g (2−∆). (3.16)

The sign of the beta function tells us if a coupling constant grows (β > 0) or decreases
(β < 0) under the RG. Thus, the pertubation is relevant if ∆ < 2, irrelevant if ∆ > 2
and marginal if ∆ = 2. A relevant operator is typically the source of a gap in the low-
energy spectrum while irrelevant operators only change the properties of the theory in a
perturbative sense.

Let us end the section with some remarks:

• By adding a pertubation that is not invariant under scale changes we break confor-
mal symmetry. However, we may still study the effect of weak coupling in the CFT
framework if we don’t depart too far from the fixed point. Especially, if the operator
is irrelevant.

• The above analysis does not work for operators with conformal spin. If one fuses two
operators with conformal spin together, an operator with lower scaling dimension can
be generated. These operators would appear in the action under a RG step and have
to be included by hand in order to describe the full theory.

3.2. Models for one-dimensional fermions and bosons

3.2.1. The Gaussian model

The model describing free massless bosons in one dimension is called the Gaussian model

S0 =
1

2

∫
dxdτ

[
v−1 (∂τϕ)2 + v (∂xϕ)2

]
(3.17)

IP
= − 1

2

∫
dxdτ ϕ

(
v−1∂2

τ + v∂2
x

)
ϕ, (3.18)
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3.2. Models for one-dimensional fermions and bosons 21

where ϕ(x, τ) is a real scalar field and v describes the velocity. Since the action is quadratic
we can immediately read off the equation governing the propagator:

−
(
v−1∂2

τ + v∂2
x

)
G(x, τ, x′, τ ′) = δ(x− x′)δ(τ − τ ′). (3.19)

In complex coordinates this is the two-dimensional poisson equation

−4v∂z∂z̄G(z, z̄) = δ(z)δ(z̄). (3.20)

Its solution is well-known and for a disk of radius R in (x, τ) space and a short distance
cutoff a0 we get

G(z, z̄) =
1

4π
ln

(
R2

zz̄ + a2
0

)
a0→0

= − 1

4π
ln(zz̄) +

1

2π
ln(R). (3.21)

In the following we drop the second term, which basically defines an overall length scale.
Thus we see that at the level of correlation functions the boson ϕ decomposes into a
holomorphic and an antiholomorphic part,

〈ϕ(z, z̄)ϕ(0, 0)〉 =− 1

4π
ln(zz̄) = − 1

4π
ln(z)− 1

4π
ln(z̄). (3.22)

This corresponds to the decomposition of the field ϕ into two chiral boson fields ϕ(z, z̄) =
φR(z) + φL(z̄) with propagators

〈φR(z)φR(0)〉 =− 1

4π
ln(z), (3.23)

〈φL(z̄)φL(0)〉 =− 1

4π
ln(z̄). (3.24)

It is customary to further define the field Π(x, τ) = δL
δ∂τϕ

= v−1∂τϕ conjugate to ϕ. The
corresponding Hermitian operators in the Hamiltonian formalism obey the canonical equal
time commutation rules [

ϕ̂(x), Π̂(x′)
]

= iδ(x− x′), (3.25)[
ϕ̂(x), ϕ̂(x′)

]
=
[
Π̂(x), Π̂(x′)

]
= 0. (3.26)

Finally, we define the dual boson5 θ(x, τ) by the relation ∂xθ = −Π. This basic definition
implies the nonlocal commutation relation[

ϕ̂(x), θ̂(x′)
]

= −iΘ(x− x′), (3.27)

where Θ is the Heaviside step function. The representation of θ in terms of chiral bosons
is θ = φR − φL.

For future referrence let us define the exponentials of boson fields eiαφ.6 To avoid diver-
gencies in the theory exponential operators of this form (called vertex operators) have to
be normal ordered. Thus, vertex operators don’t multiply like ordinary exponentials but
according to

eiαφ(z)eiβφ(z′) = eiαφ(z)+iβφ(z′)e−αβ〈φ(z)φ(z′)〉 (3.28)

which can be shown using the Campbell-Baker-Hausdorff-Formula [16].

5The dual field θ has the same action as ϕ and consequently the same correlation functions and commu-
tation relations.

6φ(z) is an arbitrary bosonic field.
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22 3. One-dimensional systems
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Figure 3.1.: Linearisation of the spectrum around the Fermi points.

The correlation function of vertex operators in an infinite system,

〈eiα1φ(z1)eiα2φ(z2) · · · eiαNφ(zN )〉 , (3.29)

is nonzero only if
∑n

i=1 αN = 0. This is known in the literature as the neutrality condition.

Vertex operators are primary fields. Their conformal dimensions can be obtained from
their correlator

〈eiαϕ(z,z̄)e−iαϕ(0,0)〉 = 〈eiα(ϕ(z,z̄)−ϕ(0,0))〉 eα2〈ϕ(z,z̄)ϕ(0,0)〉 = (zz̄)−
α2

4π . (3.30)

Therefore, the conformal dimensions of the operator are

eiαϕ(z,z̄) :
(
h(α), h̄(α)

)
=

(
α2

8π
,
α2

8π

)
. (3.31)

3.2.2. The Dirac equation

Free one-dimensional fermions are described by the massless (1+1) dimensional Dirac
equation. To show this, we consider the action of free spinless electrons with quadratic
spectrum in one dimension and derive their low energy effective theory. The action reads

S0 =

∫
dxdτ

[
ψ̄(x, τ)

(
∂τ −

∂2
x

2m

)
ψ(x, τ)

]
, (3.32)

where ψ̄, ψ are Grassmann variables. For small energies the relevant electrons lie near the
Fermi points and we expand our fields in their vicinity, ψkF+q ≡ ψR(q) and ψ−kF+q ≡ ψL(q)
(see Fig. 3.1). After Fourier transforming we get the decomposition

ψ(x, τ) = ψR(x, τ)eikF x + ψL(x, τ)e−ikF x, (3.33)

where ψR(L) are smooth fields on the length scale k−1
F . In the Hamiltonian formalism these

correspond to operators with commutation rules

{ψ̂η(x), ψ̂†η′(x
′)} = δ(x− x′)δη,η′ . (3.34)

Using (3.33) in (3.32) and neglecting oscillatory terms and higher order derivatives in ψ
we arrive at

S0 ≈
∫

dxdτ ψ̄R (∂τ − ivF∂x)ψR + ψ̄L (∂τ + ivF∂x)ψL (3.35)

=
∑
η=R,L

∫
dxdτ ψ̄η (∂τ − iηvF∂x)ψη. (3.36)
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3.3. Peculiarities of one dimension 23

Thus, we see that the action splits into two independant chiral sectors. If we can safely
neglect curvature corrections (these would become important e.g. at the bottom of the
band) Eq. (3.36) is a universal model for the low energy excitations of one-dimensional
electrons. If we define γ0 = σx, γ1 = σy, the two-spinors Ψ̄ =

(
ψ̄R, ψ̄L

)
σx, Ψ = (ψR, ψL)T

and two dimensional space time x = (x, τ) the action of a free one-dimensional fermion is
identified with that of a (1+1) dimensional Dirac particle

S0 =

∫
d2x Ψ̄γµ∂

µΨ. (3.37)

The free propagators are readily calculated:

〈ψR(x)ψ̄R(x′)〉 =
1

2π

1

z − z′ , 〈ψL(x)ψ̄L(x′)〉 =
1

2π

1

z̄ − z̄′ . (3.38)

We can also include external fields by the standard minimal subtitution ∂µ → ∂µ − ieAµ
7 to get

S0 =

∫
d2x Ψ̄γµ (∂µ − ieAµ) Ψ. (3.39)

This enables us to calculate the current density j = j1 and charge density ρ = ij0 by
variation of the action,

jµ =
δS[A]

δAµ
, (3.40)

which yields:

ρ =e (JR + JL) , (3.41)

J =e (JR − JL) . (3.42)

Here we defined the chiral currents JR = ψ̄RψR, JL = ψ̄LψL. At this point we want to
add the following remarks:

• One-dimensional electrons are primary fields and we can read off their conformal
dimension from the propagators (3.38):

ψR : (h, h̄) =

(
1

2
, 0

)
, ψL : (h, h̄) =

(
0,

1

2

)
. (3.43)

• In a one-dimensional Fermi system with uniform velocity vF , the current density is
proportional to the number of right movers minus that of left movers. Thus it is
fundamentally different than higher dimensional systems where the current density
is proportional to momentum.8 In other words a process that conserves momentum
can still affect transport properties if it changes the number of right (left) movers.
This fact will become important later.

3.3. Peculiarities of one dimension

After introducing some formal concepts let us now turn to a more physical explanation of
one-dimensional systems. Before explaining why one dimension is special, let us first review
what makes higher dimensions normal. The effect of interactions in higher dimensions is
described by the Fermi liquid theory.

7Remember c ≡ 1 and e is charge. Furthermore, in the imaginary time formalism A0 = iφ.
8 A notable exception to this is graphene, see e.g. Ref. [31].
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24 3. One-dimensional systems

Free fermions obey Fermi-Dirac statistics and their groundstate at zero temperature is
the filled Fermi sea. Excitations with respect to this groundstate are electrons defined by
their momentum, spin and charge (k, σ, e0). Since they are eigenstates of the Hamiltonian
they have infinite lifetime. Landau’s hypothesis was, that if we adiabatically switch on
interactions, the fundamental quantum numbers (k, σ, e0) and the statistics of the particles
are left unchanged. However, their dynamical properties such as mass, velocity etc. get
renormalized by the effect of interactions. The excitations are thus not the fundamental
electrons anymore but are called quasiparticles. Heuristically, these are electrons dressed
by surrounding density fluctuations.

Formally, these properties can be seen in the single particle propagator G(k, ω) and the
spectral function A(k, ω).
The poles of the propagator contain information about the quasiparticle spectrum of an
interacting system. The poles’ real part specifies the quasiparticle energy while the imagi-
nary part contains information about the lifetime. On the other hand the spectral function
A(k, ω) can be interpreted as the probability of finding a quasiparticle in the state (k, ω).
For free electrons at zero temperature we have

G(k, ω) =
1

ω − ξk + i0 sign(|k| − |kF |)
, A(k, ω) = δ(ε− ξk). (3.44)

If one includes interactions the self energy Σ of quasiparticles becomes finite. This renor-
malizes their properties and broadens the spectral weight to a Lorentzian form. However,
the quantum numbers of exitations are left unchanged, i.e. we get

G(k, ω) =
Zk

ω − ξ̃k − i
2Γ(k, ξ̃k)

, A(k, ω) =
ZkΓ(k, ξ̃k)(

ω − ξ̃k
)2

+ 4Γ(k, ξ̃k)
, (3.45)

where Z ∈ [0, 1] is the quasiparticle weight determining the fraction of electrons that are
in the quasiparticle state, ξ̃k is the quasiparticle dispersion relation and Γ(k, ξ̃k) is the rate
of decay of the state (k, ξ̃k),

ξ̃k =ξk + ReΣ(k, ξ̃k), (3.46)

Z−1
k =1− ∂ε ReΣ(k, ω)|ω=ξ̃k

, (3.47)

Γ(k, ξ̃k) =2Zk ImΣ(k, ω). (3.48)

The results are summarized in Fig. 3.2.
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Γ(   ,k)

ξk
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Figure 3.2.: Distribution function n(k) and spectral function A(k, ω) for free fermions (left) and
quasiparticles (right).
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Figure 3.3.: Particle hole spectrum in 1d (a) and in 2d (b).

Quasiparticles are only well-defined if their inverse lifetime is much smaller than any char-
acteristic energy scale of the problem. Fortunately, in dimensions higher than one this is
usually the case and excitations are well-defined in the vicinity of the Fermi surface.

The remarkable feature of Fermi liquid theory is that it does not rely on weak coupling
but holds for arbitrary interaction strenghts in the absence of symmetry breaking phase
transitions. It is thus all the more suprising that it fails to describe interaction effects in
one dimension.
Indeed, if we calculate the electronic self energy in 1D we find that the inverse quasiparticle
weight is logarithmically diverging with the energy cutoff Λ. Our statement is thus: in
one dimension there exist no coherent single particle exitations but only collective modes.
To see this, consider a cartoon picture of a one-dimensional wire with electrons on it. If
we insert an additional electron into the wire it will push away the neighboring electrons.
Thus it creates a density fluctuation which is a collective excitation of all the electrons in
the wire.

On a more formal level, consider Fig. 3.3 where we plot the energy of particle hole pairs cre-
ated out of the Fermi sea against their momenta (both measured w.r.t. the groundstate).
Patched regions show the points in parameter space where electron hole excitations are
allowed. Due to the linear dispersion near the Fermi points, pairs have a narrow dispersion
near k = 0. That means a pair has a well-defined dispersion relation and can propagate
coherently. In other words, because particles and holes have nearly the same group ve-
locity 9 they propagate together and a weakly attractive interaction can bind them into a
coherently propagating entity: a new particle. In higher dimensions these arguments don’t
apply since the Fermi surface is not disjoint. Therefore, pairs can have arbitrary energy
starting from zero and interactions have a harder time forming coherent excitations. The
fact that particle hole excitations have bosonic character and that the low energy physics
is dominated by them is the basis for the bosonization procedure which will be discussed
in the next section.

9Due to the linearized spectrum v = ∂kE(k) = const..
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26 3. One-dimensional systems

3.4. Operator bosonization

In order to calculate correlation functions it was useful to work in the action formalism.
However, from now on we will switch to the operator representation because it will be used
throughout most of this thesis. If we define the correspondence

ψ̂R(z) =
1√
2π
e−i
√

4πφ̂R(z), ψ̂L(z̄) =
1√
2π
ei
√

4πφ̂L(z̄), (3.49)

the correlation functions between the fermionic model and bosonic exponentials will be
identical. In fact it turns out that the entire spectrum of the two models is identical and
Eq. (3.49) is an exact mapping between them. This remains true even in the presence of
interactions. We are not going to prove this equivalence here but refer to the literature
given at the beginning of this chapter.

While the bosonization formulas (3.49) are the basis of fermion-to-boson translation, their
naive implementation often leads to errors. Take for example the current of right movers
ĴR(x) = ψ̂†R(x)ψ̂R(x). It is formally infinite because there is an infinite number of holes
occupying the states at point x. Thus to regularize infinities like this we have to normal
order the operator. Equivalently, we can implement the procedure of point splitting by
defining

Ĵ(z) = lim
ε→0

[
ψ̂†(z + ε)ψ̂(z)− 〈ψ̂†(z + ε)ψ̂(z)〉

]
, (3.50)

and similar for the left moving current. This yields

ĴR =
i√
π
∂zϕ̂, ĴL = − i√

π
∂z̄ϕ̂. (3.51)

The above bosonization neglects some further subleties:

• The fermionic operators have dimension L−
1
2 , thus we have to add a UV cutoff ac

into the normalization to regularize formally divergent integrals. While ac is equal
to the lattice spacing a0 in non-interacting models, they generally are non-trivially
related in interacting ones.

• To ensure fermionic anticommutation relations one has to introduce Hermitian oper-
ators called Klein factors κ̂j that connect the ground state of different charge sectors
and obey the Clifford algebra:

{κ̂i, κ̂j} =
{

ˆ̄κi, ˆ̄κj
}

= δij ,
{
κ̂i, ˆ̄κj

}
= 0. (3.52)

They can often be neglected and anticommutativity is ensured by demanding[
φ̂R(x), φ̂R(x′)

]
=− i

4
sign(x− x′), (3.53)[

φ̂L(x), φ̂L(x′)
]

=
i

4
sign(x− x′). (3.54)

However, they are necessary if there is more than one species of fermions, e.g. in the
presence of spin.

The bosonization formulas are therefore:

ψ̂R,j(z) =
κ̂j√
2πac

e−i
√

4πφ̂R,j(z), ψ̂L,j(z̄) =
ˆ̄κj√
2πac

ei
√

4πφ̂L,j(z̄). (3.55)
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Figure 3.4.: Different interaction processes in a LL.

3.5. Interacting electrons

For physical electrons we must add a spin index σ =↑, ↓. Furthermore, we need to introduce
two boson operators ϕ̂↑ and ϕ̂↓. These may naturally be combined into spin and charge
components:

ϕ̂c =
1√
2

(ϕ̂↑ + ϕ̂↓) , ϕ̂s =
1√
2

(ϕ̂↑ − ϕ̂↓) , (3.56)

and the same for the chiral bosons φ̂R(L),c(s).

In the low energy limit the effect of interactions is limited to the vicinity of the Fermi
points and processes fall into 4 categories:10

1. backward scattering

Ĥ1 = vF g1

∑
σ

ψ̂†R,σψ̂L,σψ̂
†
L,−σψ̂R,−σ. (3.57)

2. dispersive scattering

Ĥ2,c =vF g2,c

(
ĴR,↑ + ĴR,↓

)(
ĴL,↑ + ĴL,↓

)
, (3.58)

Ĥ2,s =vF g2,s

(
ĴR,↑ − ĴR,↓

)(
ĴL,↑ − ĴL,↓

)
. (3.59)

3. Umklapp scattering (only allowed at half filling, because of crystal momentum con-
servation)11

Ĥ3 =
1

2
vF g3

∑
σ

ψ̂†R,σψ̂
†
R,−σψ̂L,σψ̂L,−σ + h.c.. (3.60)

10You could ask yourself if there isn’t also a fifth process that changes only one chirality e.g. ψ†Rψ
†
RψLψR.

However, this term only conserves momentum at full filling kF = 2π where the system is an insulator
anyway and at kF = 0 which is unphysical because the linearisation procedure is ill defined at the
bottom of the band.

11To see this consider the operator in momentum space e.g. ψ̄R,kψ̄R,pψL,k+qψL,p−q then we must have
k, p ∼ kF , q ∼ −2kF . In order for all the operators to be near the Fermi points we must add a reciprocal
lattice vector Q = 2π/a0 . In the case of half filling, kF = π/(2a0), we have Q = 4kF and thus p−q−Q
is close to the left Fermi point as needed.
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28 3. One-dimensional systems

4. forward scattering

Ĥ4,c =
1

2
vF g4,c

[(
ĴR,↑ + ĴR,↓

)2
+
(
ĴL,↑ + ĴL,↓

)2
]
, (3.61)

Ĥ4,s =
1

2
vF g4,s

[(
ĴR,↑ − ĴR,↓

)2
+
(
ĴL,↑ − ĴL,↓

)2
]
. (3.62)

The interaction vertices for all processes are depicted in Fig. 3.4.

3.5.1. Tomonaga-Luttinger liquid

Let us neglect scattering processes across the Fermi points (g1, g3) for now. What we
are left with is called the Tomonaga-Luttinger model which can be solved exactly by
bosonization. In the bosonized Hamiltonian spin and charge degrees of freedom decouple

ĤT.L =Ĥc + Ĥs, (3.63)

Ĥj =Ĥ0,j + Ĥ2,j + Ĥ4,j . (3.64)

Here we defined

Ĥ0,j =
v

2

[
Π̂2
j + (∂xϕ̂j)

2
]
, (3.65)

Ĥ2,j =− vg2,j

2π

[
Π̂2
j − (∂xϕ̂j)

2
]
, (3.66)

Ĥ4,j =
vg4,j

2π

[
Π̂2
j + (∂xϕ̂j)

2
]
, (3.67)

and j=c,s. Combining the expressions we get

Ĥj =
1

2
uj

[
KjΠ̂

2
j +

1

Kj
(∂xϕ̂j)

2

]
, (3.68)

where

Kj =

√
π − g2,j + g4,j

π + g2,j + g4,j
, uj = v

√(
1 +

g4,j

π

)2
−
(g2,j

π

)
. (3.69)

The parameter uj is the renormalized Fermi velocity (plasmon velocity) and Kj is called
the Luttinger liquid parameter and is a measure for the interaction strength. For repulsive
interaction g2,j , g4,j > 0 the Luttinger parameter is Kc < 1, for attractive interactions
g2,j , g4,j < 0 we have Kc > 1 and for a non-interacting system K = 1. The corresponding
action (for one species) is:

S =
u

2

∫
dxdτ

[
K (∂xθ)

2 +K−1 (∂τϕ)2 + 2iu−1∂τϕ∂xθ
]
. (3.70)

If we integrate out ϕ or θ fields, respectively, we arrive at the two equivalent descriptions
of the LL:

S [ϕ] =
u

2K

∫
dxdτ

[
(∂xϕ)2 +

1

u2
(∂τϕ)2

]
, (3.71)

S [θ] =
uK

2

∫
dxdτ

[
(∂xθ)

2 +
1

u2
(∂τθ)

2

]
. (3.72)

This can be brought back into canonical form by the transformation ϕj →
√
Kjϕj , θj →

1/
√
Kjθj . Therefore, we see that Kj just renormalizes the fields.
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Figure 3.5.: RG flow of the sine-Gordon model.

Also note that the above action describes collective excitations (the Euler Lagrange equa-
tion of motion describes a wave of velocity u). These are called charge density wave (CDW)
or spin density wave (SDW) in the charge or spin sector, respectively.

3.5.2. Spin or charge gap and the sine-Gordon model

If we take into account Ĥ3, Ĥ1 the model is not exactly solvable anymore, but we can
perform a weak coupling RG analysis. Let us first consider the g1 term. Combined with
the bosonized spin Hamiltonian we get one of the most studied models in field theory, the
sine-Gordon model:

ĤSG =
u

2

[
Π̂2
s + (∂xϕ̂s)

2
]

+
ug1

2π2
cos
(√

8πKsϕ̂s

)
(3.73)

(here we used the rescaled fields so that the free part has the standard form (3.17)). The
scaling dimension of the cosine operator is ∆ = 2Ks (see 3.31). Naively we would expect
that it is relevant for Ks < 1 and irrelevant for Ks > 1. However, Ks is subject to the RG
flow itself and thus we have to study the coupled RG equations

dKs

dl
= − 1

2π2
K2
s g

2
1,

dg1

dl
= −2g1(Ks − 1). (3.74)

These were first obtained by Kosterlitz and Thouless [32]. The corresponding flow diagram
is illustrated in Fig. 3.5. At weak coupling the system flows to strong coupling if |g1| >
2π(Ks − 1) (g1 is marginally relevant) while it flows to g1 = 0 if |g1| < 2π(Ks − 1) (g1 is
marginally irrelevant). Therefore, at Ks < 1 even a infinitesimal g1 can open a spin gap.
Exactly the same analysis can be performed for the g3 term (we just have to substitute
g1 → g3 and Ks → Kc in all the expressions). Now what does the creation of a gap mean
in more physical terms? The cosine term represents a cosine-potential and would like to
lock the field ϕ in one of its minima. On the other hand the kinetic term is minimized by
large spatial fluctuations of the field ϕ.12 Thus if the cosine term is irrelevant the particles
motion is undisturbed while in the case where the cosine term is relevant it is locked at one
of the minima of the potential. The excitations of the system are then tunneling processes
between minima, which need a minimal energy of the order of the gap, called solitons. In
the case of spin gap they are called spinons and for a charge gap holons. These excitations
correspond to free massive particles.

12Since Π̂ and ϕ̂ are conjugate operators there is an uncertanty relation between them. In the extreme
case where ϕ̂ is constant in space, Π̂ would be infinite. Therefore, the kinetic term is minimized by
spatial fluctuations.
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3.6. Disorder in Luttinger liquids

In Sec. 3.5 we discussed the physics of interacting one-dimensional electrons. We saw that,
unlike in a Fermi liquid, the fundamental excitations of the system are charge (and spin)
density waves - collective excitations describing wave like propagation of charge and spin
degrees of freedom, respectively. Now let us discuss what happens if we introduce localized
impurities into the system. This problem is of considerable practical relevance. Every phys-
ical realisation of one-dimensional systems - semiconducting quantum wires, nanotubes,
quantum Hall edges, etc. - generally contain imperfections such as dislocations, vacancies
or charged impurities. In the following we will only consider static impurities without
intrinsic degrees of freedom, that could be excited in a scattering event. Hence, scattering
off impurities is always elastic.
For a review of disorder effects in higher dimension see the textbooks [27, 33] and specifi-
cally for one-dimensional systems the review [34].

What are the general physical consequences of impurities in a system?

1. Translation symmetry is broken and therefore (crystal-) momentum is not conserved
anymore.

2. Non-interacting electrons acquire a finite self energy and consequently a lifetime
called the transport scattering time τtr.

3. Besides τtr there is another relevant time scale - the coherence time τφ. This is the
time scale on which the phase of electrons is randomized due to electron-electron
scattering or phonons. If τφ/τtr & 1 interference effects of coherent electrons may
cause localization.13

Additionally, unlike in higher dimensions a charge (spin) degree of freedom propagating
down a one-dimensional channel will inevitably hit the impurities. Thus we expect impuri-
ties to have a much stronger impact on transport characteristics than in higher dimensions.
There is also one further not so obvious mechanism behind this strong impact.
Imagine a wavepacket of characteristic momentum kF colliding with an impurity at x = 0.
The resulting wave amplitude to the left of the impurity ψ(x) ∼ eikF x + re−ikF x will be a
linear superposition of the incoming amplitude and the reflected amplitude, where r is the
reflection coefficient. Therefore, the electronic density profile is given by ρ(x) = |ψ(x)|2 ∼
1+ |r|2 +2Re re−2ikF x. The oscillatory contribution is known as Friedel oscillation. In one
dimension these decay rather slowly (∼ |x|−1). The key point is, that electron waves ap-
proaching the impurity will not only notice the impurity potential but also the additional
scattering potential off Friedel oscillations. Moreover the additional scattering potential
creates secondary Friedel oscillations and so on. Therefore, even a weak impurity potential
may be amplified by the effect of Friedel oscillations. This is most impressively shown in
the Kane-Fisher problem (see Sec. 3.6.3).
Finally, as was first shown in a seminal work by the “gang of four” [35] arbitrarily weak
disorder in a non-interacting system leads to localization of all states in d ≤ 2 dimensions.
For one dimension this was known even earlier [36]. Therefore, the DC conductivity is
zero for all temperatures σDC(T ) = 0. On the other hand, the AC conductivity is strongly
suppressed for weak external frequencies Ω, i.e. Ωτtr � 1 and has the normal Drude form
with additional weak localization corrections for Ωτtr � 1. At Ωτtr ∼ 1 the ballistic regime
directly crosses to the strongly localized regime and the diffusive regime is absent.

13Localization describes the effect that electrons on time reversed paths interfere constructively. Therefore,
the probability for an electron to return to its starting point is enhanced and it may become stuck in
one region of space. This is called weak localization. If such processes accumulate an electron can
become strongly localized, i.e. the electronic wavefunction decays rapidly away from its position on a
characteristic length scale ξ (localization length). In this case the system undergoes a phase transition
from metal to insulator where the order parameter is the conductance G (Anderson transition).

30



3.6. Disorder in Luttinger liquids 31

Now that we know what happens in clean systems (LL) and in disordered but non-
interacting systems (Anderson localization) let us end this chapter by some case studies
on the combined effect of disorder and interactions in low dimensional systems. However,
first we have to introduce further formal concepts.

3.6.1. Gaussian model for disorder

In a specific system disorder is described by the continous potential U(x). However, the
field U(x) will differ from one system to another since the microscopic arrangement of
impurities is always different. Therefore, we will argue that U is a random variable that
is described by a probability distribution P[U ], i.e. P[U0]D[U0] is the probability that
the specific potential U0 is realized. P[U ] is often chosen to be Gaussian, because due to
the central limit theorem any distribution will become Gaussian if one considers a large
ensemble of systems. Therefore, we choose

P[U ] = exp

[
−1

2

∫
dxdx′ U(x)K−1(x− x′)U(x′)

]
(3.75)

where K describes the spatial correlation profile of impurities. If we assume that physical
observables vary on much larger length scales than the mean distance between impurities,
the behavior of an observable will always be affected by a whole ensemble of disorder
realizations in an area where it itself is approximately constant. Therefore, we have to
average the observables over the distribution P[U ]. To this end we define the mean value
and the variance of U,

〈U(x)〉dis = 0, (3.76)

〈U(x)U(x′)〉dis = K(x− x′). (3.77)

Here the average is with respect to P[U ],

〈· · ·〉dis ≡
∫
DU P[U ] (· · · ) (3.78)

and K is often chosen as K(x − x′) = Ddisδ(x − x′), where Ddis is the disorder strength.
This just expresses the fact that we assume the correlation length of disorder to be much
smaller than any other characteristic length scale of electrons.

In the Matsubara technique the average over thermal and quantum fluctuations of the
field φ of an observable O is

〈O〉 =

∫
D [φ] e−S[φ]O [φ]∫
D [φ] e−S[φ]

, (3.79)

where the action is S = S0 +
∫

dxdτ U(x)F [φ] and F is an analytic functional of the field
φ which describes the coupling to the disorder potential. Next we have to average over all
random potentials,

〈〈O〉〉dis =

∫
D [U ] P [U ] 〈O〉∫
D [U ] P [U ]

. (3.80)

If it were not for the denominator in (3.79), the averaging over disorder would be straight-
forward. To date, there exist three ways to prevent the denominator and implement the
disorder average: the replica trick [27], the Keldysh technique [17] and the supersymmetry
approach [37]. However, here we will discuss none of them but just refer to the literature.
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32 3. One-dimensional systems

3.6.2. Action of one-dimensional disordered systems

The disorder term in the action is

Sdis =

∫
dxdτ U(x)ψ̄ψ =

1

L

∑
k,q

∫
dτ Uqψ̄k+qψk. (3.81)

If the impurity strength Ddis is much smaller than the Fermi energy, disorder only produces
effects close to the Fermi points. Consequently, impurities can only scatter forward (q ∼ 0)
or backward (q ∼ ±2kF ).

Let us define the corresponding disorder amplitudes

Uf (x) =
1

L

∑
q∼0

Uqe
iqx, (3.82)

Ub(x) =
1

L

∑
q∼0

Uq−2kF e
iqx. (3.83)

While Uf is real,14 Ub is in general complex. The correlation functions for Ub read

〈Ub(x)Ub(x′)〉 = Dbδ(x− x′). (3.84)

Furthermore, we can decompose the fermionic field ψ as in (3.33). The resulting disorder
action is:

Sdis =

∫
dxdτ

[
Uf (x)

(
ψ̄RψR + ψ̄LψL

)
+ Ub(x)ψ̄RψL + U∗b (x)ψ̄LψR

]
. (3.85)

If we bosonize the model the resulting action including both interactions (g2, g4) and
disorder is

S =
u

2K

∫
dxdτ

[
(∂xϕ)2 +

1

u2
(∂τϕ)2

]
−
∫

dxdτ
Uf√
π
∂xϕ

+
1

2πac

∫
dxdτ U∗b (x)ei

√
4πϕ(x) + h.c..

(3.86)

An important fact to notice is, that forward scattering can be completely removed by the
transformation ϕ→ ϕ+

∫ x
dy Uf (y)K/(u

√
π)15. This is just a formal manifestation of the

argument that only processes that change the chirality of electrons affect the current. Our
final result for the action is thus:

S =
u

2πK

∫
dxdτ

[
(∂xϕ)2 +

1

u2
(∂τϕ)2

]
+

1

2πac

∫
dxdτ U∗b (x)e2iϕ(x) + h.c.. (3.87)

Here we also scaled ϕ→ 1/
√
πϕ to make the notation consistent with [25].

3.6.3. Single impurity in a one-dimensional wire (Kane-Fisher problem)

The Kane-Fisher problem considers a single impurity in an one-dimensional wire. For
simplicity we restrict ourselves to spinless fermions. It turns out, that at T = 0 depending
on the interaction strength even a single impurity can drive the system to an insulator
for repulsive interaction (K < 1), while it remains a perfect conductor for attractive
interaction (K > 1) [38].

14If U(x) is real, Uq = U−q.
15The attentive reader may argue that this transformation also changes the backscattering part because
U∗b → U∗b e2i

∫ xdy Uf (y)K/u. However, since Ub was a random variable to begin with and its Gaussian
statistics are not affected by the additional phase the action is unchanged by this.
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Figure 3.6.: Behavior of a single impurity in a one-dimensional wire.

At finite T, conductance is shown to vanish as a power law where the exponent is a function
of K. To show this, consider an interacting electron system in a one-dimensional wire with
an impurity at x = 0. The corresponding action is given by (3.87) where Ub(x) = Ubδ(x)
is now a local term. Further it can be chosen to be real, since any phase that may be
associated with Ub can be removed by a global gauge transformation of the fermionic
fields, i.e. suppose

Ub = |Ub| e2iχ, (3.88)

then scale: ψ̄R → e−iχψ̄R, ψL → e−iχψL. (3.89)

Thus the action reads

S =
u

2πK

∫
dxdτ

[
(∂xϕ)2 +

1

u2
(∂τϕ)2

]
+ γ

∫
dτ cos(2ϕ(x = 0, τ)), (3.90)

where γ = Ub(πac)−1. The important fact is that the action is quadratic in all fields
ϕ(x, τ) except for ϕ(x = 0, τ) ≡ ϕ(τ). If we therefore integrate out all quadratic degrees
of freedom we end up with an effective action for x = 0 that is local in space but highly
nonlocal in (imaginary) time,

Seff[ϕ(τ)] =
1

πTK

∑
n

ϕn |ωn|ϕ−n + γ

∫
dτ cos(2ϕ(τ)), (3.91)

where ϕn = 1/
√
β
∫ β

0 dτ ψ(τ)eiωnτ is the Fourier transform of ϕ(τ) to Matsubara frequen-
cies. We can now study the behavior of the system by performing a perturbative one loop
RG in the small parameter γ to get the beta function

dγ

d ln(b)
= γ (1−K). (3.92)

Thus, as discussed in the beginning, the potential term becomes relevant for K < 1 but is
irrelevant for K > 1. That means that for attractive interactions the effect of the barrier
dissapears completely while it becomes very large for repulsive interactions. It can be
shown that this remains true even for a large impurity potential, where our perturbative
RG loses its meaning. The corresponding phase diagram is shown in Fig. 3.6.

3.6.4. Case of many impurities (Giamarchi-Schulz RG)

Let us now look at the case of many impurities following Ref. [34]. In order to perform
the disorder average we introduce replicas ϕn. Using the Gaussian nature of the disorder

distribution we can write 〈eSdis〉dis = e−
1
2
〈S2
dis〉dis ≡ e− 1

2
SD to arive at the disorder averaged
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34 3. One-dimensional systems

action:

S =
∑
n

SLL [ϕn] +
∑
n,m

SD [ϕn, ϕm] , (3.93)

SLL =
1

uK

∫
dxdτ

2π

{
[∂τϕn(x, τ)]2 + u2 [∂xϕn]2

}
, (3.94)

SD =−Db

∫
dxdτdτ ′

(2πac)
2 cos

{
2
[
ϕn(x, τ)− ϕm(x, τ ′)

]}
. (3.95)

Giamarchi and Schulz derived the coupled renormalization equations for the coupling con-
stants K,u and Db upon rescaling the UV cutoff ac → L = ace

l. This analysis is done to
first order in the dimensionless strength of disorder,

D =
2Dbac
πu2

. (3.96)

To this order one can drop the replica indices. Furthermore, they singled out the contri-
bution of close times u |τ − τ ′| ≤ ac in the double time integral. Back in the fermionic
language this becomes

SD =−Db

∫
u|τ−τ ′|>ac

dxdτdτ ′ ψ̄R(x, τ)ψL(x, τ)ψ̄L(x, τ ′)ψR(x, τ ′)

− 2Dbac
u

∫
dxdτ ψ̄R(x, τ)ψL(x, τ)ψ̄L(x, τ)ψR(x, τ).

(3.97)

The second term is now local in time and renormalizes g1. However, for spinless fermions
g1 and g2 processes are identical and we can write

g̃2 = g2 + 2Dbac/u. (3.98)

In terms of the modified coupling constants the RG equations are

dK̃/dl =− K̃2D/2, (3.99)

dũ/dl =− ũK̃D/2, (3.100)

dD/dl =(3− 2K̃)D. (3.101)

Here K̃ and ũ are related to the modified interaction constant

g̃2(l) = g2(l) + πuD(l) (3.102)

according to equation (3.69). The modification of the plasmon velocity u as well as its
renormalization can be neglected in (3.102) since it would lead to higher orders terms in D.
Therefore, the above RG equation for u decouples from the other two and we will neglect
it in the following.

An important point is that K̃ does not describe interactions alone but actually contains
admixture of disorder through the renormalized g̃2. By expanding K̃ in D one obtains

dK

dl
=− 1

2

[
K2 − (1 +K2)(3− 2K)

2

]
D, (3.103)

dD

dl
=(3− 2K)D, (3.104)

where K is now the true LL constant. The result we obtain is that disorder renormalizes
interactions and vice versa.
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K

D

1 3/2

Figure 3.7.: Flow diagram of the Giamarchi-Schulz RG. D denotes the dimensionless disorder
strength and K is the Luttinger parameter describing the strength of interactions.

The flow equations show us that interactions become less relevant in the localized regime
because of the vanishing overlap between electron wavefunctions (”disorder kills interac-
tions”). However, for K > 3/2 the effect of interactions reduces disorder and we are in
a delocalized regime. Physically this can be explained through inelastic electron-electron
scattering events that destroy the phase coherence and therefore suppress interference
effects such as localization. The corresponding flow diagram is depicted in Fig. 3.7.
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4. Nonequilibrium field theory

In this chapter we introduce the Keldysh formalism and derive the kinetic equation for
helical fermions to the lowest order in the self energy. While we are only interested in
transport properties close to equilibrium the derivation from a more fundamental theory
will give us some insight into the assumptions we make. Furthermore, it is straightforward
to continue the calculations by taking into account higher orders in the self energy. Con-
cerning the literature we will mostly follow Ref. [17]. Another nice introduction can also
be found in Ref. [39].

4.1. The closed time contour

The most important conceptual idea behind the Keldysh formalism is the Keldysh contour
in the imaginary time plane. Given its importance we dedicate the whole first section to
its discussion. Consider a quantum many body system governed by the time dependant
Hamiltonian Ĥ(t).1 Furthermore, let ρ̂(−∞) be the density matrix that specifies the
systems state in the distant past (t = −∞) which we assume to be known (e.g. in thermal
equilibrium). We assume that the original Hamiltonian Ĥ(−∞) is non-interacting and
interactions are switched on adiabatically. Additionally, the Hamiltonian may contain
“true”2 time dependance through external fields or boundary conditions. Therefore, ρ̂ is
driven away from equilibrium and evolves according to the Von Neumann equation,

∂tρ̂(t) = −i[Ĥ(t), ρ̂(t)], (4.1)

which is formally solved by introducing the unitary time evolution operator Ût,t′ as

ρ̂(t) = Ût,−∞ρ̂(−∞)[Ût,−∞]† = Ût,−∞ρ̂(−∞)Û−∞,t. (4.2)

Here,

Ût,t′ = T exp{−i
∫ t

t′
dt1Ĥ(t1)} (4.3)

and T denotes time ordering.

1In this chapter we work in the Schrödinger picture, where operators are time independant while states
and the density matrix depend on time.

2 Since interactions are switched on adiabatically the potential is smooth as a function of time and
therefore approximatelly constant V̂ (t) ≈ V̂ (t0).
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38 4. Nonequilibrium field theory

Ô

+∞ −∞

Û∞,t Ût,−∞

Û−∞,∞

t

Figure 4.1.: The Keldysh contour in the imaginary time plane.

In order to make physical predictions we have to calculate the expectation value of oper-
ators:

〈Ô〉 (t) =
Tr{ρ̂(t)Ô}
Tr{ρ̂(t)} =

1

Tr{ρ̂(t)}Tr{Û−∞,tÔÛt,−∞ρ̂(−∞)}. (4.4)

Read from left to right this means that we have the evolution from t = −∞ (where ρ̂
is known) to time t where we measure Ô and then back to t = −∞. To get a better
understanding of how one can implement this evolution we first consider the equilibrium
situation at zero temperature. Let |GS〉 be the ground state of the interacting many body
problem and |0〉 the ground state of the corresponding non interacting system. They are
connected according to

|GS〉 = Ût,−∞|0〉. (4.5)

Since we are in equilibrium the only allowed time dependance of Ĥ is the adiabatic switch-
ing on of interaction such that there is no level crossing i.e. a system in the ground state
|0〉 remains in the state |0〉 during the whole evolution and can pick up a phase factor χ
at most:

Û∞,−∞|0〉 = eiχ|0〉, eiχ = 〈0|Û∞,−∞|0〉. (4.6)

Therefore, we get

〈GS|Ô|GS〉 =〈0|Û−∞,tÔÛt,−∞|0〉 (4.7)

=e−iχ〈0|eiχÛ−∞,tÔÛt,−∞|0〉 (4.8)

=e−iχ〈0|Û∞,−∞Û−∞,tÔÛt,−∞|0〉 (4.9)

=
〈0|Û∞,tÔÛt,−∞|0〉
〈0|Û∞,−∞|0〉

. (4.10)

Thus at the cost of an additional denominator we only have to consider forward evolution in
time. However, the whole argument breaks down if the Hamiltonian contains for instance
external fields with non adiabatic time dependendance. In general we have to consider both
backward and forward evolution in time. Lets rewrite (4.4) by inserting 1̂ = Ût,∞Û∞,t and
using the fact that Tr {ρ̂(t)} = Tr {ρ̂(−∞)}:

〈Ô〉 (t) =
1

Tr {ρ̂(−∞)}Tr{Û−∞,∞Û∞,tÔÛt,−∞ρ̂(−∞)}. (4.11)

Eq. (4.11) describes time evolution along the Keldysh contour C in the imaginary time plane
shown in Fig. 4.1. Let ÛC = Û−∞,∞Û∞,−∞ be the evolution operator along the Keldysh
contour. Note that if the Hamiltonian is identical on both branches, time evolution along
C brings any state back exactly to the original state (not even a phase is accumulated).
Therefore, ÛC = 1̂ and the partition function Z ≡ Tr{ρ̂(−∞)ÛC}/Tr{ρ̂(−∞)} is identically
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equal to unity, Z = 1.3 In order to insert an observable along the path we have to add a
source term

Ĥ±V (t) = Ĥ(t)± ÔV (t) (4.12)

where +(-) denote the forward (backward) branch of the contour. Then the Hamiltonian
is different along the two branches and ÛC [V ] 6= 1̂. Observables are then calculated by
varying the generating function Z[V],

Z[V] =
Tr{ρ̂(−∞)ÛC [V]}

Tr {ρ̂(−∞)} , (4.13)

as

〈Ô〉 (t) =
i

2

δ

δV (t)
Z[V]|V (t)=0 . (4.14)

4.2. Implementation in the path integral formalism

In order to use the above discussed ideas in the real time path integral formalism, we have
to swap the integration along the real time axis with the integration along the Keldysh
contour

∫∞
−∞dt →

∫
Cdt and double the number of our time dependant fields since fields

on the both branches are distinct. The resulting field theory therefore gains a matrix
structure in Keldysh space and we have to define additional propagators:

〈φ+(t)φ̄−(t′)〉 =iG<(t, t′) lesser Green’s function, (4.15)

〈φ−(t)φ̄+(t′)〉 =iG>(t, t′) greater Green’s function, (4.16)

〈φ+(t)φ̄+(t′)〉 =iGT(t, t′) time ordered Green’s function, (4.17)

〈φ−(t)φ̄−(t′)〉 =iGT̃(t, t′) anti time ordered Green’s function. (4.18)

Here φ is an arbitrary field (either bosonic or fermionic) and time ordering T puts the“latest
(time) on the left” while anti time ordering T̃ orders in the reverse order. Furthermore,

+(-) denote the upper (lower) branch on the Keldysh contour.
It turns out that these Green’s functions are not linearly independant, since

GT(t, t′) +GT̃(t, t′)−G>(t, t′)−G<(t, t′) = 0. (4.19)

Therefore, one defines the Keldysh rotation for

(i) bosons: (
φcl(t)
φq(t)

)
=

1√
2

(
1 1
1 −1

)(
φ+(t)
φ−(t)

)
, (4.20)

where cl(q) denotes the classical (quantum) component and the complex conjugate
fields φ̄ transform in the same way.

(ii) fermions: (
ψ1(t)
ψ2(t)

)
=

1√
2

(
1 1
1 −1

)(
ψ+(t)
ψ−(t)

)
, (4.21)(

ψ̄1(t)
ψ̄2(t)

)
=

1√
2

(
1 −1
1 1

)(
ψ̄+(t)
ψ̄−(t)

)
. (4.22)

Since ψ,ψ̄ are not complex conjugates but rather independant Grassman variables
they can be transformed independantly from each other. The transformation is
chosen such that the fermionic self energy has the same structure as the Green’s
function.

3This normalisation makes the Keldysh technique so useful for disordered systems.
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With this rotation the Green’s function in Keldysh space has one vanishing entry.

(i) Complex bosonic Green’s function (hereafter α, β ∈ {cl, q}):

Dα,β(t, t′) = −i 〈ϕα(t)ϕ̄β(t′)〉 =

(
DK(t, t′) DR(t, t′)
DA(t, t′) 0

)
. (4.23)

(ii) Fermionic Green’s function (a, b ∈ {1, 2}):

Gab(t, t
′) = −i 〈ψa(t)ψ̄b(t′)〉 =

(
GR(t, t′) GK(t, t′)

0 GA(t, t′)

)
. (4.24)

R(A) denote the retarded (advanced) component while K stands for the Keldysh compo-
nent. We conclude the discussion by summarising some properties of these propagators:

•
[
GR
]†

= GA and
[
GK
]†

= −GK .

• While the retarded and advanced components contain information about the spec-
trum of the system, the Keldysh component carries information about its distribution
function. In general we may parametrize the antihermitian matrix GK with the help
of a Hermitian matrix F = F †:

GK = GR ◦ F − F ◦GA. (4.25)

Here ◦ denotes summation over all “labels” of the functions e.g.(
Â ◦ B̂

)
(x1,x2) =

∫
dx
∑
β

A(x1,x)α,βB(x,x2)β,γ , (4.26)

where x is a set of continous indices e.g. (x,t), greek letters imply additional quan-
tum numbers and the hat denotes matrix structure in Keldysh space. The Wigner
transform (see Sec. 4.3.1) F (t, ε) of F is referred to as the distribution function. For
example in the case of free fermions we have F (ε) = (1− 2f (0)(ε)), where f (0) is the
Fermi distribution.

• Due to the causality structure of retarded and advanced components of the propaga-
tor (GR(t, t′) ∼ Θ(t− t′) while GA(t, t′) ∼ Θ(t′− t)) certain products of retarded and
advanced components vanish. For example GR(A)(t, t′)GR(A)(t′, t) is always zero.

4.3. The kinetic equation

The Keldysh formalism presents a way to microscopically motivate the semiclassical kinetic
equation known from statistical mechanics [40]. To derive this kinetic equation we start
with the Dyson equation in Keldysh space:

Ĝ = Ĝ0 + Ĝ0 ◦ Σ̂ ◦ Ĝ (4.27)

⇔
(
Ĝ−1

0 − Σ̂
)
◦ Ĝ = 1̂ (4.28)

⇔
([
GR0
]−1 − ΣR −ΣK

0
[
GA0
]−1 − ΣA

)(
GR GK

0 GA

)
= 1̂ (4.29)

⇔

([GR0 ]−1 − ΣR
)
GR

([
GR0
]−1 − ΣR

)
GK − ΣKGA([

GA0
]−1 − ΣA

)
GA 0

 = 1̂. (4.30)
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We read off the component that determines the Keldysh Green’s function and parametrize
it as GK = GR ◦ F − F ◦GA. Thus we end up with([

GR0
]−1 − ΣR

) (
GR ◦ F − F ◦GA

)
= ΣK ◦GA. (4.31)

We multiply this equation with [GA0 ]−1−ΣA from the right and use the other components

of the Dyson equation:([G
R(A)
0 ]−1 − ΣR(A))GR(A) = 1 to get

F ◦
[
GA0
]−1 −

[
GR0
]−1 ◦ F = ΣK −

(
ΣR ◦ F − F ◦ ΣA

)
. (4.32)

Since (ommiting ±i0) GA0 = GR0 , the expression takes the form

−
[(
GR0
)−1 ◦, F

]
= ΣK −

(
ΣR ◦ F − F ◦ ΣA

)
, (4.33)

where [A ◦, B] = A ◦B −B ◦A is the commutator in Keldysh space. The LHS of (4.33) is
called the kinetic term while the RHS is the collision integral.

4.3.1. The Wigner transformation

Since it is usually difficult to solve the kinetic equation (4.33) in full generality we have to
make some physically motivated assumptions. We make use of the scale separation between
intrinsic microscopic scales and extrinsic macroscopic scales dictated by e.g. an external
potential. Mathematically this is most elegantly achieved by the Wigner transform (WT).
Let us first introduce space time and energy momentum coordinates x = (x, t), p = (p, ε)
and the corresponding scalar products

xp = xp− εt, ∂x∂p = ∂x∂p − ∂t∂ε. (4.34)

Next consider a two point function A(x1,x2). We make a transformation to relative and
central coordinates, (

X
x

)
=

(
1
2

1
2

1 −1

)(
x1

x2

)
. (4.35)

The Wigner transform is defined as the Fourier transform of the relative coordinates and
we obtain a function of central coordinates X and relative momentum p

A(X,p) =

∫
dx e−ipxA(X +

x

2
,X− x

2
). (4.36)

If we assume that the central coordinates are macroscopic while the relative coordinates
are the quantum coordinates, we can make the assumption δXδp � 1 where δX, δp are
characteristic scales on which X, p vary.4 This implies that the function A is a smooth
function of the central coordinate X and fast varying in the relative momentum p. Under
these prerequisites it is possible to make some further simplifications. Consider for instance
the convolution C = A ◦B ⇔ C(x1,x2) =

∫
dx3A(x1,x3)B(x3,x2) which transforms to

C(X,p) =A(X,p)e
i
2

(←−
∂X
−→
∂p−
←−
∂p
−→
∂X

)
B(X,p). (4.37)

4One could ask if there is a similar requirement for the time domain i.e. δTδε � 1. This would be
rather restricting since in the low temperature regime energy fluctuations are typically of the order of
temperature δε ∼ β−1 (because of notational issues T is the central time coordinate and β is inverse
temperature). However, this would only allow us to treat processes with δT � β. Fortunately, the
energy is normally locked to the quasiparticle energy ξ̃k and has no dynamics of its own as long as the
quasiparticle peak is sharp. The actual criterion is therefore δε � τ−1

qp or τqp � β which is fullfilled
in most systems. As we will see, we also have to demand this relation for applying the quasiparticle
approximation below.
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42 4. Nonequilibrium field theory

Under the assumption δXδp � 1 the operator ∂X∂p is “small” and we may expand the
exponential to gain

C(X,p) ≈A(X,p)B(X,p) +
i

2
(∂XA∂pB − ∂pA∂XB) . (4.38)

From this we immediatedly get a approximation for the commutator

[A ◦, B]→ i (∂XA∂pB − ∂pA∂XB) . (4.39)

4.4. Derivation of the kinetic equation for the HLL

Let us now apply the developed theory to derive the kinetic equation for the helical Lut-
tinger liquid. To lighten the notation, summation convention over recurring indices is
implied.

4.4.1. The action

The real time action describing our model from Sec. 2.2.4 is

S0[ψ, ψ̄] =
∑
η=R,L

∫
C
dt

∫
dx ψ̄η

(
i∂t + iη∂x − Ecl(x, t)

)
ψη, (4.40)

Sint[ψ, ψ̄] =−
∑
σ,σ′

∫
C
dt

∫
dx dx′ ρσ(x, t)V (x− x′)ρσ′(x′, t), (4.41)

SI [ψ, ψ̄] =−
∑
σ

∫
C
dt

∫
dxU(x)ρσ(x, t). (4.42)

Here we added a classical source field Ecl(x, t) that plays the role of external electric field
and the density is defined as

ρσ(x, t) = ψ̄σ(x, t)ψσ(x, t). (4.43)

We introduce the momentum dependant transformation to the chiral basis,

ψσ,k = Bσ,η
k ψη,k, (4.44)

ψ̄σ,k = Bη,σ
k ψ̄η,k, (4.45)

with the matrix Bk defined in (2.33). Furthermore, we use the following convention for
Fourier transform

ψσ(x, t) =
1

L

∑
k

∫
dε

2π
ψσ(k, ε)ei(kx−εt). (4.46)

If we make the transformation to the chiral basis and momentum space the resulting terms
are

Sint[ψ, ψ̄] =− 1

L

∑
q

∫
C
dt Vq |ρq(t)|2 , (4.47)

SI [ψ, ψ̄] =− 1

L

∑
q

∫
C
dt Uqρq(t). (4.48)

Here we defined

ρq ≡
1

L

∑
k

∑
η1η2

ψ̄η1,kψη2,k−q [BkBk−q]
η1η2 (4.49)
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4.4. Derivation of the kinetic equation for the HLL 43

and used the fact that ρ∗q = ρ−q since ρ(x) is real.

We proceed by decoupling the interaction term via a complex Hubbard Stratonovich trans-
formation,

e−i
∫
Cdt

V0
L

∑
q |ρq |

2

=

∫
D[ϕ] e−i

∫
Cdt 1

L

∑
q[V
−1
0 |ϕq(t)|2−ρ∗q(t)ϕq(t)−ρq(t)ϕ̄q(t)]. (4.50)

Keldysh rotation

Let us now employ the rotation to Keldysh space Eqs. (4.20),(4.21) and (4.22). The source
field E transforms as the bosonic field ϕ. We demonstrate how the transformation works
for the example of the free boson action (arguments of the fields are dropped for simplicity)∫

C
dt ϕ̄ϕ =

∫ ∞
−∞

dt
(
ϕ̄+ϕ+ − ϕ̄−ϕ−

)
(4.51)

→ 1

2

∫ ∞
−∞

dt
([
ϕ̄cl + ϕ̄q

] [
ϕcl + ϕq

]
−
[
ϕ̄cl − ϕ̄q

] [
ϕcl − ϕq

])
(4.52)

=

∫ ∞
−∞

dt
(
ϕ̄clϕq + ϕ̄qϕcl

)
(4.53)

=

∫ ∞
−∞

dt ϕ̄ασ1
α,βϕ

β. (4.54)

Proceeding analogously for the other terms we arrive at the action in Keldysh space:

S0 =
∑
η

∫ ∞
−∞

dt
1

L

∑
k

ψ̄k,η,a
[
G−1

0

]ab
k,η
ψk,η,b, (4.55)

Sint =

∫ ∞
−∞

dt
1

L

∑
q

[
V −1
q ϕ̄α,q(t)σ

1,α,βϕβ,q(t)− ρab−qγ̂αabϕα,q(t)− ρabq γ̂αabϕ̄α,q(t)
]
, (4.56)

SI =−
∫ ∞
−∞

dt
1

L

∑
q

Uqρ
ab
q γ̂

cl
ab. (4.57)

Here we defined[
G−1

0

]ab
k,η

=

(
i∂t − ηk − Eclk (t) + i0 0

0 i∂t − ηk − Eclk (t)− i0

)
, (4.58)

ρabq (t) =
1

L

∑
k

∑
η,η′

ψ̄aη1,k(t)ψ
b
η2,k−q(t) [BkBk−q]

ηη′ , (4.59)

γ̂cl =

(
1 0
0 1

)
, γ̂q =

(
0 1
1 0

)
. (4.60)

Note that the free propagator is not really diagonal in Keldysh space because one normally
has an infinitesimal [G−1

0 ]K , which we neglected here since a finite contribution will arise
from the Keldysh component of the self energy. However, the propagator is diagonal in
chiral space which considerably simplifies the treatment in the following.

Energy momentum representation

If we Fourier transform to energy space we have

S0 =
∑
η

∑
k

ψ̄k,η,a

[
G−1

0

]ab
η,k

ψk,η,b, (4.61)

Sint =
∑
q

[
V −1
q ϕ̄α,qσ

1,α,βϕβ,q − ρab−qγ̂αabϕα,q − ρabq γ̂αabϕ̄α,q
]
, (4.62)

SI =−
∑
q

Uqρ
ab
q γ̂

cl
ab (4.63)
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44 4. Nonequilibrium field theory

Where we defined the following objects:

[
G−1

0

]ab
η,k

=

(
ε− ηk − Eclk + i0 0

0 ε− ηk − Eclk − i0

)
, (4.64)

ρabq =
∑
η1,η2

∑
k

ψ̄aη1,kψ
b
η2,k−q [BkBk−q]

η1η2 . (4.65)

For convenience we also introduced the 2 momentum

k = (k, ε),
∑
k

=
1

L

∑
k

∫ ∞
−∞

dε

2π
. (4.66)

Finally, the free bosonic propagator is given by

iDαβ
0,q =

〈
ϕαqϕ̄

β
q

〉
0

=

(
0 V −1

q

V −1
q 0

)−1

=

(
0 Vq
Vq 0

)
≡
(
DK

0 DR
0

DA
0 0

)
. (4.67)

4.4.2. Wigner transformation of the kinetic equation

The left-hand side of Eq. 4.33 reads

−
[(
GR0
)−1 ◦, F

]
= −

[
i∂t + iη∂x − Ecl(X,T ) ◦, F

]
. (4.68)

For translation invariant operators like i∂t, i∂x the Wigner transform is just ε, p while
the external potential depends only on the macroscopic scales and is thus its own WT.
Therefore, we have (using the properties of WT and ∂X∂p = ∂X∂p − ∂T∂ε):

[i∂t;F ] =i∂εε∂TF = i∂TF, (4.69)

[i∂x;F ] =i∂pp∂XF = i∂XF, (4.70)[
Ecl(X,T );F

]
=i∂XE

cl(X)∂pF = i∂XE
cl(X)∂pF − i∂TEcl(X)∂εF. (4.71)

Thus, the term (4.68) becomes

−i
(
∂T + ∂X − ∂XEcl(X)∂p + ∂TE

cl(X)∂ε

)
F (4.72)

For the right-hand side of Eq. (4.33) the properties of WT give

ΣK −
(
ΣR ◦ F − F ◦ ΣA

)
,

→ ΣK − F
(
ΣR − ΣA

)
− i∂XRe(ΣR)∂pF + i∂pRe(ΣR)∂XF,

(4.73)

where we used the fact that
(
ΣA
)∗

= ΣR. Combining both parts yields(
(1− ∂εReΣR)∂T + (1− ∂pReΣR)∂X − ∂XẼcl(X)∂p + ∂T Ẽ

cl(X)∂ε

)
F

= iΣK − iF
(
ΣR − ΣA

)
,

(4.74)

where Ẽcl = Ecl + ReΣR. In a static (∂T = 0) situation any distribution function F (ε)
that depends on energy only, nullifies the LHS. One can show that there is also a special
equilibrium solution that nullifies the collision kernel e.g. for fermions F eq = tanh(ε −
µ)/2T . To make progress away from equilibrium we shift the energy argument of the
distribution function:

F (R, T, p, ε) = F̃ (R, T, p, ε− ξp − Ẽ). (4.75)
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4.5. Keldysh objects 45

One can show that this function obeys a similar kinetic equation as (4.74) only that there is
no energy derivative. Now we employ the so called quasiparticle approximation. F̃ always
appears in combination with the spectral weight which is proportional to GR −GA and is
a strongly peaked function around ε̃ = ε − ξp − Ẽ with width of the inverse quasiparticle
lifetime τ−1

qp . If the characteristic energy scale δε̃ on which the distribution function F (ε̃)
variies is much larger than the inverse particle lifetime δε̃ � τ−1

qp one can disregard the
energy dependance of the distribution function

F̃ (X,T, p, ε̃) ≈ F̃ (X,T, p, 0) ≡ F̃ (X,T, p). (4.76)

The resulting mass shell distribution function F̃ (R, T, p) is essentially a classical object
and can be regarded as the time dependant probability to find a particle at a given point
in phase space (X,p). All observables are determined by F̃ to leading order in the small
parameter (δε̃τqp)

−1. Therefore, the kinetic equation describes a semiclassical approxima-
tion of the full quantum description. Quantum Mechanics modifies the dispersion relation,
the effective potential and the quasiparticle weight as well as the collisions integral. For
now we neglect the renormalization through the self energy on the LHS and assume the
external potential as Ecl = eE(T )X to get

(∂T + ∂X − eE(T )∂p)F = iΣK − iF
(
ΣR − ΣA

)
. (4.77)

Thus the LHS is exactly the same as for a phenomenological kinetic equation. For the
RHS, we need to calculate the corresponding self energies, which will be done in the next
section.

4.5. Keldysh objects

4.5.1. Self energy due to interactions

We obtain the self energy from the Dyson equation, Eq. (4.27). The full propagator is
given by

Gabη,k =− i
∫

D[ψ,ϕ]ψaη,kψ̄
b
η,ke

iS0eiSint (4.78)

=− i
〈(

1 + iSint +
i2

2
S2
int + · · ·

)
ψaη,kψ̄

b
η,k

〉
0

(4.79)

Since the interaction is linear in the bosonic field ϕ the first nonvanishing order is the
second one,

i

2

〈(
ρcdp γ

α
cdϕ̄

α
p + ρcd−pγ

α
cdϕ

α
p

)(
ρefp′ γ

β
ef ϕ̄

β
p′ + ρef−p′γ

β
efϕ

β
p′

)
ψaη,kψ̄

b
η,k

〉
0

(4.80)

=
i

2

〈
ρcd−pρ

ef
p′ψ

a
η,kψ̄

b
η,k

〉
0
γαcdγ

β
ef

〈
ϕ̄αpϕ

β
p′

〉
0

+
i

2

〈
ρcdp ρ

ef
−p′ψ

a
η,kψ̄

b
η,k

〉
0
γαcdγ

β
ef

〈
ϕαpϕ̄

β
p′

〉
0

(4.81)

=i
〈
ρcd−pρ

ef
p ψ

a
η,kψ̄

b
η,k

〉
0
γαcdγ

β
ef iDβ,α

0,p . (4.82)

Figure 4.2.: Hartree (left) and Fock (right) contribution to the self energy in the lowest order.
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46 4. Nonequilibrium field theory

Figure 4.3.: Polarisation operator Π0.

In the last line we made use of the fact that the free boson propagator is diagonal in
momentum space and symmetric in Keldysh space, i.e. Dα,β

0,p = Dβ,α
0,p .

In the lowest order only the Hartree and Fock diagrams (see Fig. 4.2) contribute. Since
the Hartree diagrams cancel with the ionic background we concentrate only on the Fock
contributions to the self energy which give

Σ
ab(1)
η,k =2iB̃η,η′

k,k+q

(
γ̂αĜk+q,η′ γ̂

β
)ab

Dβ,α
0,q (4.83)

=2iB̃η,η′

k,k+q

[(
γ̂clĜk+q,η′ γ̂

cl
)ab

DK
0,q +

(
γ̂qĜk+q,η′ γ̂

cl
)ab

DR
0,q

+
(
γ̂clĜk+q,η′ γ̂

q
)ab

DA
0,q

]
.

(4.84)

Here, we defined B̃η,η′

k,k+q ≡ [B†kBk+q]
ηη′ [B†k+qBk]

η′η. Written in components this is

Σ
R(A)
η,k =2iB̃η,η′

k,k+q

[
G
R(A)
k+q,η′D

K
0,q +GKk+q,η′D

A(R)
0,q

]
, (4.85)

ΣK
η,k =2iB̃η,η′

k,k+q

[
GKk+q,η′D

K
0,q +GRk+q,η′D

A
0,q +GAk+q,η′D

R
0,q

]
=2iB̃η,η′

k,k+q

[
GKk+q,η′D

K
0,q −

(
GRk+q,η′ −GAk+q,η′

) (
DR

0,q −DA
0,q

)]
,

(4.86)

where we made use of the fact that G
R(A)
k+q,η′D

R(A)
0,q = 0, due to the causality structure

discussed in Sec. 4.2.

4.5.2. Polarisation operator

We obtain the polarization operator by calculating the correction to the boson propagator:〈
ϕαqϕ̄

β
q

〉
=
〈
ϕαqϕ̄

β
qe
iSint

〉
0

(4.87)

≈
〈
ϕαqϕ̄

β
q

〉
0

+
i2

2

〈
ϕαqϕ̄

β
qS

2
int

〉
0
, (4.88)

which yields

Dα,β
q = Dα,β

0,q −
i3

2

〈
ϕαqϕ̄

β
qS

2
int

〉
0
. (4.89)

The first order correction to the free bosonic propagator is the bare polarisation operator
Π0 shown in Fig. 4.3 and given by

i

2

〈
ϕαqϕ̄

β
qρ

ab
−kγ

δ
abϕ

δ
kρ

cd
p γ

ε
cdϕ̄

ε
p

〉
0

+
i

2

〈
ϕαqϕ̄

β
qρ

ab
k γ

δ
abϕ̄

δ
kρ

cd
−pγ

ε
cdϕ

ε
p

〉
0
. (4.90)

Adding all contributions together the result is

Πεδ
0 (q) =iB̃η1,η2

p1−q,p1
TrK

{
Ĝη1,p1−qγ̂

δĜη2,p1
γ̂ε
}
, (4.91)
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4.6. The Kinetic equation for interacting helical fermions 47

where TrK denotes the trace in Keldysh space. We can also write out the components
explicitly:

Π
A(R)
0 (q) =i

(
G
R(A)
η1,p1−qG

K
η2,p1

+GKη1,p1−qG
A(R)
η2,p1

)
B̃η1,η2
p1−q,p1

, (4.92)

ΠK
0 (q) =i

(
GKη1,p1−qG

K
η2,p1

+GRη1,p1−qG
A
η2,p1

+GAη1,p1−qG
R
η2,p1

)
B̃η1,η2
p1−q,p1

. (4.93)

Now we use the free propagators G(0) defined as

G
R(A),(0)
η,k = (ε− εk,η ± i0)−1 , (4.94)

G
K,(0)
η,k = −2πF (ε)δ(ε− εk,η) (4.95)

and integrate over energy using the arising delta functions. Furthermore, we may use that
due to causality

GRkG
A
p +GAkG

R
p = −(GRk −GAk )(GRp −GAp ) = −[2 ImGRk ]2. (4.96)

Note that in F we supressed the dependance on the central coordinates (R, T ). The
resulting expressions for the polarisation operator are

Π
A(R)
0 =

1

L

∑
p

B̃η1,η2
p−q,p

(
F (εp,η2)− F (εp−q,η1)

εp,η2 − ω − εp−q,η1 ± i0

)
, (4.97)

ΠK
0 =− 2πi

L

∑
p

B̃η1,η2
p−q,pδ(εp,η2 − ω − εp−q,η1)

(
F (εp,η2)F (εp−q,η1)− 1

)
. (4.98)

4.6. The Kinetic equation for interacting helical fermions

We now derive the kinetic equation for our specific case. First we use the self energies
(4.85) and (4.86) and replace the propagators by

GKk,η =
(
GRk,η −GAk,η

)
Fk,η, (4.99)(

GRk,η −GAk,η
)

=− 2πiδ(ε− εk,η). (4.100)

Using these expressions we obtain the following expression for the terms in the collision
integral calculated in Eq. (4.77):

iΣK
k,η =

2i

L

∑
k2

B̃η,η2

k,k2

(
F (εk2,η2)DK

0,k2−k(εk2,η2 − εk,η)

−
[
DR

0,k2−k(εk2,η2 − εk,η)−DA
0,k2−k(εk2,η2 − εk,η)

])
,

(4.101)

and

iFk,η

(
ΣR
k,η − ΣA

k,η

)
=

2i

L

∑
k2

B̃η,η2

k,k2

(
F (εk,η)D

K
0,k2−k(εk2,η2 − εk,η) + F (εk,η)

× F (εk2,η2)
[
DA

0,k2−k(εk2,η2 − εk,η)−DR
0,k2−k(εk2,η2 − εk,η)

])
.

(4.102)

Therefore, we arrive at the expression

Icoll[Fk,η] =
2i

L

∑
k2

B̃η,η2

k,k2

(
[F (εk2,η2)− F (εk,η)]D

K
0,k2−k(εk2,η2−εk,η)

+ [F (εk2,η2)F (εk,η)−1]
[
DR

0,k2−k(εk2,η2−εk,η)−DA
0,k2−k(εk2,η2−εk,η)

])
.

(4.103)
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48 4. Nonequilibrium field theory

a)

b)

Figure 4.4.: a) self consistent equation describing the RPA propagator and b) the self energy
diagram we take into account in deriving the kinetic equation.

If the interaction in Eq. (4.103) were the bare interaction, we would have DR
0,k = DA

0,k =

V0 and DK
0,k = 0. Therefore, the collision integral would vanish and we would have no

relaxation. Consequently, we have to include screening of interaction by the random phase
approximation (RPA) shown in Fig. 4.4. In general the components of the RPA screened
polarisation matrix can be written in the form (see Ref. [17]):

V
R(A)
RPA = |V R

RPA|
2

(V −1
0 + Π

A(R)
0 ), V K

RPA = − |V R
RPA|

2
ΠK

0 . (4.104)

With the explicit form of Π0 from section 4.5.2 we get

(V R
RPA − V A

RPA)q(ω) =− 2i |V R
RPA|

2
ImΠR

0 (4.105)

=− 2πi

L
|V R
RPA|

2

q (ω)
∑
p

B̃η1,η2
p−q,p (F (εp,η2)− F (εp−q,η1))

× δ(εp,η2 − ω − εp−q,η1),

(4.106)

− |V R
RPA|

2
ΠK

0 =
2πi

L
|V R
RPA|

2

q (ω)
∑
p

B̃η1,η2
p−q,p (F (εp,η2)F (εp−q,η1)− 1)

× δ(εp,η2 − ω − εp−q,η1).

(4.107)

Exchanging the bare interaction D0 in our previous collision integral (4.103) with the RPA
screened interaction in Eq. (4.106) and (4.107) we get

Icoll[Fk,η] =
2i

L

2πi

L

∑
p,q

|V R
RPA,q(εk+q,η1 − εk,η)|

2
B̃η,η2

k,k+qB̃
η3,η1
p−q,p

× δ(εk,η + εp,η1 − εk+q,η2 − εp−q,η3)
(

[F (εk+q,η2)− F (εk,η)]

× [F (εp,η1)F (εp−q,η3)− 1]− [F (εk,η)F (εk+q,η2)− 1]

× [F (εp,η1)− F (εp−q,η3)]
)
.

(4.108)

With the parametrisation F = 1− 2f this becomes

Icoll[fk,η] =− 32π

L2

∑
p,q

|V R
RPA,q(εk+q,η1 − εk,η)|

2
B̃η,η2

k,k+qB̃
η3,η1
p−q,p

× δ(εk,η + εp,η1 − εk+q,η2 − εp−q,η3)

×
(
f(εk+q,η2)f(εp−q,η3) [1− f(εk,η)] [1− f(εp,η1)]

− f(εk,η)f(εp,η1) [1− f(εk+q,η2)] [1− f(εp−q,η3)]
)
.

(4.109)

This form of the collision integral could also have been derived from Fermi’s golden rule.
The only difference is that the interaction is assumed to be screened by density fluctuations.
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In the main part of the thesis we will model the collision integral with Fermi’s golden rule
from the start and assume a short-range interaction in the model. One should keep in mind
though that this is a approximation in the lowest order of self energy and the interaction
is short-range due to screening.

There is another important point worth mentioning. In the whole calculation so far we
have assumed that quasiparticles are well-defined. However, in the previous chapter we
argued that one dimensional electrons constitute a prime example of a non-Fermi-liquid
and there are no coherent electronic excitations. How can we reconcile those two points?
In the case of the HLL the spin degree of freedom is locked to the momentum and we are
therefore dealing with effectively spinless particles. The resulting theory is characterized
by a line of fixed points in parameter space with K=const. The Luttinger parameter K
in turn is specified by g2 and g4 which are equal in our case, i.e. g2 = g4 = V0, as can be
seen from the model for helical fermions in Appendix A. The g4 term actually vanishes as
can be seen by transforming it to real space where it is a local operator (see Eq. (5.65)).
However, the g2 term will change the physics of the system. For now we ignore the g2

term by setting g2 = 0. This assumption enables us to calculate results using a kinetic
equation valid only for well-defined quasiparticles. Furthermore, if we are in the vicinity
of the fixed point K=1 the system is approximately conformally invariant which enables
us to use arguments of conformal field theory introduced in Sec. 3.1. The effects of finite
g2 will be included in Ch. 7.2 through the renormalization of the coupling constants of the
effective model.

49





5. AC conductivity of a helical Luttinger
liquid

In this chapter we derive the AC conductivity for a HLL in a long wire i.e. we assume
that the system length L is much larger than the mean free path of electrons. By AC
limit we mean the high frequency regime, where the frequency is much larger than the
inverse scattering time, i.e. ω � τ−1. τ in turn has to be determined for each process,
respectively.

First, we introduce the basic formalism and the model in Sec. 5.1. These will be used
to calculate the conductivity corrections in Sec. 5.2 and 5.3. After having identified the
most relevant scattering mechanisms we derive effective Hamiltonians describing them in
Sec. 5.5 and calculate the emerging corrections to conductivity in Sec. 5.6.

5.1. Formalism and model

5.1.1. Kinetic equation

In equilibrium, non-interacting one-dimensional helical fermions have a linear spectrum
εk,η = ηk and obey the Fermi-Dirac distribution f0

η,k = (1 + exp{(εη,k − µ)/T})−1. Away
from equilibrium the distribution function fk,η(x) has to be determined as the solution of
a kinetic equation:

∂tfk,η(x) + vk,η∂xfk,η(x)− eE∂kfk,η(x) = Ik[fη], (5.1)

where Ik[fη] denotes the collision integral. The system we consider is an infinite, ho-
mogeneous wire, so we can neglect the spatial dependance of the distribution function.
Furthermore, the external electric field E is supposed to be weak. In this case the distri-
bution function will not differ much from the equilibrium Fermi-Dirac distribution and we
can expand it as fη ≈ f0

η + f1
η . Moreover, it will prove useful to parametrise the deviation

f1 with another function ψ as

f1
η,k ≡ f0

η,k(1− f0
η,k)ψη,k(t). (5.2)

Thus we arrive at the following equation for ψ in the frequency domain:

−iωψη,k(ω)f0
η,k(1− f0

η,k)− eE∂kf0
η,k = Iη,k[ψ], (5.3)
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52 5. AC conductivity of a helical Luttinger liquid

where we already made use of the fact that the collision integral is a linear functional and
is annihilated by the Fermi distribution i.e. Iη,k[f

0] = 0.
The equation (5.3) can formally be rewritten into an integral equation for ψ:

ψη,k(ω) =
Iη,k[ψ]

(−iω)f0
η,k(1− f0

η,k)
− eEη

(−iω)T
, (5.4)

where we used the fact that ∂kf
0
η,k = −ηf0

η,k(1− f0
η,k)/T .

The collision integral itself is given by

I
(1P )
1 [f ] =−

∑
1′

W1,1′ [f1 − f1′ ] , (5.5)

I
(2P )
1 [f ] =−

∑
2,1′,2′

W12,1′2′ [f1f2(1− f1′)(1− f2′)− f1′f2′(1− f1)(1− f2)] (5.6)

for one-particle or two-particle scattering processes, respectively. Furthermore, we intro-
duced the joint index 1 ≡ (k1, η1). Next we linearize the expression for the collision integral
in ψ:

I
(1P )
1 [ψ] =−

∑
1′

W1,1′
[
f0

1 (1− f0
1 )ψ1 − f0

1′(1− f0
1′)ψ1′

]
, (5.7)

I
(2P )
1 [ψ] =−

∑
2,1′,2′

W12,1′2′
[
f0

1 f
0
2 (1− f0

1′)(1− f0
2′) (ψ1 + ψ2 − ψ1′ − ψ2′)

]
. (5.8)

The transition probability W12,1′2′ will be calculated by using the generalized Fermi’s
golden rule in the first Born approximation

W12,1′2′ = 2πNimp

∣∣∣〈1′2′|T̂ |12〉
∣∣∣2 δ(εi − εf ), (5.9)

The energies in the initial and final states are given by εi = ε1 + ε2 and εf = ε1′ + ε2′ and
the states |12〉, |1′2′〉 are eigenstates of the non-interacting Hamiltonian. The T-matrix is
given by the expression:

T̂ =
(
Ĥint + ĤV

)
+
(
Ĥint + ĤV

)
Ĝ0

(
Ĥint + ĤV

)
+ · · · . (5.10)

Here the Green’s function operator is defined as

Ĝ0 =
1

ηiki − Ĥ0 + i0
. (5.11)

For a discussion of these formulas see for example Ref. [33].

Some remarks are in order. First, we assume that the interaction strength V0 and the
impurity potential U0 are weak and therefore we can restrict our calculation to the lowest
orders of the T-matrix. Second, we employ the first Born approximation. Therefore, the
transition probability in Eq. (5.9) is given by the number of scattering centers Nimp times
the single particle T-matrix. This approximation neglects multiple scattering off impurities
and is valid as long as the inverse impurity scattering time is much smaller than the typical
electronic energy i.e. kF � τ−1.

Continuing with our formal manipulations let us rename:

C1,1′ ≡
[
f0

1 (1−f0
1 )ψ1−f0

1′(1−f0
1′)ψ1′

]
δ(η1k1−η1′k1′), (5.12)

C12,1′2′ ≡
[
f0

1 f
0
2 (1−f0

1′)(1−f0
2′) (ψ1 +ψ2−ψ1′−ψ2′)

]
δ(η1k1 +η2k2−η1′k1′−η2′k2′). (5.13)
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5.1. Formalism and model 53

Thus the final forms of the collision integrals (5.7) and (5.8) reads

I
(1P )
1 [ψ] =− 2πNimp

∑
1′

C1,1′

∣∣∣〈1′|T̂ |1〉∣∣∣2 , (5.14)

I
(2P )
1 [ψ] =− 2πNimp

∑
2,1′,2′

C12,1′2′

∣∣∣〈1′2′|T̂ |12〉
∣∣∣2 . (5.15)

After having defined the necessary objects for our calculations we summarize their sym-
metry properties in the following:

• It is trivial to show that the Fermi-Dirac distribution obeys f0
kη = f0

−kη̄.

• In the absence of scattering i.e. when the collision integral vanishes, the symmetries
of the solution ψ of Eq. (5.3) are determined by the driving term eEηf0

η,k(1−f0
η,k)/T

and therefore:

ψk,η = −ψ−k,η̄. (5.16)

It remains true that there exist solutions with this symmetry even in the presence of
relaxation inducing processes (although we cannot exclude the possibility that there
are solutions without this symmetry). This can be shown explicitely by considering
concrete collision integrals in Eq. (5.4).

• The object C12,1′2′ is invariant under exchange of the first and second two arguments
e.g. C12,1′2′ = C21,1′2′ , which is obvious from its definition. Furthermore, under the
assumption of (5.16) it is straightforward to show that C12,1′2′ = −C−1,−2,−1′,−2′

where −1 ≡ (−k1, η̄1).

5.1.2. Hamiltonian

We use the model for one-dimensional helical fermions derived in Sec. 2.2.4 and Ap-
pendix A:

Ĥ0 =
∑
k,η

η k ψ̂†η,kψ̂η,k, Ĥint =
5∑
i=1

Ĥi, (5.17)

Ĥ1 =
V0

k4
0L

∑
k,p,q,η

(
k2 − (k − q)2

) (
p2 − (p+ q)2

)
ψ̂†η,kψ̂

†
η̄,pψ̂η̄,k−qψ̂η,p+q, (5.18)

Ĥ2 =
V0

L

∑
k,p,q,η

ψ̂†η,kψ̂
†
η̄,pψ̂η̄,p+qψ̂η,k−q, (5.19)

Ĥ3 =
V0

k4
0L

∑
k,p,q,η

(
k2 − (k − q)2

) (
p2 − (p+ q)2

)
ψ̂†η,kψ̂

†
η,pψ̂η̄,p+qψ̂η̄,k−q, (5.20)

Ĥ4 =
V0

L

∑
k,p,q,η

ψ̂†η,kψ̂
†
η,pψ̂η,p+qψ̂η,k−q, (5.21)

Ĥ5 = − V0

k2
0L

∑
k,p,q,η

(k2 − p2)ηψ̂†η,k+qψ̂
†
η̄,p−qψ̂η,pψ̂η,k + h.c., (5.22)

Ĥimp =
U0

L

∑
k,p,η

(
ψ̂†η,kψ̂η,p + η

k2 − p2

k2
0

ψ̂†η,kψ̂η̄,p

)
. (5.23)

53



54 5. AC conductivity of a helical Luttinger liquid

5.1.3. Formula for AC conductivity

If the electronic distribution function fk,η is known, we can calculate the conductivity in
our semiclassical approximation as

σ =
(−e)
EL

∑
k,η

vk,ηfk,η
(5.2)
=

(−e)
EL

∑
k,η

ηf0
k,η(1− f0

k,η)ψk,η (5.24)

(5.4)
=

(−e)
EL(−iω)

∑
k,η

ηIk,η[ψ] +
2e2

h

1

(−iω)
, (5.25)

where we used that the velocity of a particle of chirality η is vk,η = η.1 In the AC case we

have eEη
(−iω)T � 1 which allows us to solve the integral equation (5.4) by iteration:

ψ
(0)
η,k ≡−

eEη

(−iω)T
, (5.26)

ψ
(n+1)
η,k =

Iη,k[ψ
(n)]

(−iω)f0
η,k(1− f0

η,k)
+ ψ

(n)
η,k , n ∈ N. (5.27)

Here we take into account only the zeroth order which leads to the conductivity

σAC =
2e2

h

1

(−iω)︸ ︷︷ ︸
σ(0)

+
(−e)

EL(−iω)

∑
k,η

ηIk,η[ψ
(0)]︸ ︷︷ ︸

σ(1)

. (5.28)

Before calculating the conductivity for the HLL let us gain some more intuition about
transport properties of electronic systems by deriving the Drude conductivity from clas-
sical arguments. While the arguments themselves are actually wrong, since electrons are
considered to be a classical gas of charged carriers, the result is nonetheless correct and
the arguments themselves provide a nice physical picture.

In the presence of an electric field a conduction electron will feel two different forces:
the force of the electric field −eE and a dissipative friction force −m

τ ẋ inhibiting its free
acceleration. The damping could for example originate from scattering off static impurities
with the scattering rate τ . The dynamics of the electron are then described by the equation
of motion mẍ = −eE − m

τ ẋ, or in Fourier representation −imωv(ω) = eE(ω) − m
τ v(ω).

Solving for v we find the current density j = −nev and the conductivity given by j(ω) =
σ(ω)E(ω) as

σ(ω) =
ne2

m

1
1
τ − iω

=
e2vF
h

1
1
τ − iω

. (5.29)

In the second equality we used the fact that for one-dimensional electrons the density is
given by n = 1

a0
= kF

2π = kF
h and the Fermi momentum is kF = mvF ⇔ m = kF /vF .

Furthermore, we momentarily reintroduced ~ and vF .

The AC limit is defined as the regime ω � τ−1. There the conductivity is determined by
the ballistic motion of electrons under the force of the electric field and is given by: σ(ω) ≈
e2vF
h

1
(−iω) . Our formula for conductivity (5.28) therefore yields the first two terms in a

expansion in (ωτ)−1 (the additional factor of two comes from the edge channel degeneracy).
Conversely, in the diffusive regime where ω � τ−1, the motion of electrons is determined
by consecutive scattering events and in particular in the DC limit, ω → 0, we arrive at
the Drude formula σ = e2vF τ/h, i.e. the electric field drives a steady current whose value
is limited by the rate of scattering processes.

Let us now return to the problem of calculating the AC conductivity of a system of helical
fermions. We will first tackle this problem in perturbation theory in orders of the T-matrix.

1Note that vF ≡ 1.
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5.2. First order of the T-matrix 55

5.2. First order of the T-matrix

In the absence of any scattering mechanism the AC conductivity in Eq. (5.28) is given
by twice the conductance quantum σ(0) = 2e2/h(−iω). However, now we want to study
how the quantized conductivity is affected by the influence of interactions and impurity
scattering, respectively. In order to calculate these corrections, we have to evaluate matrix
elements like 〈1′2′|Ĥint|12〉 in the first order of the T-matrix in Eq. (5.15). To give an idea
how the calculations are carried out we derive the contribution of the g5 term explicitely.
The corresponding Hamiltonian is given by Eq. (5.22). First we calculate the necessary
matrix elements by using the fermionic anticommutation relations (3.34) :

A1′2′12
kpqη ≡ 〈1′2′|ψ†η,k+qψ

†
η̄,p−qψη,pψη,k|12〉 (5.30)

= 〈0|ψ1′ψ2′ψ
†
η,k+qψ

†
η̄,p−qψη,pψη,kψ

†
1ψ
†
2|0〉 (5.31)

= δη1ηδη2η (δk1kδk2p − (1↔ 2))
(
δη1′ η̄δη2′ηδk1′ ,p−qδk2′ ,k+q − (1′ ↔ 2′)

)
, (5.32)

B1′2′12
kpqη ≡ 〈1′2′|ψ†η,kψ†η,pψη̄,p−qψη,k+q|12〉 (5.33)

= 〈0|ψ1′ψ2′ψ
†
η,kψ

†
η,pψη̄,p−qψη,k+qψ

†
1ψ
†
2|0〉 (5.34)

= δη1′ηδη2′η

(
δk1′pδk2′k − (1′ ↔ 2′)

)
(δη1ηδη2η̄δk1,k+qδk2,p−q − (1↔ 2)) . (5.35)

To get the complete expression we include the sum over momenta, chiralities and the
momentum dependances:

A121′2′ = − V0

Lk2
0

∑
k,p,q,η

ηA121′2′
kpqη (k2 − p2) (5.36)

= − 2V0

Lk2
0

(∑
η

ηδη1ηδη2η

(
δη1′ η̄δη2′η − (1′ ↔ 2′)

))
δk1′+k2′ ,k1+k2(k2

1 − k2
2), (5.37)

B121′2′ = − V0

Lk2
0

∑
k,p,q,η

ηB121′2′
kpqη (k2 − p2) (5.38)

= − 2V0

Lk2
0

(∑
η

ηδη1′ηδη2′η (δη1η̄δη2η − (1↔ 2))

)
δk1′+k2′ ,k1+k2(k2

1′ − k2
2′). (5.39)

Thus the transition probability in Fermi’s golden rule is given by∣∣∣〈1′2′|Ĥ5|12〉
∣∣∣2 =

∣∣∣A121′2′ +B121′2′
∣∣∣2 . (5.40)

When calculating the square we get 4×4 = 16 terms. However, due to the chirality factors
only 4 out of these are nonvanishing if summed over external chiralities. Let us clarify this
by an example: ∑

η,η′

∑
η2,η1′ ,η2′

C12,1′2′ηη
′δη1ηδη2ηδη1′ η̄δη2′ηδη1η′δη2η′δη1′ η̄

′δη2′η
′ (5.41)

= C(k1,η1)(k2,η1),(k1′ ,η̄1)(k2′ ,η1). (5.42)

However, ∑
η,η′

∑
η2,η1′ ,η2′

C12,1′2′ηη
′δη1ηδη2ηδη1′ η̄δη2′ηδη1η′δη2η̄′δη1′η

′δη2′η
′ (5.43)

=
∑
η,η′

C(k1,η1)(k2,η),(k1′ ,η̄)(k2′ ,η)ηη
′δη′η̄δη′ηδη1ηδη1η′ = 0. (5.44)
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Figure 5.1.: (a) Integration region in the limit ζ � 1 (grey area) and (b) spectrum showing a
possible g5 process at low temperatures. A right mover (red) scatters into a left
moving state (blue) at zero momentum.

Therefore, only chirality factors that get multiplied by themselves survive in the expression
for the collision integral. Substituting our result for the matrix elements into the collision
integral Eq. (5.15) and using the symmetry properties of C we get

Ik1,η1 [ψ] = −8π

(
V0

k2
0L

)2 ∑
k2,k1′ ,k2′

[2(k2
1 − k2

2)2C(k1,η1)(k2,η1),(k1′ ,η̄1)(k2′ ,η1)

+ (k2
1′ − k2

2′)
2(C(k1,η1)(k2,η̄1),(k1′ ,η1)(k2′ ,η1) + C(k1,η1)(k2,η̄1),(k1′ ,η̄1)(k2′ ,η̄1))].

(5.45)

Since we want to calculate conductivity by using Eq. (5.28) it turns out to be more useful
to calculate

∑
1 η1I1[ψ] instead of I1[ψ] . Therefore, we have to evaluate

∑
η1,k1

η1Ik1,η1 [ψ(0)] =− 32π

(
V0

k2
0L

)2∑
{k}

(k2
1 − k2

2)2C(k1,R)(k2,R),(k1′ ,L)(k2′ ,R)

× δk1+k2,k1′+k2′

(5.46)

=
8

π

eEL

(−iω)h

(
V0

k2
0

)2

T 5f(ζ). (5.47)

Here we made use of the symmetry properties of C as well as the fact that we sum over
all momenta {k} ≡ k1, k2, k1′ , k2′ , to cancel all but one factor of C. Next we used the
momentum and energy conserving delta functions and substituted k → x = k/T to make
the resulting integral dimensionless. This yields the conductivity correction

σ(1) =− 8

π

e2

(−iω)2h

(
V0

k2
0

)2

T 5f(ζ), (5.48)

f(ζ) =

∫
dxdy n(x− ζ)n(y − ζ)(1− n(x+ y − ζ))︸ ︷︷ ︸

tζ(x,y)

(1− n(−ζ))(x2 − y2)2 (5.49)

where ζ = kF /T is the Fermi energy measured in units of temperature and n(x) = (1 +
ex)−1 is the Fermi distribution.

The integral f(ζ) can be calculated approximately in some regimes. If the Fermi energy
kF is much larger than the temperature i.e. ζ � 1 the thermal factor tζ(x, y) is always
exponentially suppressed except in the region x < ζ, ζ − x < y < ζ where tζ(x, y) ≈ 1.
This integration region is shown in Fig. 5.1. Therefore, we can approximate

f(ζ) ≈
∫ ζ

0
dx

∫ ζ

ζ−x
dy e−ζ(x2 − y2)2 =

11

90
ζ6e−ζ , for ζ � 1. (5.50)
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The resulting correction to conductivity in the regime kF >> T thus reads

σ(1) =− 22

45π

2e2

(−iω)2h

(
V0k

3
F

k2
0

)2
e−kF /T

T
. (5.51)

The correction has the form one would expect from Drude’s law in the AC limit with the
scattering time given by

τ (AC)

g5,ζ�1 =
45π

22

(
k2

0

V0k3
F

)2

TekF /T . (5.52)

We further notice that the contribution to the conductivity in Eq. (5.51) is thermally
activated since energy and momentum conservation constrict the momenta in the operator
(5.22) to p = q. Hence, one of the particles in the final state has to be created at zero
momentum deep within the filled Fermi sea (see Fig. 5.1) which leads to the exponential
supression in Eq. (5.51).

Conversely, in the regime ζ � 1 we can expand f(ζ) in a Taylor series around ζ = 0 and
evaluate the arising integrals numerically to get

8

π
f(ζ) ≈ 306.02 + 26.2ζ2, for ζ � 1. (5.53)

Therefore, in this regime the process leads to power law corrections,

σ(1) =− 153.01
2e2

(−iω)2h

(
V0

k2
0

)2

T 5. (5.54)

Here the corresponding scattering time is

τ (AC)

g5,ζ�1 = 6.5× 10−3

(
k2

0

V0

)2

T−5 (5.55)

Let us adress one important point: how is it possible that interactions that conserve
momentum, such as the g5 term, lead to current relaxation? This is suprising since in
conventional Fermi Liquids translational invariance implies momentum conservation and
entails the persistence of currents in the absence of momentum nonconserving interactions
such as impurity scattering. However, as we discussed in Sec. 3.2.2, the current of a
one-dimensional electron system is determined by the number of left and right movers and
momentum conservation does not imply current conservation. The current relaxation arises
from the scattering of right to left movers or vice versa. Therefore, only scattering processes
that change the total number of left and right movers can lead to a finite conductivity.
This is true even if the processes conserve momentum.2

Lastly, let us discuss the effect of the other interaction processes as well as impurity
scattering. Interestingly, we find that none of these scattering mechanism give rise to
finite conductivity corrections in the lowest order. Physically, it is clear that g1,g2 and g4

processes will not affect the current since none of them change the number of left and right
movers. The same argument is true for forward scattering off the impurity. However, the
fact that g3 processes do not affect the current either, is nontrivial. Indeed, one has to
add all processes of this type together to show that they cancel.

2If this seems strange to you, remember that any process that changes the overall number of left and right
movers was an Umklapp term in the original lattice problem. The fact that it conserves momentum
emerges only in the continuum limit.
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Figure 5.2.: Possible classes of processes in the second order of the T-matrix. Fat vertices de-
note chirality changes and dashed lines symbolize impurity scattering. The chirality
changes can be due to (i) impurities, (ii) interaction or (iii) both.

This is shown explicitely in the calculation in Appendix B. Finally, let us discuss why
backscattering off the impurity does not affect transport. These processes are described
by the Hamiltonian:

Ĥimp,b =
U0

L

∑
k,p,η

η
k2 − p2

k2
0

ψ̂†η,kψ̂η̄,p. (5.56)

Energy conservation demands ηk = η̄p ⇔ k = −p in which case the momentum factor in
front vanishes. Therefore, the HLL is indeed topologically protected against single particle
scattering as we argued in section 2.2.4.

5.3. Second order of the T-matrix

Having discussed how interaction and impurities respectively affect transport, we now want
to investigate combined effects in the next order of the T-matrix. In the second order of
our expansion we have the terms:

〈1′2′|T̂ |12〉 = 〈1′2′|ĤintĜ0Ĥint|12〉+ 〈1′2′|ĤimpĜ0Ĥint|12〉
+ 〈1′2′|ĤintĜ0Ĥimp|12〉+ 〈1′2′|ĤimpĜ0Ĥimp|12〉.

(5.57)

Physically, it is clear that the term with two consecutive impurity scatterings vanishes
because of the topological protection. Furthermore, we will neglect processes with two
consecutive interaction terms by arguing that they are higher order in V0. We do this by
setting the matrix elements for both processes to zero by hand. Note that these processes
would not mix with the others when taking the absolute square since they have different
chirality structure due to varied virtual processes. The leading correction to conductivity in
this order will therefore arise from combined effects of disorder and interaction. However,
only the processes that change the total number of right or left movers can affect current
and we are therefore left with three types of possible processes (see Fig. 5.2). In order
to calculate the corrections induced by these scattering mechanisms we have to take into
account all contributions of the different types. Since the calculations are rather lenghty
they are discussed in Appendix C. We find that the leading contribution in the limit ζ � 1
comes from combined processes of g3 and backscattering off an impurity and yield

σ(1) = − 2e2

(−iω)2h
κ

(
U0V0

k4
0

)2

nimpk
8
FT

4, (5.58)

where κ = 84×10.5 is a numerical factor. These processes are similar to pure g5 interaction
in the sense that they change only the chirality of one particle. Unlike the correction due to
interaction, Eq. (5.51), the result for the combined process Eq. (5.58) is not exponentially
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suppressed in the limit kF � T , though. The exponential suppression is due to the fact
that momentum and energy conservation force one of the particles to be at k = 0 deep
within the Fermi sea. However, if we include impurities, momentum conservation will
be broken and the phase space requirements for the process are relaxed. The result is
that combined processes of interaction and disorder give the leading order correction to
conductivity in the low temperature limit that scale as T 4.

5.4. Comparison with known results

The authors in Ref. [11] studied the conductance of a short wire of lentgh L coupled to
external leads held at the same temperature T, but at slightly different chemical potentials
µL = V/2 and µR = −V/2. Here “short” means that the system length is much smaller
than the mean free path and transport can be assumed to be ballistic. They calculated
the conductance corrections due to interaction and impurities in different regimes of ζ.
We can compare our results for the long wire with their calculation if we assume that the
frequency of the external electric field ω induces an effective length scale Leff for electrons.
Formally we substitute (−iω) → L−1

eff in our results (5.51), (5.54) and (5.58) and then
calculate the conductance as G = σ/Leff. We find that our results are in agreement with
the ones in Ref. [11] and therefore the AC conductivity of a long wire of helical fermions
corresponds to the DC conductance of a short wire.

5.5. Derivation of an effective Hamiltonian

Since the calculation of higher order corrections in the T-matrix quickly becomes a cum-
bersome task we would like to derive an effective Hamiltonian describing combined effects
of interaction and disorder. To this end we perform an operator product expansion (OPE)
of certain interaction and impurity terms in the Hamiltonian. In quantum field theory the
OPE is the representation of a product of two operators (at positions x and y, respectively)
as a sum of terms, each consisting of an operator, well-defined as x → y, multiplied by
a function of x − y that possibly diverges as x → y. The divergence embodies infinite
quantum fluctuations that occur when operators approach the same point. For conformal
operators Oi we write

Oi(x)Oj(y) =
∞∑

k=−∞
Ckij

Ok(y)

|x− y|∆i+∆j−∆k
, (5.59)

where Ckij are a set of numbers. It should be understood that the OPE is only meaningful
within correlation functions. However, this is no drawback since we need the effective
Hamiltonian for the calculation of matrix elements only. The fact that these matrix ele-
ments are calculated with the non-interacting ground state |0〉 enables us to use Wick’s
theorem for evaluating the OPE. To see why the fused operators describe an effective the-
ory consider a generic fixed point action S0, describing a conformal field theory and a set
of perturbations with coupling constants gi:

S[φ] = S0[φ] +
∑
i

gi

∫
dxOi(x). (5.60)

Here φ denote a set of fields defining the model and x are space-time coordinates. The local
operators Oi(x) are in priciple functionals of the fields φ. A perturbative RG treatment
of the model would yield an expression for the effective action of the form

e−Seff[φ] ≈ e−S0[φ]
[
1−
∑
i

gi

∫
dx 〈Oi(x)〉+1

2

∑
ij

gigj

∫
dx

∫
dx′ 〈Oi(x)Oj(x

′)〉
]
. (5.61)
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60 5. AC conductivity of a helical Luttinger liquid

Here the averaging is over high energy degrees of freedom. In the second order of the
expansion we can now fuse the operators by the OPE, Eq. (5.59), where we concentrate
on the most diverging terms since they have the highest scaling dimension. The result is
that the fused operators Ok appear in the effective action under a RG step and therefore
define the effective theory we want to derive.

5.5.1. Hamiltonian in real space representation

For the calculation of OPEs it is convenient to change to a real space representation.
Therefore, we Fourier transform the smooth fields ψ̂kη as

ψ̂kη =
1√
L

∫
dx e−ikxe−ikF ηxψ̂η(x). (5.62)

The operator for impurity scattering becomes a local operator at x=0:

Ĥimp,f =U0

∑
η

(ψ̂†ηψ̂η), (5.63)

Ĥimp,b =
U0

k2
0

∑
η

η
[
ψ̂†η∂

2
xψ̂η̄ − ∂2

xψ̂
†
ηψ̂η̄ − 2ikF η

(
∂xψ̂

†
ηψ̂η̄ − ψ̂†η∂xψ̂η̄

)]
. (5.64)

The g4 term is given by

Ĥ4 =V0

∑
η

∫
dx ψ̂†η(x)ψ̂†η(x+ ε)ψ̂η(x+ ε)ψ̂η(x), (5.65)

where we introduced ε > 0 as a pointsplitting constant. In the limit ε→ 0 the operator is
purely local and vanishes. Furthermore, the remaining operators read

Ĥ2 =V0

∑
η

∫
dx ψ̂†η(x)ψ̂†η̄(x)ψ̂η̄(x)ψ̂η(x) = 2V0

∫
dx (ψ̂†Rψ̂

†
Lψ̂Lψ̂R)(x), (5.66)

Ĥ5 =
2V0

k2
0

∑
η

η

∫
dx e−2ikF ηx

(
ψ̂†ηψ̂

†
η̄∂

2
xψ̂ηψ̂η − 2ikF ηψ̂

†
ηψ̂
†
η̄∂xψ̂ηψ̂η

)
+ h.c. , (5.67)

Ĥ3 =− 2
V0

k4
0

∑
η

∫
dx e4iηkF x

×
[
ψ̂†η

(
∂2
xψ̂
†
η + 2ikF η∂xψ̂

†
η − k2

F ψ̂
†
η

)
ψ̂η̄

(
∂2
xψ̂η̄ − 2ikF η∂xψ̂η̄ − k2

F ψ̂η̄

)]
,

(5.68)

Ĥ1 =
V0

k4
0

∑
η

∫
dx

×
[(
∂2
xψ̂
†
η + 2ikF η∂xψ̂

†
η − k2

F ψ̂
†
η

)(
∂2
xψ̂
†
η̄ + 2ikF η̄∂xψ̂

†
η̄ − k2

F ψ̂
†
η̄

)
ψ̂η̄ψ̂η

− ψ̂†η
(
∂2
xψ̂
†
η̄ + 2ikF η̄∂xψ̂

†
η̄ − k2

F ψ̂
†
η̄

)(
∂2
xψ̂η̄ − 2ikF η̄∂xψ̂η̄ − k2

F ψ̂η̄

)
ψ̂η

−
(
∂2
xψ̂
†
η + 2ikF η∂xψ̂

†
η − k2

F ψ̂
†
η

)
ψ̂†η̄ψ̂η̄

(
∂2
xψ̂η − 2ikF η∂xψ̂η − k2

F ψ̂η

)
+ ψ̂†ηψ̂

†
η̄

(
∂2
xψ̂η̄ − 2ikF η̄∂xψ̂η̄ − k2

F ψ̂η̄

)(
∂2
xψ̂η − 2ikF η∂xψ̂η − k2

F ψ̂η

)]
.

(5.69)

Power counting suggests that the most relevant operators are those with least derivatives.
If we drop all but the most relevant operators the term describing backscattering off
impurities becomes:

Ĥimp,b ≈
U0

k2
0

∑
η

η
[
−2ikF η

(
∂xψ̂

†
ηψ̂η̄ − ψ̂†η∂xψ̂η̄

)]
(5.70)

=
U0

k2
0

(−2ikF )
(
∂xψ̂

†
Rψ̂L − ψ̂

†
R∂xψ̂L + ∂xψ̂

†
Lψ̂R − ψ̂

†
L∂xψ̂R

)
. (5.71)
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Now we apply the following gauge transformation:

ψ̂L → iψ̂L , ψ̂†L → −iψ̂
†
L. (5.72)

The Hamiltonian is invariant under this transformation except for the g5 term. Under this
transformation the backscattering off the impurity becomes a term describing backscat-
tering from a Rashba impurity:

ĤR ≡ Ĥimp,b =
2kFU0

k2
0

(
∂xψ̂

†
Rψ̂L − ψ̂

†
R∂xψ̂L + h.c.

)
. (5.73)

Taking into account only the most relevant terms, the g5 term is given by

Ĥ5 ≈
2V0

k2
0

∑
η

η

∫
dx e−2ikF ηx

(
−2ikF ηψ̂

†
ηψ̂
†
η̄∂xψ̂ηψ̂η

)
+ h.c. . (5.74)

After the gauge transformation (5.72) the operator becomes

Ĥ5 =− 4kFV0

k2
0

∫
dx
(
e−2ikF xψ̂†Rψ̂

†
L∂xψ̂Rψ̂R − e2ikF xψ̂†Lψ̂

†
R∂xψ̂Lψ̂L + h.c.

)
. (5.75)

5.5.2. Inelastic scattering

We will call scattering processes that change the chirality of only one incoming particle
inelastic scattering processes, since they are similar to scattering off impurities in this
aspect but do not conserve single particle energy. To derive the effective Hamiltonian
describing such processes we start by fusing g2 interaction and Rashba scattering:

: ψ̂†Rψ̂
†
Lψ̂Lψ̂R :

∣∣∣
y

: ∂xψ̂
†
Rψ̂L − ψ̂

†
R∂xψ̂L + ψ̂†L∂xψ̂R − ∂xψ̂

†
Lψ̂R :

∣∣∣
x=0

(5.76)

=− 〈ψ̂†L,yψ̂L,x〉 : ψ̂†R,yψ̂L,yψ̂R,y∂xψ̂
†
R : −〈ψ̂R,yψ̂†R,x〉 : ψ̂†R,yψ̂

†
L,yψ̂L,y∂xψ̂L :

− 〈ψ̂L,yψ̂†L,x〉 : ψ̂†R,yψ̂
†
L,yψ̂R,y∂xψ̂R : −〈ψ̂†R,yψ̂R,x〉 : ψ̂†L,yψ̂L,yψ̂R,y∂xψ̂

†
L : .

(5.77)

Here the dots denote normal ordering and the time ordered expectation values of fermionic
operators are:

〈Tψ̂R(x1, τ1)ψ̂†R(x2, τ2)〉 =
1

2π

1

τ1 − τ2 + i(x2 − x1)
, (5.78)

〈Tψ̂L(x1, τ1)ψ̂†L(x2, τ2)〉 =
1

2π

1

τ1 − τ2 + i(x1 − x2)
. (5.79)

For time independant operators the following relations hold:

〈Tψ̂R(x1)ψ̂†R(x2)〉 =− 〈Tψ̂†R(x2)ψ̂R(x1)〉 = 〈Tψ̂†R(x1)ψ̂R(x2)〉 (5.80)

=− 〈Tψ̂L(x1)ψ̂†L(x2)〉 . (5.81)

Therefore, we can combine the terms in Eq. (5.77) to get

〈ψ̂L,yψ̂†L,x〉
(
−ψ̂†Rψ̂Lψ̂R∂xψ̂

†
R + ψ̂†Rψ̂

†
Lψ̂L∂xψ̂L + ψ̂†Lψ̂Lψ̂R∂xψ̂

†
L − ψ̂

†
Rψ̂
†
Lψ̂R∂xψ̂R

)
. (5.82)

If we include the corresponding constants we can write the resulting Hamiltonian as

Ĥ1P (x = 0) =
1

2πi

4U0V0kF
k2

0

(−ψ̂†Rψ̂Lψ̂R∂xψ̂
†
R + ψ̂†Rψ̂

†
Lψ̂L∂xψ̂L

+ ψ̂†Lψ̂Lψ̂R∂xψ̂
†
L − ψ̂

†
Rψ̂
†
Lψ̂R∂xψ̂R)

(5.83)

=g1P

(∑
η

ψ̂†ηψ̂
†
η̄ψ̂η(i∂x)ψ̂η + h.c.

)
. (5.84)
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62 5. AC conductivity of a helical Luttinger liquid

Here we defined the coupling constant:3

g1P =
2kFV0U0

πk2
0

. (5.85)

One can check that the fusion of g5 and forward scattering gives the same Hamiltonian
with the same coupling constant. In principle there are further operators that can be
combined to get the 1P scattering Hamiltonian e.g. g3 combined with backscattering.
However, they are higher order in the small parameter kF /k0 and will not be discussed
here. Lastly, the Fourier transform back to momentum space yields:

Ĥ1P =− g1P

L2

∑
k,p,q,q′,η

k ψ̂†q′,ηψ̂
†
q,η̄ψ̂p,ηψ̂k,η + h.c. . (5.86)

Note that we neglected further terms with a factor of kF in Ĥ1P since they have vanishing
matrix elements.

5.5.3. Two particle scattering

Scattering processes that change the chirality of both incoming particles are termed two
particle scattering processes. To derive the effective Hamiltonian describing such inter-
actions, we can combine either g5 or the effective one particle process in Eq. (5.84) with
backscattering off the impurity. Calculating the necessary contractions yields:

: ∂yψ̂
†
Rψ̂L − ψ̂

†
R∂yψ̂L + ψ̂†L∂yψ̂R − ∂yψ̂

†
Lψ̂R :

∣∣∣
y=0

× : ±ψ̂†Rψ̂Lψ̂R∂xψ̂
†
R ∓ ψ̂

†
Rψ̂
†
Lψ̂L∂xψ̂L − ψ̂

†
Rψ̂
†
Lψ̂R∂xψ̂R + ψ̂†Lψ̂Lψ̂R∂xψ̂

†
L :

(5.87)

= 〈ψ̂L,yψ̂†L,x〉
(

:±∂yψ̂†Rψ̂
†
R,xψ̂L,x∂xψ̂L+∂yψ̂

†
Rψ̂
†
R,xψ̂R,x∂xψ̂R+∂yψ̂

†
Rψ̂L,xψ̂R,x∂xψ̂

†
L:
)

+ 〈ψ̂†R,yψ̂R,x〉
(

:±∂yψ̂Lψ̂†R,xψ̂L,x∂xψ̂
†
R−∂yψ̂Lψ̂

†
R,xψ̂

†
L,x∂xψ̂R+∂yψ̂Lψ̂

†
L,xψ̂L,x∂xψ̂

†
L:
)

+ 〈ψ̂†L,yψ̂L,x〉
(

:±∂yψ̂Rψ̂†R,xψ̂R,x∂xψ̂
†
R±∂yψ̂Rψ̂

†
R,xψ̂

†
L,x∂xψ̂L+∂yψ̂Rψ̂

†
L,xψ̂R,x∂xψ̂

†
L:
)

−〈ψ̂R,yψ̂†R,x〉
(

:±∂yψ̂†Lψ̂L,xψ̂R,x∂xψ̂
†
R∓∂yψ̂

†
Lψ̂
†
L,xψ̂L,x∂xψ̂L−∂yψ̂

†
Lψ̂
†
L,xψ̂R,x∂xψ̂R:

)
.

(5.88)

Here the upper sign corresponds to the g5 process while the lower describes the inelastic
scattering Hamiltonian. The only operators that can change the current are the ones that
change the number of right or left moving particles. Therefore, we are left with:

± 〈ψ̂L,yψ̂†L,x〉 : ∂yψ̂
†
Rψ̂
†
R,xψ̂L,x∂xψ̂L : ±〈ψ̂†R,yψ̂R,x〉 : ∂yψ̂Lψ̂

†
R,xψ̂L,x∂xψ̂

†
R : (5.89)

+ 〈ψ̂†L,yψ̂L,x〉 : ∂yψ̂Rψ̂
†
L,xψ̂R,x∂xψ̂

†
L : + 〈ψ̂R,yψ̂†R,x〉 : ∂yψ̂

†
Lψ̂
†
L,xψ̂R,x∂xψ̂R : (5.90)

Using the symmetry properties in Eq. (5.81) we get

2 〈ψ̂L,yψ̂†L,x〉
(
±∂xψ̂†Rψ̂

†
Rψ̂L∂xψ̂L + ∂xψ̂

†
Lψ̂
†
L,xψ̂R∂xψ̂R

)
. (5.91)

Thus we have the two operators

Ĥ2P,1 =g2P,1

(
ψ̂†R∂xψ̂

†
Rψ̂L∂xψ̂L + h.c.

)
, (5.92)

Ĥ2P,2 =g2P,2

(
−iψ̂†R∂xψ̂

†
Rψ̂L∂xψ̂L + h.c.

)
, (5.93)

3Here we choose the convention that this operator comes with a factor (y − x)−1 in the RG which
determines the sign of the coupling constant.
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where we defined the coupling constants

g2P,1 = −4k2
FU

2
0V0

π2k4
0

, g2P,2 =
8k2

FU0V0

πk4
0

. (5.94)

If we apply the global gauge transformation ψ̂L → exp(iπ/4)ψ̂L to the Hamiltonian Ĥ2P,2

the operator becomes identical to Ĥ2P,1 (except for the coupling constant). Therefore,
they describe the same physics and we will always use the form Ĥ2P = Ĥ2P,1 from now on.
Furthermore, the coupling constant we will be using is g2P = g2P,2, since g2P,1 is subleading
in U0.

One can check that the fusion of g3 and forward scattering also gives rise to the same
operator with coupling constant g2P,2. To show this, we keep the terms with two derivatives
in the Hamiltonian,

Ĥ3 ≈− 8
V0k

2
F

k4
0

∑
η

∫
dx e4iηkF xψ̂†η∂xψ̂

†
ηψ̂η̄∂xψ̂η̄ (5.95)

and combine it with forward scattering off the impurity. Other terms are either less relevant
or do not contribute to two particle scattering. Finally, we state the form of the generic
Hamiltonian Ĥ2P in momentum space:

Ĥ2P =
g2P

L2

∑
k,p,q,q′,η

kq ψ̂†η,kψ̂
†
η,pψ̂η̄,qψ̂η̄,q′ . (5.96)

Here we neglected terms with kF since they have vanishing matrix elements.

The effective Hamiltonians found in this section and in Sec. 5.5.2 have been independantly
derived in [12] where the authors obtained the operators from the highest weight state of
the corresponding conformal algebra.

5.6. Corrections to AC conductivity due to effective pro-
cesses

The calculation of the correction can be found in the Appendix D. Here we only state the
results. For inelastic scattering we have

σ
(1)
1P = −103.902

32

π4

e2

(−iω)2h
nimp

(
kFV0U0

k2
0

)2

T 4. (5.97)

The power law behavior in temperature is in agreement with our perturbative results in
Eq. (5.58). However, the prefactor is different and in particular it contains a lower power
in kF /k0 as well as U0 making it more important in our weak coupling analysis. At the
moment we do not understand how this discrepancy arises. This will be the subject of
further studies.

Lastly, the conductivity corrections due to two-particle scattering processes read

σ
(1)
2P = −1757.97

64

π4
nimp

2e2

h(−iω)2

(
k2
FU0V0

k4
0

)2

T 6. (5.98)

In the low temperature regime they therefore only give subleading corrections. For later
reference we state the general scattering times for single and two-particle scattering pro-
cesses:

τ1P = 9.62× 10−3 π2

nimp

1

g2
1PT

4
(5.99)

τ2P = 5.69× 10−4 π2

nimp

1

g2
2PT

6
(5.100)
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64 5. AC conductivity of a helical Luttinger liquid

Figure 5.3.: Scattering mechanisms considered in the main text. g5 processes are due to interaction
while inelastic and two-particle processes describe combined effects of disorder and
interaction. In (a) we show the corresponding process in the linear spectrum of
electrons. (b) depicts possible diagrams describing the mechanisms.

5.7. Summary and results

Let us summarize. We studied the AC conductivity of helical fermions in a long wire.
Without any scattering mechanism the conductivity is given by σ(0) = 2e2/h(−iω) i.e.
the conductance is perfectly quantized. In a clean system there are corrections to this
result due to g5 interaction processes that scale as T 5 at high temperatures (Eq. 5.54)
and are exponentially suppressed, as can be shown using phase space arguments, at low
temperatures (Eq. 5.51). As expected impurity scattering alone does not influence con-
ductivity because of the topological protection. In the low energy regime we derived the
most relevant processes describing combined effects of disorder and impurity scattering
with an OPE. The leading order correction comes from inelastic scattering processes and
goes as T 4 (Eq. 5.97). We can furthermore map our results to a short wire, with length
Leff by the formal substitution (−iω) → L−1

eff . This enables us to make predictions about
the conductance of such systems as well. The different scattering processes are depicted in
Fig. 5.3 and the corresponding corrections to AC conductivity are summarized in Tab. 5.1.
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6. DC conductivity of a helical Luttinger
liquid

So far we have only considered transport properties in the AC limit where the electrons’
motion is ballistic. In this regime we could make predictions about the conductivity in
a perturbative expansion in the small parameter eE/(−iωT ). However, now we want to
ask the question what form the conductivity takes in the DC limit. To this end we have
to develop a new formalism for finding the corrections since we can not use the same
perturbative expansion as before in the limit ω → 0. Interestingly, even in a conventional
LL the calculation of the DC conductivity is a nontrivial problem which was already
realized in early publications [41]. It can be shown that even in the presence of an Umklapp
term, current is not relaxed and the DC conductivity of a LL is infinite. One needs at
least two noncommensurate Umklapp terms to get a finite DC conductivity [42]. In this
chapter we discuss the DC conductivity of a HLL in the presence of the most relevant
perturbations found in Ch. 5. To this end we first introduce the formalism in Sec. 6.1 and
then proceed to analyse g5, inelastic and two-particle scattering in Secs. 6.2, 6.3 and 6.4,
respectively. A summary of our results can be found in Sec. 6.5.

6.1. Formalism

For the calculation of conductivity we use our general expression in Eq. (5.24). The
symmetry properties of ψk,η, described in Eq. (5.16), allow us to rewrite the conductivity
as

σDC =
(−2e)

Eh
T

∫
dxn(x− ζ)(1− n(x− ζ))ψR,ζ(x). (6.1)

Here ζ denotes the ratio of Fermi energy and temperature, ζ = kF /T .

The function ψk,η, parametrising deviations from the equilibrium distribution function,
has to be determined from the integral equation in Eq. (5.4):

ψk,η(ω) =
Iη,k[ψ]

(−iω)f0
η,k(1− f0

η,k)
− eEη

(−iω)T
. (6.2)

Given a particular collision integral containing the information about the scattering pro-
cess under consideration, equation (5.4) represents a set of coupled Fredholm integral
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68 6. DC conductivity of a helical Luttinger liquid

equations of the second kind that determine ψη,k(ω). Luckily, due to the general symme-
try, Eq. (5.16), we can decouple the integral equations and are left with the task of solving
a single, one-dimensional integral equation. WLOG we will choose to solve for ψR.

In the following we use this formalism to calculate the DC conductivity due to g5, inelastic
and two particle processes in different temperature regimes.

6.2. g5 processes

6.2.1. Derivation of an integral equation for g5 processes

The collision integral for the g5 process is calculated in Eq. (5.45). By inserting it into
Eq. (5.4) and evaluating the momentum conserving Kronecker delta we obtain the following
expression:

ψk,R =− 8π

(−iω)fkR(1− fkR)

(
U0

k2
0L

)2 ∑
k2,k1′

×
[
2(k2

1 − k2
2)2C(k1,R)(k2,R),(k1′ ,L)(k1+k1−k1′ ,R)

+ (k2
1′ − (k1 + k2 − k1′)

2)2C(k1,R)(k2,L),(k1′ ,R)(k1+k1−k1′ ,R)

+ (k2
1′ − (k1 + k2 − k1′)

2)2C(k1,R)(k2,L),(k1′ ,L)(k1+k1−k1′ ,L)

]
− eE

(−iω)T
.

(6.3)

After evaluating the energy conserving delta functions contained in C and going to a
continous momentum representation we arrive at

ψR(k) = − 8π

(−iω)(1− fkR)

(
U0

k2
0L

)2( L

2π

)2 1

2

∫
dp

× [2(k2 − p2)2f0
pR(1− f0

0L)(1− f0
k+p,R)

× (ψR(k) + ψR(p)− ψL(0)− ψR(k + p))

+ ((k − p)2 − p2)2f0
0L(1− f0

pR)(1− f0
k−p,R)

× (ψR(k) + ψL(0)− ψR(p)− ψR(k − p))]

+

∫
dq ((k + p− q)2 − q2)2f0

pL(1− f0
qL)(1− f0

k+p−q,L)

× δ(k)(ψR(k) + ψL(p)− ψL(q)− ψL(k + p− q))− eE

(−iω)T
.

(6.4)

Interestingly, in the last term we find a delta function that constricts the external mo-
mentum to zero. As discussed in Sec. 5.2, the phenomenon that one particle is forced to
have zero momentum arises from the chirality structure of the process combined with the
restrictions of energy and momentum conservation. Therefore, we have to consider two
cases:
First let k 6= 0, then δ(k) = 0 and we are left with

ψR(k) = − 1

(−iω)(1− fkR)π

(
U0

k2
0

)2 ∫
dp [2(k2 − p2)2f0

pR(1− f0
0L)(1− f0

k+p,R)

× (ψR(k) + ψR(p)− ψL(0)− ψR(k + p)) + ((k − p)2 − p2)2f0
0L(1− f0

pR)

× (1− f0
k−p,R)(ψR(k) + ψL(0)− ψR(p)− ψR(k − p))]− eE

(−iω)T
.

(6.5)
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If we define:

G(k, p) = ((k − p)2 − p2)2f0
0L

(1− f0
pR)

(1− fkR)
(1− f0

k−p,R), (6.6)

K(k, p) = 2(k2 − p2)2f0
pR

(1− f0
0L)

(1− fkR)
(1− f0

k+p,R), (6.7)

the terms can be rewritten into a more compact form after some algebra

ψR(k) = − 1

(−iω)(1− fkR)π

(
U0

k2
0

)2 (
ψR(k)

∫
dp [K(k, p) +G(k, p)]

+ ψL(0)

∫
dp [−K(k, p) +G(k, p)] + ψR(p)

∫
dp [K(k, p)−K(k, p− k)

− 2G(k, p)]
)
− eE

(−iω)T
.

(6.8)

For k = 0, δ(k) is formally divergent. However, we argue that this divergence is artificial
and caused by the assumption of an infinite system. In a finite edge channel this divergence
will be regularized by the system length L. Here, we will assume that L is still the largest
length scale in the problem and therefore the term containing the system length will be
much larger than the other terms in Eq. (6.4). Consequently, the resulting expression for
k = 0 reads

ψ0R = − L

(−iω)(1− fkR)π

(
U0

k2
0

)2 ∫
dpdq((k + p− q)2 − q2)2

× f0
pL(1− f0

qL)(1− f0
p−q,L)(ψ0R + ψpL − ψqL − ψp−q,L)− eE

(−iω)T
.

(6.9)

If we use the symmetry ψkR = −ψ−k,L and scale all momenta k → x = k/T to make the
integrals dimensionless we arrive at the following form for x 6= 0:

ψζ,ξ,R(x)

D
=

ξAζ,−(x)

1− ξAζ,+(x)

ψζ,χ,R(0)

D
+

ξ

1− ξAζ,+(x)

∫
dyMζ(x, y)

ψζ,ξ,R(y)

D

− i

1− ξAζ,+(x)
.

(6.10)

Here we defined the objects

ξ = − 1

π(−iω)

(
U0

k2
0

)2

T 5, D =
eE

ωT
, (6.11)

Gζ(x, y) =
(
(x− y)2 − y2

)2
n(−ζ)(1− n(y − ζ))

1− n(x− y − ζ)

1− n(x− ζ)
, (6.12)

Kζ(x, y) = 2
(
x2 − y2

)2
n(y − ζ)(1− n(−ζ))

1− n(x+ y − ζ)

1− n(x− ζ)
, (6.13)

Mζ(x, y) = Kζ(x, y)−Kζ(x, y − x)− 2Gζ(x, y). (6.14)

Aζ,±(x) =

∫
dy Kζ(x, y)±Gζ(x, y). (6.15)

For x = 0 we obtain the following integral equation governing ψζ(0):

ψζ,χ,R(0) = χ

∫
dydz Hζ(y, z) (ψζ,χ,R(0)−ψζ,χ,R(−y)+ψζ,χ,R(−z)+ψζ,χ,R(z − y))

−iD,
(6.16)
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70 6. DC conductivity of a helical Luttinger liquid

where

χ = − L

π(−iω)

(
U0

k2
0

)2

T 6, (6.17)

Hζ(y, z) =
(
(y − z)2 − z2

)2
n(−y − ζ)

1− n(−z − ζ)

1− n(−ζ)
(1− n(−y + z − ζ)), (6.18)

Hζ =

∫
dydz Hζ(y, z). (6.19)

Now let us proceed with our manipulations. First we solve Eq. (6.16) for ψζ,χ,R(0) to get

ψζ,χ,R(0)

D
=

χ

1− χHζ

∫
dy (Hζ,1(y) +Hζ,2(y) +Hζ,3(y))

ψζ,χ,R(y)

D
− i

1− χHζ
(6.20)

=
χ

1− χHζ

∫
dyH̃ζ(y)ψζ,χ,R(y)− i

1− χHζ
. (6.21)

with

Hζ,1(y) = −
∫

dz Hζ(−y, z), (6.22)

Hζ,2(y) =

∫
dz Hζ(z,−y), (6.23)

Hζ,3(y) =

∫
dz Hζ(z − y, z), (6.24)

H̃ζ(y) = Hζ,1(y) +Hζ,2(y) +Hζ,3(y). (6.25)

Inserting Eq. (6.21) into the integral equation for ψζ,ξ(x), Eq. (6.10), we obtain

ψζ,ξ,χ,R(x)

D
=

ξAζ,−(x)

1− ξAζ,+(x)

χ

1− χHζ

∫
dyH̃ζ(y)

ψζ,ξ,χ,R(y)

D

+
ξ

1− ξAζ,+(x)

∫
dyMζ(x, y)

ψζ,ξ,χ,R(y)

D
− i

1− ξAζ,+(x)

− ξAζ,−(x)

1− ξAζ,+(x)

i

1− χHζ
.

(6.26)

Up to this point all manipulations have been exact and Eq. (6.26) fully determines ψζ,ξ,χ,R(x).
In order to solve this integral equation we first have to find expressions for the functions
defined through various integrals. This task is tackled in Appendix E.1 where we obtain
approximate expressions in different regimes of temperature.

6.2.2. Solution of the integral equation

Unfortunately, the integral equation, Eq. (6.26), cannot be solved exactly. Thus we are
forced to look for suitable approximations. Ultimately, we need to know ψ in order to
calculate the conductivity in Eq. (6.1). There we have to integrate over ψ together with a
function tζ(x) = n(x− ζ)(1− n(x− ζ)) that is strongly peaked around x = ζ. Therefore,
under the assumption that ψ is a smooth function compared to the thermal factor tζ(x) we
only need to compute ψ(x ≈ ζ). Especially, we can approximate Mζ(x, y) ≈ Mζ(ζ, y) in
Eq. (6.26). The resulting integral equation is separable and can be solved exactly. We can
map the problem of solving an integral equation onto the solution of a system of algebraic
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equations by defining

ψζ,ξ,χ,R(x)

D
=

ξAζ,−(x)

1− ξAζ,+(x)

χ

1− χHζ

∫
dy H̃ζ(y)

ψζ,ξ,χ,R(y)

D

+
ξ

1− ξAζ,+(x)

∫
dyMζ(ζ, y)

ψζ,ξ,χ,R(y)

D
− i

1− ξAζ,+(x)

− ξAζ,−(x)

1− ξAζ,+(x)

i

1− χHζ

(6.27)

≡ ξAζ,−(x)

1− ξAζ,+(x)

χ

1− χHζ
C1,ζ,ξ +

ξ

1− ξAζ,+(x)
C2,ζ,ξ −

i

1− ξAζ,+(x)

− ξAζ,−(x)

1− ξAζ,+(x)

i

1− χHζ
.

(6.28)

Here C1 and C2 are given by

C1,ζ,ξ,χ =

∫
dy H̃ζ(y)

ψζ,ξ,χ,R(y)

D
, (6.29)

C2,ζ,ξ,χ =

∫
dyMζ(ζ, y)

ψζ,ξ,χ,R(y)

D
. (6.30)

Inserting Eq. (6.28) into Eq. (6.29) and (6.30) we find the following set of linear equations
determining the Cn

1:

Cn,ζ,ξ,χ = Enm,ζ,ξ,χCm,,ζ,ξ,χ + Fn,ζ,ξ,χ. (6.31)

Here we used the abbreviations

E11,ζ,ξ,χ =

∫
dy H̃ζ(y)

ξAζ,−(y)

1− ξAζ,+(y)

χ

1− χHζ
, (6.32)

E12,ζ,ξ,χ =

∫
dy H̃ζ(y)

ξ

1− ξAζ,+(y)
, (6.33)

E21,ζ,ξ,χ =

∫
dyMζ(ζ, y)

ξAζ,−(y)

1− ξAζ,+(y)

χ

1− χHζ
, (6.34)

E22,ζ,ξ,χ =

∫
dyMζ(ζ, y)

ξ

1− ξAζ,+(y)
, (6.35)

F1,ζ,ξ,χ =− iE11

χ
− i

ξ
E12, (6.36)

F2,ζ,ξ,χ =− iE21

χ
− 1

ξ
E22. (6.37)

Notice that we made a nontrivial assumption in this step. The coefficients C1 and C2

are determined by an integral over the whole real axis, i.e. we need to know ψ(y) for all
y ∈ R to calculate them. Eq. (6.28) however, only determines ψ in the region close to ζ.
Therefore, we assume that the functions H̃ζ(y) and Mζ(ζ, y) are reasonably well peaked
around y = ζ such that contributions away from this point give a parametrically smaller
contribution to the integral in the limit ζ � 1.

Until now we have not made use of the fact that we are interested in the DC conductivity
i.e. the limit ω → 0. In this limit the dimensionless parameters ξ and χ diverge and we
can make further simplifications. Furthermore, we restrict our calculation to the real part
of the conductivity since in the DC limit the conductivity will be a purely real quantity.

1Summation convention over latin indices is implied.
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72 6. DC conductivity of a helical Luttinger liquid

For that reason we define ξ′′ = Im ξ and χ′′ = Imχ. Now the following train of thought
holds:

|ξ′′min
x
Aζ,+(x)| � 1⇒ |ξ′′Aζ,+(x)| � 1⇒ Re

ξ

1− ξAζ,+(x)
≈ − 1

Aζ,+(x)
(6.38)

and analogously for χ and Hζ . Under the conditions

ξ′′ |min
x
Aζ,+(x)| � 1 ∧ χ′′Hζ � 1, (6.39)

we can approximate the expressions in Eq. (6.32)-(6.35) in the same manner as in Eq. (6.38).

Let us add some remarks. The conditions in Eq. (6.39) constrain the validity of our further
calculations to the frequency range

ω−1 �
(
k2

0

U0

)2
1

k5
F

max{eζ , k−1
F L−1} =

(
k2

0

U0

)2
1

k5
F

eζ , (6.40)

as can be readily shown by using the definitions of χ and ζ and the fact that minxAζ,+(x) ≈
Aζ,+(ζ) ∼ ζ5e−ζ and Hζ ∼ ζ6. Here we will assume eζ > k−1

F L−1, since the system length
is the largest length scale in the problem and therefore in particular bigger than the inverse
Fermi momentum. On the other hand, temperature is assumed to be much smaller than
the Fermi energy and therefore ζ � 1. Summarizing, we assume the following hierarchy
of energy scales: kF � T � L−1.

In principle there are two time scales originating from ψ(x 6= 0) and ψ(x = 0), respectively.
In addition to the DC case where ω−1 is bigger than both scales (see Eq. (6.40)) and the
AC limit where it is smaller, there is also an intermediate regime. This however, is not
the focus of our study here and will be left for future work.

We solve the integrals in Eq. (6.32)-(6.35) by estimating the dependance on the parameter
ζ and calculating the proportionality constant numerically. The resulting expressions are
of course not exact but they represent the leading terms in ζ � 1:

E11,ζ,ξ ≈
∫

dy H̃ζ(y)
Aζ,−(y)

Aζ,+(y)

1

Hζ
≈ 2.81, (6.41)

E12,ζ,ξ ≈−
∫

dy H̃ζ(y)
1

Aζ,+(y)
≈ −0.378eζ , (6.42)

E21,ζ,ξ ≈
∫

dyMζ(ζ, y)
Aζ,−(y)

Aζ,+(y)

1

Hζ
≈ 23.14

ζ
e−ζ , (6.43)

E22,ζ,ξ ≈−
∫

dyMζ(ζ, y)
1

Aζ,+(y)
≈ 6.367

ζ
. (6.44)

Having calculated the necessary matrix elements we can solve the system of linear equations
in Eq. (6.31) by simple matrix inversion:

C = EC + F ⇔ C = (1− E)−1F. (6.45)

The result to the leading order in ζ is

C1,ζ,ξ =
26.6 ξ′′ − 2.8 ζ ξ′′ + 0.38eζζχ′′

20.22 ξ′′χ′′ − 1.8 ζξ′′χ′′
≈ −0.21eζ

ξ′′
(6.46)

C2,ζ,ξ =
−23.1e−ζξ′′ + 20.2χ′′

20.2 ξ′′χ′′ − 1.8 ζξ′′χ′′
≈ −11.2

ζξ′′
. (6.47)
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Noting that A±,ζ(x ≈ ζ) ∼ ζ5e−ζ , Hζ ∼ ζ6 and using our results from Eq. (6.46) and
(6.47) we find from Eq. (6.28) that to leading order Reψζ,ξ(x) is given by

Re
ψζ,ξ(x)

D
≈ 1

ξ′′Aζ,+(x)
. (6.48)

Therefore, we get an estimate of the real part of conductivity

Reσ =
−2e

Eh
TD

∫
dxn(x− ζ)(1− n(x− ζ))Re

ψζ,ξ(x)

D
(6.49)

≈−2e

Eh
TD

∫
dxn(x− ζ)(1− n(x− ζ))

1

ξ′′Aζ,+(x)
(6.50)

=
2e2

h
0.254

π

k5
F

(
k2

0

U0

)2

e
kF
T . (6.51)

We notice that the conductivity takes the form Reσ = 2e2/h×τDC
g5,ζ�1, with the scattering

time

τDC
g5,ζ�1 = 0.254

π

k5
F

(
k2

0

U0

)2

e
kF
T (6.52)

By comparing this with the corresponding result in the AC case, Eq. (5.52), we see that
apart from a small discrepancy in the numerical prefactor τDC

g5,ζ�1 = ζτAC
g5,ζ�1. Thus the

time between scattering events is much larger in the DC than in the AC case. We can
understand this phenomenologically by the following argument. For the g5 process to take
place the state at zero momentum has to be empty. In the AC case the external energy ω
is large and can empty the state fast, even at low temperatures. However, in the DC case
the state at k = 0 can only be emptied by thermal fluctuations and therefore the time
between consecutive scattering events is much larger.

Let us now continue by studying the regime in which the temperature is much larger than
the Fermi momentum, i.e ζ � 1. Then we can expand the matrix elements in Eqs. (6.41)-
(6.44) as a power series in ζ. The resulting integrals are calculated numerically using the
exact expressions in Appendix E.1. This procedure yields the results

E11,ζ,ξ ≈
1

Hζ
(258.61 + 153.63ζ2), (6.53)

E12,ζ,ξ ≈− 2.49− 0.17ζ2, (6.54)

E21,ζ,ξ ≈−
12.45ζ2

Hζ
, (6.55)

E22,ζ,ξ ≈ 0.023ζ2, (6.56)

Hζ = 480.7 + 161.3 ζ2 + 12.6 ζ4 +O(ζ6). (6.57)

Proceeding as in the case for ζ � 1 we find the constants

C1,ζ,ξ =

(
−258.6− 178.8ζ2 + 1.3ζ4

)
ξ′′ +

(
1197.6 + 484.6ζ2 + 59.1ζ4 + 2.2ζ6

)
χ′′

(222.1 − 28.4ζ2 + 10.2ζ4 − 0.3ζ6) ξ′′χ′′
, (6.58)

C2,ζ,ξ =

(
5985.1 + 2007.9ζ2 + 156.3ζ4

)
ζ2

(106755 + 22168.6ζ2 + 3127.7ζ4 + 1157.7ζ6 + 82.8ζ8 − 3.6ζ10)χ′′

+

(
−17319.2− 6924.8ζ2 − 962.2ζ4 − 74.8ζ6 − 3.6ζ8

)
ζ2

(106755 + 22168.6ζ2 + 3127.7ζ4 + 1157.7ζ6 + 82.8ζ8 − 3.6ζ10) ξ′′
.

(6.59)
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74 6. DC conductivity of a helical Luttinger liquid

These then specify ψR(x) in Eq. (6.28). Here we will assume TL� 1 such that χ′′ � ξ′′.
In order to calculate the conductivity in Eq. (6.1) we have to evaluate the integral I(ζ) =∫

dxn(x − ζ)(1 − n(x − ζ))ReψR,ζ(x)/D. We can expand this expression in orders of ζ,
yielding

I(ζ) ≈ 0.01 + 0.0007 ζ2. (6.60)

Consequently, the DC conductivity at large temperatures is given by

Reσ ≈−2e

Eh
TD
I(ζ)

ξ′′
=

2e2

h
0.014

π

T 5

(
k2

0

U0

)2

. (6.61)

If we compare this result with the AC limit in Eq. (5.55), we find that the scattering lengths
are almost identical aside from the numerical prefactor which is different by roughly one
magnitude i.e. τ (AC)

g5,ζ�1 ≈ τ
(DC)

g5,ζ�1.

6.3. Inelastic scattering

6.3.1. Derivation of an integral equation for inelastic scattering

We now turn to the inelastic scattering process. Using Eq. (5.4) and the collision integral
calculated in the Appendix D, Eq. (10.109), we get

ψkR =− 2πg2
1Pnimp

(−iω)L3fkR(1− fkR)

∑
k2,k1′ ,k2′

[2(k1 − k2)2C(k1,R)(k2,R),(k1′ ,L)(k2′ ,R)

+ (k1′ − k2′)
2
(
C(k1,R)(k2,L),(k1′ ,R)(k2′ ,R) + C(k1,R)(k2,L),(k1′ ,L)(k2′ ,L)

)
]

− eE

(−iω)T
.

(6.62)

After some formal manipulations we arrive at

ψR(k) = A1

(
B1(k)ψR(k) +

∫
dp dqM1(k, p, q)ψR(p)

)
− eE

(−iω)T
, (6.63)

where

A1 =− g2
1Pnimp

2π2(−iω)
, (6.64)

B1(k) =

∫
dp dq f0

p,R

1− f0
q,L

1− f0
k,R

(1− f0
k+p+q,R)

{
(k − p)2 + (2q + k + p)2

}
, (6.65)

M1(k, p, q) =− 4(k + q)(p+ q)f0
pR

(1− f0
qL)

(1− f0
kR)

(1− f0
k+p+q,R). (6.66)

By making the integrals dimensionless and solving for ψζ,R we get

ψζ,ξ1,R(x)

D
=

ξ1

1− ξ1B1,ζ(x)

∫
dydzM1,ζ(x, y, z)

ψζ,ξ1,R(y)

D
− i

1− ξ1B1,ζ(x)
. (6.67)

In this step we defined:

ξ1 =− nimp

2π2(−iω)
g2

1PT
4, D =

eE

ωT
, (6.68)

M1,ζ(x, y, z) =− 4(x+ z)(y + z)n(y − ζ)
1− n(−z − ζ)

1− n(x− ζ)
(1− n(x+ y + z − ζ)), (6.69)

B1,ζ(x, y, z) =
[
(x− y)2 + (2z + x+ y)2

]
n(y − ζ)

1− n(−z − ζ)

1− n(x− ζ)

× (1− n(x+ y + z − ζ)),

(6.70)

B1,ζ(x) =

∫
dy dz B1,ζ(x, y, z). (6.71)
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6.3. Inelastic scattering 75

Note that the dimensionless factor ζ would drop out of the expressions completely if we
would shift x → x + ζ, y → y + ζ and z → z − ζ. Therefore, our results are not affected
by the ratio of Fermi energy and temperature and ψ will be a function of (x− ζ) only, i.e.
ψζ,ξ1,R(x+ ζ) = ψξ1,R(x) . The calculation of the integrals can be found in Appendix E.2
and yields the approximate expression

B1,ζ(x+ ζ) ≡ B1(x) =x4 + π4 (6.72)

and for the integral kernel

M1(x, y) =

∫
dzM1,ζ(x+ ζ, y + ζ, z) ≈

2∑
n=0

xn
y

sinh(y)
an(y). (6.73)

Here we defined

a0(y) =
2

3
y2 , a1(y) = −8

3
y and a2(y) =

2

3
. (6.74)

In the derivation of Eq. (6.73) we made the assumption that x is close to ζ to simplify the
kernel.

6.3.2. Solution of the integral equation

Using the results Eq. (6.72) and (6.73) in the integral equation Eq. (6.67) and shifting
x→ x+ ζ and y → y + ζ we are left with

ψξ1,R(x)

D
=

ξ1

1− ξ1B1(x)

2∑
n=0

xn
∫

dy
y

sinh(y)
an(y)

ψξ1,R(y)

D

− i

1− ξ1B1(x)
.

(6.75)

The integral equation, Eq. (6.75), is separable and can therefore be solved exactly. Since
we are interested in the DC limit we again only consider the real part of ψ and assume
|ξ′′1 miny B(y)| � 1, such that we can approximate the ξ1 dependance. This assumption
specifies the frequency range in which our result is valid to be ω−1 � 0.022π2/(nimpg

2
1PT

4).
This will be the time scale that determines Drude’s law in the end.

For now we proceed by mapping our problem to a set of linear equations by defining:

Re
ψξ1,R(x)

D
≡ − 1

B1(x)

2∑
n=0

xnC1
n,ξ′′1

+
1

ξ′′1B1(x)
. (6.76)

with2

C1
n,ξ′′1

= E1
n,mC

1
m,ξ′′1

+ F 1
n,ξ′′1

, (6.77)

E1
n,m = −

∫
dy

1

B1(y)

y

sinh(y)
an(y)ym, (6.78)

F 1
n,ξ′′1

= − 1

ξ′′1
E1
n,0. (6.79)

2Summation convention over latin indices is implied.
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Figure 6.1.: Comparison between the analytical (red curve) and numerical (blue curve) results
for the function ψ parametrizing deviations from the equilibrium distribution func-
tion due to inelastic scattering processes. For the plot we choose the dimensionless
parameter as ξ = −1 and x denotes momentum measured in units of temperature.

The integrals specifying E and F can be solved numerically and the resulting system of
linear equations is solved for C as in Eq. (6.45). We obtain the result

Re
ψξ1,R(x)

D
=

1

ξ′′1B1(x)

(
0.946972− 0.0245868x2

)
. (6.80)

The knowledge of ψR(x) now enables us to compute the DC conductivity from Eq. (6.1):

ReσDC =
2e2

h
τ (DC)

1P , (6.81)

where

τ (DC)

1P =κ1
π2

nimpg2
1PT

4
. (6.82)

Here κ1 is a numerical factor. Our analytical calculation yields κ1,an = 1.62× 10−2.

Alternatively, we solve the integral equation in Eq. (6.67) numerically by discretizing the
integral and solving the resulting set of linear equations. For the numerical treatment we
use the exact forms of the involved functions rather than the approximations used for the
analytical analysis. The comparison between both treatments is shown in Fig 6.1. We
see that they agree very well, except that the analytical approximation underestimates
the amplitude of oscillations. However, it was checked that the dependance of ψξ′′1 on the
dimensionless factor ξ′′1 is captured correctly by the analytical result. Therefore, the only
difference to the exact numerical results is a different prefactor. This prefactor can be
extracted from the numerical analysis and we find: κ1,num = 2.3× 10−2.

Lastly, we can compare our results in the DC case with those in the AC case from Sec. 5.6.
We find that the scattering times are the same except for a slight discrepancy in the
numerical prefactor. However, one has to keep in mind that the analytical treatment is
only hand-wavy and does not represent an controllable expansion for x ≈ ζ. The numerical
treatment on the other hand is exact aside from possible numerical errors but the numerical
prefactor is still smaller than in the AC case by roughly a factor of 2.

Having evaluated the high frequency as well as the low frequency asymptotics, we conclude
that the conductivity as a function of frequency is marginally non-Drude.
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6.4. Two particle process 77

6.4. Two particle process

6.4.1. Derivation of an integral equation for the two particle process

Finally, let us discuss the DC limit of the two particle process. Here we proceed analogously
to the single particle case. Using the collision integral from Eq. (10.119) in Eq. (5.4) we
get

ψk1,R =
−2πg2

2P

(−iω)f0
k1,R

(1− f0
k1,R

)

nimp

L3

∑
k2,k1′ ,k2′

(k2′ − k1′)
2(k2 − k1)2

× C(k1,R)(k2,R),(k1′ ,L)(k2′ ,L) −
eE

(−iω)T
.

(6.83)

After some simplifications we arrive at the equation

ψkR =A2B2(k)ψkR +A2

∫
dpdq (M2(k, p, q) + 2M2(k, q,−p))ψpR −

eE

(−iω)T
, (6.84)

with

A2 = − g2
2Pnimp

4π2(−iω)
, (6.85)

M2(k, p, q) = (2q + k + p)2(p− k)2f0
pR

(1− f0
qL)

(1− f0
kR)

(1− f0
k+p+q,R), (6.86)

B2(k) =

∫
dpdqM2(k, p, q). (6.87)

In dimensionless units this yields

ψζ,ξ2,R(x)

D
=

ξ2

1− ξ2B2,ζ(x)

∫
dy dz (M2,ζ(x, y, z) + 2M2,ζ(x, z,−y))

ψζ,ξ2,R(y)

D

− i

1− ξ2B2,ζ(x)
,

(6.88)

where the objects are defined as

ξ2 =− 1

(−iω)

g2
2P

4π2
nimpT

6 , (6.89)

M2,ζ(x, y, z) = (2z + x+ y)2(y − x)2n(y − ζ)
1− n(−z − ζ)

1− n(x− ζ)

× (1− n(x+ y + z − ζ)),

(6.90)

B2,ζ(x) =

∫
dydzM2,ζ(x, y, z). (6.91)

The various integrals are calculated in the Appendix E.3. We obtain the function B2,

B2,ζ(x+ ζ) ≡ B2(x) =
11

90
x6 +

π6

2
, (6.92)

and the kernel ∫
dz (M2,ζ(x+ ζ, y + ζ, z − ζ) + 2M2,ζ(x+ ζ, z − ζ,−y − ζ))

≈ y

sinh(y)

4∑
n=0

bn(y)xn.

(6.93)

Here we defined the coefficient functions

b0(y) =
7

5
y4 , b1(y) = −94

15
y3 , b2(y) =

176

15
y2 , b3(y) = −94

15
y , b4(y) =

7

5
. (6.94)
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78 6. DC conductivity of a helical Luttinger liquid

6.4.2. Solution of the integral equation

First we approximate the expressions in Eq. (6.88) in the DC limit. For |ξ′′2 maxy B2,ζ(y)| >>
1 we get Re{ξ2(1 − ξ2B2(y))−1} ≈ −(B2(y))−1. This specifies the time scale ω−1 �
8.3×10−3π2/(nimpg

2
2PT

6) in which our approximations are valid. We proceed by mapping
the integral equation Eq. (6.88) to an algebraic equation:

Re
ψξ2,R(x)

D
≈ − 1

B2(x)

4∑
n=0

xn
∫

dy
(y)

sin(y)
bn(y)

ψξ2,R(y)

D

+
1

ξ′′2B2(x)

(6.95)

= − 1

B2(x)

4∑
n=0

xnC2
n,ξ′′2

+
1

ξ′′2B2(x)
, (6.96)

Here we defined:

C2
n,ξ′′2

= E2
n,mC

2
m,ξ′′2

+ F 2
n,ξ′′2

, (6.97)

E2
n,m =

∫
dy

1

B2(y)

y

sinh(y)
an(y)ym, (6.98)

F 2
n,ξ′′2

= − 1

ξ′′2
E2
n,0,ξ′′2

. (6.99)

The integrals in E and F can be solved numerically. The resulting system of linear equations
is solved for C and the result is

Re
ψξ2,R(x)

D
= − 1

ξ′′2B2(x)

(
−3.87495− 0.135023x2 + 0.0411497x4

)
. (6.100)

Inserting this into our general formula for conductivity, Eq. (6.1) and calculating the
integral numerically we get

Reσ =κ2
2e2

h

1

ωξ′′2
=

2e2

h
τ (DC)

2P (6.101)

with the scattering time

τ (DC)

2P =κ2
4π2

g2
2PnimpT 6

, (6.102)

κ2,ana =4.9× 10−3. (6.103)

We also solve the integral equation Eq. (6.88) numerically. The comparison with the
analytical results is shown in Fig 6.2. While the overall form of ψ is similar in both
cases the amplitude of oscillations is overestimated by the analytical solution. However,
we checked that the dependance on the dimensionless parameter ξ′′2 , that contains all the
physical quantities, is captured exactly by the analytical solution and the only difference is
in the numerical prefactor, for which we derive a value of κ2,num = 1.06×10−3. Therefore,
the scattering time in the DC case Eq. (6.102) matches the one in the AC case Eq. (5.100),
except for a small numerical error and we again conclude that the overall conductivity will
be slightly non-Drude.
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Figure 6.2.: Comparison between the analytical (red curve) and numerical (blue curve) results for
the function ψ parametrizing deviations from the equilibrium distribution function in
the case of two particle scattering. The parameter ξ is chosen to be ξ = −1.

6.5. Summary and results

Let us summarize. We studied the DC limit for g5, inelastic and two particle processes
by deriving exact integral equations from the kinetic equation formalism and solving them
approximatively in different regimes of temperature. We find that the DC resistivity is
dominated by the contribution due to inelastic scattering processes that yield the corre-
sponding conductivity Eq. (6.81). Furthermore, even in the case of clean systems the DC
conductivity is not infinite as opposed to the case of a conventional LL. Indeed, g5 terms
lead to an exponentially big, but finite DC conductivity in the low energy limit, given
in Eq. (6.51). Given the low frequency results calculated in this chapter and the high
frequency dependance obtained in Ch. 5 we conclude in most cases that the conductivity
behaves slightly different than Drude’s law, Eq. (5.29). This is because of discrepancies
in the numerical prefactors of the scattering time. Moreover the g5 term shows peculiar
behavior at low temperatures due to the special state at zero momentum. This is dis-
cussed in Sec. 6.2.2. The results and the comparison with the AC limit are summarized
in Tab. 6.1.
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7. Luttinger liquid effects

So far we have discussed transport properties of one-dimensional electrons subject to weak
interaction and impurity scattering neglecting LL effects due to the presence of a finite g2

term. We find that the temperature dependance of the conductivity behaves as a power
law with integer powers. However, in a generic one-dimensional LL one would expect
power laws where the exponent depends on the Luttinger parameter K. In this chapter we
include LL effects in our previous treatment by bosonizing the model and obtaining the
scaling dimensions of the different operators in Sec. 7.1. These are then used to calculate
the renormalized coupling constants of the effective model containing only inelastic and
two particle processes in Sec. 7.2.

7.1. Bosonization of the effective Hamiltonian

We start by bosonizing the effective Hamiltonians derived in Sec. 5.5:

Ĥ1P(x = 0) =g1P

[(
−i∂xψ†LψL + iψ†R∂xψR

)
ψ†LψR + h.c

]
, (7.1)

Ĥ2P(x = 0) =g2P

[
ψ†L∂xψ

†
LψR∂xψR + h.c

]
. (7.2)

To bosonize the operators we exploit the fact that they are local. For instance we can
rewrite the first part of Ĥ1P as

−i∂xψ†LψLψ
†
LψR =− i∂x

(
ψ†LψL

)
ψ†LψR (7.3)

=− i (∂xJL)ψ†LψR (7.4)

=
i

4π3/2
∂2
xφLe

−i
√

4π(φL+φR). (7.5)

In the first step we used the fact that a local operator like ψ†L(∂xψL)ψ†LψR vanishes be-

cause of the fermionic anticommutation relations. Next we expressed ψ†LψL as the left
moving current JL whose bosonization relation is known from Eq. (3.51) and we used the
bosonization relations Eq. (3.49) to translate the other operators to the bosonic language.
For the second operator in Ĥ1P we can use analogous reasoning to get

iψ†R∂xψRψ
†
LψR =i∂x

(
ψ†RψR

)
ψ†LψR (7.6)

=− i

4π3/2
∂2
xφRe

−i
√

4π(φL+φR). (7.7)
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82 7. Luttinger liquid effects

If we combine Eq. (7.5) and Eq. (7.7) we obtain the bosonized form of the inelastic scat-
tering term:

Ĥ1P =
g1P

4π3/2

[
−i∂2

x (φR − φL) e−i
√

4π(φL+φR) + h.c.
]

(7.8)

=
g1P

4π3/2

[
−i∂2

xθe
−i
√

4πϕ + h.c.
]
. (7.9)

For the two particle scattering term we have to treat operators like (ψLψL)(x = 0). Let
us define ε̄ = z̄′ − z̄ and the corresponding relations for the derivatives, ∂z̄ = −∂ε̄ and
∂z̄′ = ∂ε̄, where the imaginary variable z was introduced in Eq. (3.3). With this notation
the product of vertex operators defined in Eq. (3.28) yields

ψL(z̄)ψL(z̄′) =
1

2π
e−i
√

4πφL(z̄)e−i
√

4πφL(z̄′) (7.10)

=
ε̄

2π
e−i
√

4π(φL(z̄)+φL(z̄′)). (7.11)

Consequently, the following relations hold:

∂z̄ψL(z̄)ψL(z̄′) =(−1− iε̄
√

4π∂z̄φL(z̄))
1

2π
e−i
√

4π(φL(z̄)+φL(z̄′)), (7.12)

∂z̄′ψ
†
L(z̄)ψ†L(z̄′) =(1− iε̄

√
4π∂z̄′φL(z̄′))

1

2π
e−i
√

4π(φL(z̄)+φL(z̄′)). (7.13)

Therefore, we can calculate the local operator ψLψL by employing the trick

2(∂z̄ψL)ψL = lim
z̄→z̄′

[
∂z̄ψL(z̄)ψL(z̄′)− ψL(z̄)∂z̄′ψL(z̄′)

]
(7.14)

=− 1

π
e−i4

√
πφL . (7.15)

Back in space-time coordinates we obtain

∂xψLψL =
i

π
e−i4

√
πφL . (7.16)

For the corresponding term with right movers we proceed analogously to derive

2(∂ψR)ψR = i(∂xψR)ψR = lim
z→z′

[
∂ψR(z)ψR(z′))− ψR(z)∂ψR(z′))

]
(7.17)

=− 1

π
e−i
√

4π2φR , (7.18)

which yields the result

∂xψRψR =− i

π
e−i
√

4π2φR . (7.19)

Summarizing, the bosonized form of Ĥ2P is

Ĥ2P =g2P

[
ψ†L∂xψ

†
LψR∂xψR + h.c

]
(7.20)

=
1

π2
g2P

[
e−i2

√
4π(φR+φL) + h.c.

]
(7.21)

=
1

π2
g2P

[
e−i2

√
4πϕ + h.c.

]
. (7.22)
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Process Fermionic Bosonized ∆

Inelastic g1P

[(
−i∂xψ†LψL + iψ†R∂xψR

)
ψ†LψR + h.c

]
g1P

4π3/2

[
−i∂2xθe−i

√
4πϕ + h.c.

]
K+2

Two particle g2P

[
ψ†L∂xψ

†
LψR∂xψR + h.c

]
1
π2 g2P

[
e−i2

√
4πϕ + h.c.

]
4K

Table 7.1.: Scattering terms and their scaling dimensions.

7.2. Analysis of the scaling behavior

The complete model now consists of Ĥ = Ĥ0 +Ĥ2 +Ĥ1P +Ĥ2P. As we argued in Sec. 3.5.1
the free Hamiltonian Ĥ0 can be brought back into canonical form after bosonization by
scaling the fields as ϕ→

√
Kϕ and θ → 1/

√
Kθ. We use the rescaled operators, the scaling

dimensions of vertex operators Eq. (3.31) and the fact that a derivative raises the scaling
dimension by one to obtain the scaling dimension of Ĥ1P and Ĥ2P from the Eqs. (7.7) and
(7.22):

∆1P = K + 2, ∆2P = 4K. (7.23)

The different operators and their scaling dimensions are summarized in Tab. 7.1. In
Sec. 3.1.3 we showed that the coupling constant of a conformal operator scales under the
RG as

g′(b) = gb1−∆. (7.24)

Note that we are dealing with local operators, which do not contain any spatial integration.
Consequently, Eq. (7.24) differs from Eq. (3.15) by a factor of b. Here the factor b denotes
the ratio of momentum space cutoffs before and after the RG procedure: b = Λ/Λeff. In
our model of helical fermions, the original momentum cutoff is given by Λ = k0.1 The
RG has to be stopped at an effective cutoff Λeff given by the largest energy scale in the
problem.

In our case we have a competition between the temperature T, the inverse transport
scattering time τ−1 and the frequency ω. Because we assume weak disorder, the condition
Tτ � 1 always holds. Consequently, we can have the following two hierarchies of energy
scales in the AC limit: (i) T � ω � τ−1 and (ii) ω � T � τ−1. Furthermore, in the DC
limit the frequency vanishes and we are left with the condition (iii) T � τ−1 � ω.

In the cases (i) and (iii) the effective cutoff is given by the temperature, Λeff = T and we
obtain b = k0T

−1. Therefore, the RG equation Eq. (7.24) becomes

g(T ) = g(0)
(
Tk−1

0

)∆−1
. (7.25)

On the other hand, in the regime (ii) the RG is stopped by frequency and we have

g(ω) = g(0)
(
ωk−1

0

)∆−1
. (7.26)

Using these RG equation and the scaling dimensions Eq. (7.23), we can include Luttinger
liquid effects into our previous calculations through the renormalized coupling constants.
We have to be careful however for there is one further sublety. The structure of the kinetic
equation already incorporates the engineering dimension of the respective operator. For
example the scattering time due to the inelastic processes is proportional to (T/k0)−4 =
(T/k0)−2(∆1P,K=1−1).

1This is true for a generic HLL. If the HLL describes the edge states of a 2D TI, the cutoff of the theory
is given by the bulk gap.
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84 7. Luttinger liquid effects

Consequently, we have to split the scaling dimension of an operator into the engineering
dimension (given by the value at K=1) and the rest, the anomalous dimension. We obtain

∆1P,e =3, ∆1P,an = K − 1, (7.27)

∆2P,e =4, ∆2P,an = 4K − 4. (7.28)

While the engineering dimension always scales with temperature, the anomalous dimen-
sion scales with the highest energy scale of the problem. In the regimes (i) and (iii) the
highest energy scale is given by the temperature while in the regime (ii) we have Λeff = ω.
The kinetic equation already contains the part of the coupling constant that scales as(
Tk−1

0

)∆e−1
. Therefore Luttinger liquid effects arise only from the anomalous part that

scales as
(
Λeffk

−1
0

)∆an
. Because of the fact that the inverse scattering time depends on

the square of the coupling constant, i.e. τ ∼ g−2, we obtain altered power laws for the
temperature dependance due to the anomalous scaling dimensions

τ1P ∼
(

Λeff

k0

)−2K+2

, τ2P ∼
(

Λeff

k0

)−8K+8

. (7.29)

Let us summarize. If we include the renormalized coupling constants, the expressions for
the scattering time listed in Tab. 6.1 gain non-universal power laws, where the exponent
depends on the Luttinger liquid constant K. This in turn affects the conductivity in the
AC and DC limit. For completeness we state the explicit form of the conductivity in the
considered regimes:

• (i) AC limit, where T � ω � τ−1

σ(AC)

1P =
2e2

(−iω)h
− 103.902

32

π4

e2

(−iω)2h
nimpk

2
F (V0U0)2

(
T

k0

)2K+2

, (7.30)

σ(AC)

2P =
2e2

(−iω)h
− 1757.97

64

π4
nimp

2e2

h(−iω)2
k4
F (U0V0)2

(
T

k0

)8K−2

. (7.31)

• (ii) AC limit, where ω � T � τ−1

σ(AC)

1P =
2e2

(−iω)h
− 103.902

32

π4

e2

(−iω)2h
nimpk

2
F (V0U0)2

(
T

k0

)4( ω
k0

)2K−2

, (7.32)

σ(AC)

2P =
2e2

(−iω)h
− 1757.97

64

π4
nimp

2e2

h(−iω)2
k4
F (U0V0)2

(
T

k0

)6( ω
k0

)8K−8

. (7.33)

• (iii) DC limit, T � τ−1 � ω

σ(DC)

1P =2.3× 10−2 π4

nimp

1

4k2
FU

2
0V

2
0

(
T

k0

)−2K−2

, (7.34)

σ(DC)

2P =4.23× 10−3 π4

nimp

1

64k4
FU

2
0V

2
0

(
T

k0

)−8K+2

. (7.35)

While the unusual frequency dependance in regime (ii) is most interesting a physical in-
terpretation of the result was not within the scope of this thesis.
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7.2. Analysis of the scaling behavior 85

1/4 2/3

two particle
   relevant

two particle
  dominant
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K

Figure 7.1.: Parameter ranges of the LL parameter in which certain scattering mechanism are
dominant.

Apart from the renormalization of the power laws determining conductivity we can also
use the scaling dimensions Eq. (7.23) to make general statements about the respective
relevance of the two operators. Applying our results from Sec. 3.1.3 to the case of local
operators we can argue that an operator with scaling dimension ∆ is relevant if ∆ < 1 and
irrelevant if ∆ > 1. Consequently, the single particle process is always irrelevant while the
two particle process is irrelevant for K > 1/4 and becomes relevant for K < 1/4. For the
parameter regime K > 2/3 the inelastic scattering process provides the primary scattering
mechanism. However, for K < 2/3 the two particle process becomes dominant. This is
in agreement with our treatment of weakly interacting electrons in Sec. 5.6. There we
find that the inelastic process leads to conductivity corrections scaling as T 4 in the low
temperature limit. They are therefore more relevant than the corresponding corrections
due to two particle scattering that go as T 6. The parameter ranges of the LL parameter
K for the importance of different scattering mechanism are depicted in Fig. 7.1.
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8. Summary and Conclusion

The goal of this work was to study transport in the edge channels of two dimensional topo-
logical insulators under the combined effect of disorder and interactions. To accomplish
this, we first derived a microscopic model describing one-dimensional helical fermions in
Sec. 2.2.4. There we considered one-dimensional electrons subject to interactions in the
density-density channel and a local, nonmagnetic impurity. Furthermore, due to the pres-
ence of spin-orbit coupling the Sz symmetry of the electrons is broken. To characterize
transport properties we calculated the conductivity of helical fermions in the high frequency
and low frequency case. This was done using a kinetic equation approach in an infinite
wire geometry and for different regimes of temperature. Finally, including Luttinger liquid
effects we find altered power laws of the temperature dependance of conductivity.

AC conductivity

In Ch. 5 we calculated the AC conductivity of an infinite wire of helical fermions. At
first we neglected Luttinger liquid effects which enabled us to use a kinetic equation to de-
scribe electronic quasiparticles. Scattering terms were included using a generalized Fermi’s
golden rule. We did perturbation theory in (i) the T-matrix, valid for weak disorder and
interaction strength, and (ii) high frequencies.

Without any scattering mechanism the conductivity is given by: σ(0) = 2e2/h(−iω), i.e.
the conductance is perfectly quantized. In a clean system there are corrections to this
result due to g5 interaction processes that scale as T 5 at high temperatures (Eq. 5.54)
and are exponentially suppressed, as can be shown using phase space arguments, at low
temperatures (Eq. 5.51). As expected impurity scattering alone does not influence con-
ductivity because of the topological protection. In the second order of the T-matrix the
leading contribution in the low temperature regime originates from combined effects of
disorder and interactions and gives rise to corrections scaling as T 4. Our results can be
mapped to a short wire, with length Leff by the formal substitution (−iω) → L−1

eff . This
enables us to make predictions about the conductance of such systems as well. We find
that the results of our perturbation theory are in agreement with Ref. [11].

Complementary, we derived an effective Hamiltonian incorporating combined effects of
disorder and impurity scattering using an operator product expansion. The obtained
terms describe the most relevant scattering mechanism in the low energy regime and agree
with the terms considered in Ref. [12]. Corrections to conductivity were derived using the
same kinetic equation formalism as before and we find that the leading order correction
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88 8. Summary and Conclusion

comes from inelastic scattering processes and goes as T 4:

σ
(1)
AC = −103.902

32

π4

e2

(−iω)2h
nimp

(
kFV0U0

k2
0

)2

T 4. (8.1)

Although this approach yields the same power law in temperature as the perturbative one,
we find corrections that are lower order in impurity strength and momentum cutoff k0

compared to the perturbation theory. This is not yet understood and has to be studied in
future work.

DC conductivity

Ch. 6 was devoted to the study of transport in the low frequency limit. We studied the
DC limit for g5, inelastic and two particle processes by deriving exact integral equations
from the kinetic equation formalism and solving them approximatively in different regimes
of temperature. The combination of this analytical treatment and numerics allows us to
calculate the exact DC conductivity for the most relevant cases. We find that the resistivity
is dominated by the contribution due to inelastic scattering processes. The corresponding
DC conductivity is given by:

σDC =
2e2

h
2.3× 10−2 π4

4k2
Fnimp

(
k2

0

U0V0

)2

T−4. (8.2)

Furthermore, even in the case of clean systems the DC conductivity is not infinite as
opposed to the case of a conventional Luttinger liquid. Indeed, g5 terms lead to an expo-
nentially big, but finite DC conductivity in the low temperature limit, given in Eq. (6.51).

Finally, comparing the low frequency results and the high frequency dependance we find
slight discrepancies in the numerical prefactors of the scattering time. Therefore we con-
clude that in most cases the conductivity behaves marginally different than expected from
Drude’s law, Eq. (5.29). Moreover, the g5 term shows peculiar behavior at low temper-
atures due to the special state at zero momentum. This is discussed in Sec. 6.2.2. All
results and the comparison between the AC and DC limit are depicted in Tab. 6.1.

Luttinger liquid effects

Lastly, in Ch. 7.1 we bosonized the effective model and used scaling arguments to show
that Luttinger liquid effects will renormalize the power laws governing the temperature
dependance of conductivity. For weak impurity strength, Tτ � 1 we discuss three different
hierarchies of energy scales and the respective results for conductivity. For the most
relevant case we find:

• (i) AC limit, where T � ω � τ−1

σ(AC)

1P =
2e2

(−iω)h
− 103.902

32

π4

e2

(−iω)2h
nimpk

2
F (V0U0)2

(
T

k0

)2K+2

. (8.3)

• (ii) AC limit, where ω � T � τ−1

σ(AC)

1P =
2e2

(−iω)h
− 103.902

32

π4

e2

(−iω)2h
nimpk

2
F (V0U0)2

(
T

k0

)4( ω
k0

)2K−2

. (8.4)

• (iii) DC limit, T � τ−1 � ω

σ(DC)

1P =2.3× 10−2 π4

nimp

1

4k2
FU

2
0V

2
0

(
T

k0

)−2K−2

. (8.5)
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Here K is the Luttinger liquid parameter. Additionally, we classify parameter regimes of
K where scattering processes may become relevant.

Outlook

The current experimental situation (see Ref. [6]) suggests that the conductance of a long
wire is smaller than that of a short wire by roughly one magnitude. Furthermore, there
is no evidence of a temperature dependant conductance. This is in clear contrast to the
developed theory. All scattering mechanisms clearly give temperature dependant results
for transport properties. The one exception to this is the g5 interaction which was shown to
be temperature independant in some regime of system length (see Sec. 6.2). This regime
has to be studied in more detail. In particular it might become important to include
boundary conditions allowing for a large but finite system length. Another possibility is
that weak localisation corrections lead to the increase in resistance.

The theory developed in Refs. [43, 44, 45] gives a fairly complete overall picture of localiza-
tion effects in usual one-dimensional systems. At high temperatures, interaction-induced
dephasing is strong, and one may consider the limit when the dephasing time τφ is much
less than the transport scattering time τtr. In this limit one nevertheless finds a negative
weak-localization correction to conductance due to constructive interference of coherent
electron paths. In order to be coherent, these paths originate from impurity configurations
which are anomolously close together - the low probability of such configurations being
reflected in the parametrically small prefactor (τφ/τtr)

2 in front of the weak localization
correction. The formalism for treating this limit is based on a perturbative treatment of
disorder within a functional bosonization approach – this method is very general and has
been recently extended to two-leg ladders [46].

The difference between this case and the HLL is that there is no elastic scattering off
disorder in the HLL - which means that at least phenomenologically, the disorder scattering
itself contributes to the dephasing time. The insight we have gained from our kinetic
equation approach may be used as input to adapt the functional bosonization approach,
where we fully expect that the weak-localization correction will still be present, but with a
modified prefactor. Going beyond this weak-localization regime, the question then remains:
can the limit of τφ/τtr ∼ 1 ever be reached in such a system? In the usual model of
quantum wires, the two parameters could be controlled independently: τtr is a function of
disorder strength, while τφ depends on the strength of interactions; and both also depend
on temperature. On the other hand, in the present case of no elastic scattering and only
inelastic scattering off the impurities, then τtr acquires a crucial dependence on the strength
of interactions, while τφ presumably is affected by disorder. When these dependencies are
better understood, one would be in a position to answer the question on whether a strong
localization regime (which occurs when τφ/τtr & 1) may ever be reached in this system.
In other words, one would be able to explore whether the topological protection from
localization necessarily persists in the presence of interaction, or else, it may be broken.

All in all, the study of topological insulators remains an exciting research field of contem-
porary condensed matter theory, which continues to pose many interesting challenges to
theorists.
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9. Deutsche Zusammenfassung

9.1. Motivation

Topologie, Unordnung und starke Korrelationen in niedrigdimensionalen Systemen sind
paradigmatische Konzepte in der modernen Theorie kondensierter Materie. Materialien
in welchen die Kombination dieser Elemente eine herausragende Rolle spielt, sind zwei-
dimensionale Z2 topologische Isolatoren [1, 2, 3, 4, 5]. Z2 topologische Isolatoren sind
neuartige Zustände von Quantenmaterie, die nicht kontinuierlich mit gewöhnlichen Isola-
toren und Halbleitern in Verbindung gebracht werden können. Charakteristisch für die-
se Klasse von Materialien ist eine isolierende Bandlücke im Kristallinneren und leitende
Rand- oder Oberflächenzustände. Diese Randzustände unterscheiden sich fundamental von
bekannten eindimensionalen Quantenflüssigkeiten, die durch die Theorie der Luttingerflüs-
sigkeit beschrieben werden. Durch die Kombination von Zeitumkehrinvarianz und starker
Spin-Bahn-Kopplung sind die Randzustände topologisch vor Streuung durch Unordnung
geschützt und besitzen überdies die ungewöhnliche Eigenschaft, dass Spin und Impuls der
Quasiteilchen der Flüssigkeit gekoppelt sind. Aufgrund dieser wohldefinierten Projektion
des Spins auf die Impulsrichtung bezeichnet man die eindimensionalen Randzustände als

”
helikale Luttinger Flüssigkeit“.

In solchen Systemen (zuerst in HgTe/CdTe Heterostrukturen experimentell nachgewiesen
[5]) wurden zwei unterschiedliche isolierende Phasen gefunden, die beide eine isolierende
Bandlücke im Kristallinneren besitzen, sich aber in den Eigenschaften der Randzustände
unterscheiden. Während die gewöhnliche, isolierende Phase keine Randzustände besitzt,
ist der topologisch nichttriviale Isolator durch die Existenz von paarweise zeitumgekehr-
ten, delokalisierten Randzuständen charakterisiert, welche die Bandlücke überbrücken. Ei-
ne solche Konfiguration weist den Quanten-Spin-Hall-Effekt (QSHE) auf, der theoretisch
für ein Modellsystem von Graphen mit Spin-Bahn-Kopplung vorhergesagt wurde [3]. Der
Phasenübergang zwischen den beiden Isolatorphasen geschieht durch Invertieren der Band-
lücke [4].

Transporteigenschaften von HgTe/CdTe Strukturen in der topologisch nichttrivialen Phase
wurden in Ref. [5] untersucht. Die Autoren fanden, dass das System einen Phasenübergang
zum topologischen Isolator vollzieht, sobald die Breite der HgTe Schicht einen kritischen
Wert überschreitet. In diesem Regime wurde ein Leitwert von nahezu dem Leitwertquant
2e2/h gemessen, was für ballistischen Transport in QSH Zuständen zu erwarten ist. Je-
doch wurden auch merkliche Abweichungen von diesem Wert für zunehmende Systemgrö-
ßen festgestellt. So berichten aktuelle Experimente [6] von Transportmessungen über sehr
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92 9. Deutsche Zusammenfassung

lange Distanzen (von der Ordnung 1mm) bei denen der Leitwert um eine Größenordnung
von dem zu erwarteten Leitwertquant abweicht. Mögliche Ursachen für dieses Verhalten,
Zweiteilchen-Streuprozesse oder Kondo-Verunreinigungen, wurden in Ref. [7, 8, 9, 10] dis-
kutiert. Zudem wurden kürzlich die Auswirkungen von inelastischen Streuprozessen auf
das Transportverhalten untersucht [11, 12]. Alle Veröffentlichungen beschränken sich je-
doch auf die Erforschung kleiner Systemlängen, wohingegen makroskopische Proben noch
nicht theoretisch untersucht wurden.

Neben zweidimensionalen topologischen Isolatoren wurde auch die Existenz dreidimensio-
naler Z2 topologischer Isolatoren experimentell nachgewiesen, z.B. bei der Untersuchung
von Bi1−xSbx Kristallen in Ref. [13]. In diesem Fall führt die Oberfläche zur Existenz eines
2D topologisch geschützten Metalls. Ähnlich zum 2D Fall führt die Inversion der 3D Band-
lücke zur Entstehung einer ungeraden Anzahl zweidimensionaler Oberflächenmoden [14].
Zahlreiche experimentelle Gruppen untersuchen zur Zeit die Transporteigenschaften dieser
Oberflächenzustände.

Auch Supraleiter können topologischen Charakter besitzen. In diesem Fall hat der Stoff
eine supraleitende Bandlücke im Kristallinneren, besitzt aber leitende Quasiteilchen an
der Oberfläche. Betrachtet man Spin-Triplet-Supraleiter so haben diese Quasiteilchen den
Charakter von Majorana-Fermionen [15]. Da derartige Systeme zum Aufbau topologischer
Quantenrechner dienen könnten, erhalten sie im Moment große Aufmerksamkeit.

In dieser Diplomarbeit untersuchen wir den kombinierten Einfluss von Störstellen und
Wechselwirkung auf makroskopische Proben zweidimensionaler, topologischer Isolatoren.
Abgesehen von der Bedeutung für die Grundlagenforschung ist die systematische Unter-
suchung dieser Effekte auch von großem Interesse für potenzielle technologische Anwen-
dungen wie z.B. im Bereich der Spintronik. Um die Effekte von Unordnung und Wech-
selwirkung zu beschreiben stellen wir zunächst ein mikroskopisches Modell für helikale
Fermionen unter dem Einfluss von schwacher Unordnung und Wechselwirkung sowie mit
gebrochener Sz Symmetrie auf. Daraufhin berechnen wir die Gleichstrom- und Wechsel-
stromleitfähigkeit in verschiedenen Temperaturbereichen durch Lösung der quasiklassi-
schen Boltzmann-Gleichung. Dies ermöglicht es uns Aussagen über die Robustheit des to-
pologischen Schutzes zu treffen und die relevantesten Streumechanismen zu identifizieren.
Schließlich binden wir Luttinger-Flüssigkeitseffekte mit ein, die das algebraische Verhalten
der Temperaturabhängigkeit der Leitfähigkeit verändern.

9.2. Aufbau der Diplomarbeit

Diese Diplomarbeit ist wie folgt strukturiert. Im ersten Teil, Kap. 2-4, werden die Grund-
lagen für die weitere Arbeit geschaffen.

Kap. 2 beschäftigt sich mit topologischen Isolatoren. Zunächst geben wir einen Überblick
über die Rolle der Topologie in der Theorie kondensierter Materie. Anschließend bespre-
chen wir Z2 topologische Isolatoren und ihre experimentelle Realisierung. Insbesondere
zeigen wir, dass die leitenden Zustände, die an den Rändern des Isolators entstehen, durch
eindimensionale helikale Fermionen beschrieben werden können.

Dies stellt die Motivation dar um uns in Kap. 3 mit den Grundlagen eindimensionaler
Quantenphysik vertraut zu machen. In diesem Kapitel besprechen wir die Effekte von
Wechselwirkung und Unordnung in niedrigdimensionalen Systemen. Zudem werden wich-
tige Modelle und theoretische Werkzeuge zur Beschreibung eindimensionaler Physik dis-
kutiert.

Schließlich stellen wir in Kap. 4 den Keldysh Formalismus vor, der in der Lage ist Systeme
im Nicht-Gleichgewicht zu beschreiben. Zunächst leiten wir die Boltzmann-Gleichung aus
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der übergeordneten Theorie her um sie dann auf helikale Fermionen anzuwenden. Die
Ergebnisse bilden die Grundlage für die Berechnung von Transporteigenschaften helikaler
Fermionen, die im Hauptteil durchgeführt wird.

Das Ziel dieser Diplomarbeit ist die Untersuchung von Transporteigenschaften helikaler
Randzustände unter dem Einfluss von Unordnung und Wechselwirkung. Diese Zielsetzung
wird in drei Schritten erreicht. Zunächst berechnen wir die Leitfähigkeit für hohe Frequen-
zen durch Lösen der quasiklassischen Boltzmanngleichung in Kap. 5. Zudem nutzen wir
Methoden der konformen Feldtheorie um einen effektiven Hamiltonoperator herzuleiten,
der die wichtigsten Streumechanismen beinhaltet. Dies erlaubt uns die Ergebnisse beider
Ansätze zu vergleichen. In Kap. 6 nutzen wir sowohl exakte analytische Umformungen als
auch numerische Berechnungen um die Integro-Differenzialgleichungen zu lösen, die aus
der Boltzmann-Gleichung herleitet werden. Dies erlaubt es uns Aussagen über die Leit-
fähigkeit der Randzustände bei niedrigen Frequenzen zu machen. Schließlich nutzen wir
in Kap. 7 die Methode der Bosonisierung sowie der Renormierungsgruppe um Luttinger-
Flüssigkeitseffekte mit einzubinden.

9.3. Ergebnisse

In Kap. 5 berechneten wir die Leitfähigkeit von helikalen Fermionen in einem unend-
lich ausgedehnten Quantendraht bei hohen Frequenzen. Zunächst vernachlässigten wir
Luttinger-Flüssigkeitseffekte, was uns in die Lage versetzte die Elektronen durch eine qua-
siklassische Boltzmann-Gleichung zu beschreiben. Streuterme wurden mit Fermis goldener
Regel mit einbezogen. Wir führten eine perturbative Entwicklung sowohl in hohen Fre-
quenzen als auch in Ordnungen der T-Matrix durch. Dies ist erlaubt unter der Annahme
von schwacher Elektron-Elektron-Wechselwirkung und schwacher Störstellenstreuung.

In Abwesenheit jeglicher Streumechanismen ist die Leitfähigkeit: σ(0) = 2e2/h(−iω), d.h.
der entsprechende Leitwert ist exakt quantisiert. In reinen Systemen gibt es Korrekturen
zur Leitfähigkeit aufgrund von g5 Wechselwirkungsprozessen. Diese führen zu einer Tempe-
raturabhängigkeit von T 5 bei hohen Temperaturen (Gl. 5.54), sind jedoch thermisch ange-
regt bei niedrigen Temperaturen (Gl. 5.51). Dies ist durch einfache Phasenraumargumente
verständlich und wird in Kap. 5.2 diskutiert. Wie erwartet beeinflusst Störstellenstreu-
ung die Transporteigenschaften aufgrund des topologischen Schutzes nicht. Die führen-
den Korrekturen in zweiter Ordnung der T-Matrix stammen von kombinierten Prozessen
von Wechselwirkung und Störstellenstreuung. Die Temperaturabhängigkeit aufgrund die-
ser Prozesse ist T 4. Die Ergebnisse können mit denen für kurze Quantendrähte verglichen
werden, indem wir die formale Substitution (−iω)→ L−1

eff durchführen. Dies erlaubt es uns
die Leitfähigkeit bei hohen Frequenzen in einem langen Draht mit dem Gleichstromleit-
wert eines kurzen Drahtes zu vergleichen. Wir stellen fest das unsere Resultate mit denen
früherer Veröffentlichungen [11] übereinstimmen.

Komplementär hierzu nutzten wir eine
”
operator product expansion“ um einen effekti-

ven Hamiltonoperator herzuleiten, welcher die kombinierten Streuprozesse aus Störstel-
lenstreuung und Wechselwirkung beinhaltet. Die erhaltenen Terme stimmen mit denen
aus Ref. [12] überein. Nun berechneten wir die führenden Korrekturen zur Leitfähigkeit
mit demselben quasiklassischen Formalismus wie zuvor. Wir kommen zu dem Ergebniss,
dass bei niedrigen Temperaturen inelastische Streuprozesse am relevantesten sind und zu
Korrekturen proportional T 4 führen:

σ
(1)
AC = −103.902

32

π4

e2

(−iω)2h
nimp

(
kFV0U0

k2
0

)2

T 4. (9.1)
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Obwohl dieses Vorgehen auf die gleiche Temperaturabhängigkeit der Leitfähigkeit führt,
finden wir eine unterschiedliche Abhängigkeit von der Störstellenstärke U0 und dem Grenz-
impuls k0. Diese Abhängigkeit ist nicht verstanden und muss noch weiter untersucht wer-
den.

Kap. 6 beschäftigte sich mit dem Transportverhalten bei niedrigen Frequenzen. Wir unter-
suchten die Effekte von g5-, inelastischen- und Zweiteilchen-Streuprozessen in unterschied-
lichen Temperaturbereichen. Die Kombination von analytischen Manipulationen und nu-
merischen Berechnungen erlaubte es uns die Leitfähigkeit für die relevantesten Prozesse
exakt zu bestimmen. Wiederum stellen sich inelastische Prozesse als primärer Streume-
chanismus heraus und wir finden die Leitfähigkeit:

σDC =
2e2

h
2.3× 10−2 π4

4k2
Fnimp

(
k2

0

U0V0

)2

T−4. (9.2)

Zudem zeigen wir, dass selbst in reinen Proben die Gleichstromleitfähigkeit nicht unendlich
groß ist, da g5 Prozesse zu einer exponentiell hohen aber endlichen Leitfähigkeit führen
(siehe Gl. (6.51).

Schließlich sind wir in der Lage Gleich-und Wechselstromleitfähigkeiten zu vergleichen. Wir
kommen zu dem Ergebniss, dass die Leitfähigkeit aufgrund unterschiedlicher numerischer
Vorfaktoren in den meisten Fällen leicht von dem Drude Gesetz, Gl. (5.29), abweicht. g5

Prozesse zeigen ein besonders interresantes Verhalten bei tiefen Temperaturen aufgrund
des speziellen Zustands bei Impuls Null. Dies wird näher in Kap. 6.2.2 erläutert. Alle
Ergebnisse und der Vergleich zwischen Gleich-und Wechselstromleitfähigkeit können der
Tablle 6.1 entnommen werden.

In Kap. 7.1 bosonisieren wir das effektive Modell und führen einen Renormierungsgrup-
penschritt durch um die renormierten Kopplungskonstanten der Theorie zu erhalten. Diese
verändern die Potenz der Temperaturabhängigkeit der Leitfähigkeit. Wir beschränken uns
auf schwache Störstellenstreung, Tτ � 1 und identifizieren drei unterschiedliche Regime
für Transporteigenschaften. Für den inelastischen Streuprozess finden wir folgende Ergeb-
nisse in den unterschiedlichen Bereichen:

• (i) Hohe Frequenzen im Bereich T � ω � τ−1

σ(AC)

1P =
2e2

(−iω)h
− 103.902

32

π4

e2

(−iω)2h
nimpk

2
F (V0U0)2

(
T

k0

)2K+2

. (9.3)

• (ii) Hohe Frequenzen im Bereich ω � T � τ−1

σ(AC)

1P =
2e2

(−iω)h
− 103.902

32

π4

e2

(−iω)2h
nimpk

2
F (V0U0)2

(
T

k0

)4( ω
k0

)2K−2

. (9.4)

• (iii) Niedrige Frequenzen im Bereich T � τ−1 � ω

σ(DC)

1P =2.3× 10−2 π4

nimp

1

4k2
FU

2
0V

2
0

(
T

k0

)−2K−2

. (9.5)

Dabei ist K der Luttingerflüssigkeitsparameter. Schließlich sind wir in der Lage Parame-
terregime zu identifizieren in denen Streuprozesse relevant (im Sinne der Renormierungs-
gruppe) werden könnten.
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Die derzeitige experimentelle Situation (siehe Ref. [6]) legt nahe, dass der Leitwert für
lange Proben um eine Größenordnung kleiner ist als für kurze. Zudem gibt es keine An-
zeichen von Temperaturabhängigkeit der Leitfähigkeit. Dies ist in klarem Widerspruch zu
der entwickelten Theorie. Alle Streumechanismen führen zu deutlichen Temperaturabhän-
gigkeiten für Transporteigenschaften. Die einzige Ausnahme sind g5 Wechselwirkungen,
welche in gewissen Bereichen der Systemlänge temperaturunabhängig sind. Dieses Regime
muss genauer untersucht werden. Insbesondere könnte es sich als entscheidend erweisen
realistische Randbedingungen anzunehmen um einen makroskopisch langen, aber endli-
chen, Quantendraht zu simulieren. Ein anderer Ansatz ist die Untersuchung von schwachen
Lokalisierungseffekten.

In gewöhnlichen eindimensionalen Systemen wird Lokalisierung nahezu vollständig durch
die Theorie, die in Ref. [43, 44, 45] entwickelt wurde, beschrieben. Im Regime hoher Tem-
peraturen ist die wechselwirkungsinduzierte Dephasierung groß. Betrachtet man jedoch
die Situation, dass die Dephasierungsdauer τφ viel kleiner als die Transportstreuzeit τtr

ist, so findet man nichtsdestotrotz eine negative Korrektur zum Leitwert durch schwa-
che Lokalisierung. Verantwortlich dafür sind konstruktive Interferenzeffekte kohärenter
Elektronenpfade. Um kohärent zu sein, müssen diese Pfade von Störstellenkonfigurationen
stammen, die anomal nahe beieinander liegen. Die geringe Wahrscheinlichkeit derartiger
Konfigurationen spiegelt sich im parametrisch kleinen Vorfaktor (τφ/τtr)

2 der schwachen
Lokalisierungskorrektur wieder. Der verwendete Formalismus zur Beschreibung der Pro-
blemstellung basiert auf einer perturbativen Behandlung von Störstellen im Rahmen der
funktionalen Bosonisierung. Kürzlich wurde diese Methode erfolgreich zur Beschreibung
schwacher Lokalisierung in zweisprossigen Leitermodellen verwendet [46], was ihre weitrei-
chenden Anwendungsmöglichkeiten unter Beweis stellt.

Der fundamentale Unterschied zwischen diesem System und dem HLL ist, das im Letzte-
ren keine elastische Streuung durch Störstellen existiert. Somit vermuten wir, wenigstens
phänomenologisch, dass die Störstellenstreuung selbst zur Dephasierung beiträgt. Unsere
bisherige Untersuchung der inelastischen Streuprozesse durch die quantenkinetische Glei-
chung hat uns wertvolle Einblicke in die zugrundeliegende Physik dieser Vorgänge gewährt.
Somit wird es möglich sein den bestehenden Formalismus zur Behandlung schwacher Lo-
kalisierung in HLL anzupassen. Wir erwarten dabei, dass die Korrektur durch schwache
Lokalisierung bestehen bleibt, der Vorfaktor jedoch verschieden sein wird. Geht man über-
dies über das Regime der schwachen Lokalisierung hinaus, stellt sich zunächst die Frage,
ob das Regime τφ/τtr ∼ 1 überhaupt je erreicht werden kann. In bisherigen Modellen
für Quantendrähte waren τφ und τtr unabhängig voneinander einstellbar: während τφ eine
Funktion der Störstellenstärke ist, hängt τtr von der Wechselwirkungsstärke ab. Im Fall
des HLL ist die Situation weit komplexer: es gibt keine elastische, sondern nur inelasti-
sche Streuung durch Störstellen und somit wird τtr von der Stärke der Störstellenstreuung
abhängig, während τφ vorraussichtlich eine Abhängigkeit von der Wechselwirkungsstärke
erhält. Sobald diese Abhängigkeiten verstanden sind, wird man in der Lage sein die Frage
nach der Existenz eines stark lokalisierten Regimes (das bei τφ/τtr & 1 auftritt) zu beant-
worten.
Zusammenfassend sollte untersucht werden, ob der topologische Schutz auch in Anwesen-
heit von Wechselwirkung und Störstellen bestehen bleibt oder gebrochen wird.

Die Untersuchung topologischer Isolatoren bleibt also weiterhin ein aufregendes Forschungs-
gebiet der Theorie kondensierter Materie, welches viele interessante Probleme für Theore-
tiker aufwirft.
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[16] D. Sénéchal, arXiv:cond-mat/9908262.

[17] A. Kamenev, Field theory of non-equilibrium systems (Cambridge Univ. Press, 2011).

[18] A. D. Mirlin, F. Evers, I. V. Gornyi, and P. M. Ostrovsky, International Journal of
Modern Physics B 24, 1577 (2010).

[19] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, arXiv:cond-mat.str-
el/0905.2029.

[20] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New Journal of Physics
12, 065010 (2010).

[21] J. J. Sakurai, Modern quantum mechanics (Addison-Wesley, 1994).

[22] R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems
: with 26 tables (Springer, 2003).

[23] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Physica Slovaca
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Appendix

A. Derivation of the g-ology in the HLL

Here we derive a equivalent representation of the model describing helical edge states. The
interaction hamiltonian we derived in Sec. 2.2.4 is:

Ĥint =
1

L

∑
kqp

∑
η1η2η3η4

V (q)
[
B†kBk−q

]
η1,η2

[
B†pBp+q

]
η3,η4

ψ̂†k,η1
ψ̂k−q,η2ψ̂

†
p,η3

ψ̂p+q,η4 , (10.1)

where the matrix elements are given by:[
B†kBp

]
η,η′

= δη,η′ + η δη̄,η′(k
2 − p2). (10.2)

We combine the two equations and keep only the terms containing one chirality factor
which we will call g5 terms. Let us look at these g5 terms specifically and rewrite them in
two ways,

Ĥ5 =
V0

L

∑
kpq

∑
η1η2η3η4

[
η1δη̄1η2δη3η4(k2 − (k − q)2) + η3δη̄3η4δη1η2(p2 − (p− q)2)

]
ψ̂†k,η1

ψ̂†p,η3
ψ̂p+q,η4ψ̂k−q,η2

(10.3)

=
V0

L

∑
kpq

∑
η1η3

[
η1(k2 − (k − q)2)ψ̂†k,η1

ψ̂†p,η3
ψ̂p+q,η3ψ̂k−q,η̄1

+ η3(p2 − (p+ q)2)ψ̂†k,η1
ψ̂†p,η3

ψ̂p+q,η̄3ψ̂k−q,η1︸ ︷︷ ︸
η1↔η3: η1(p2−(p+q)2)ψ̂†k,η3

ψ̂†p,η1 ψ̂p+q,η̄1 ψ̂k−q,η3

]
.

(10.4)

Now we decompose the sum over η3 into parts with η3 = η1 and η3 = η̄1 to get

Ĥ5 =
V0

L

∑
kpq

∑
η

η
[
(k2 − (k − q)2){ψ̂†k,ηψ̂†p,ηψ̂p+q,ηψ̂k−q,η̄ + ψ̂†k,ηψ̂

†
p,η̄ψ̂p+q,η̄ψ̂k−q,η̄} (10.5)

+ (p2 − (p+ q)2){ψ̂†k,ηψ̂†p,ηψ̂p+q,η̄ψ̂k−q,η + ψ̂†k,η̄ψ̂
†
p,ηψ̂p+q,η̄ψ̂k−q,η̄}

]
. (10.6)

There are now two possibilities to combine these terms:

i) With the substitution (k ↔ p), q → −q in line (10.6) the two lines become identical
and add up. This leads to the g5 terms in Eq. (2.37).

ii) The next combination is more tricky. Consider the second term in line (10.6). With
the sequence of substitutions (k ↔ p), q → q − k + p it takes a similar form to line
(10.5) and they add to form:

((p+ q)2 − (k − q)2)ψ̂†k,ηψ̂
†
p,η̄ψ̂p+q,η̄ψ̂k−q,η̄. (10.7)

101



102 Appendix

Under the sequence p → p − q, k → k + q, p ↔ k, q → −q this combination takes
the form:

(k2 − p2)ψ̂†k+q,η̄ψ̂
†
p−q,ηψ̂p,η̄ψ̂k,η̄. (10.8)

Now look at the first term in line (10.6) and perform the shifts q → q − p + k and
q → −q to get:

(p2 − (k − q)2)ψ̂†k,ηψ̂
†
p,ηψ̂k−q,η̄ψ̂p+q,η, (10.9)

which can be combined with the corresponding term in line (10.5) to obtain:

(k2 − p2)ψ̂†k,ηψ̂
†
p,ηψ̂p+q,ηψ̂k−q,η̄. (10.10)

After renaming k ↔ p and reordering the operators we end up with:

−(k2 − p2)ψ̂†k,ηψ̂
†
p,ηψ̂p−q,η̄ψ̂k+q,η. (10.11)

This is just the hermitian conjugate of (10.8) (the additional -1 comes from the fact
that η and η̄ are reversed and there is an additional prefactor of η).
Combining this form of the g5 terms and the expression for the interaction Hamilto-
nian in Eq. (2.37) we can decompose the sum over η′ in terms η′ = η and η′ = η̄ to
obtain the following alternative form of the interaction hamiltonian:

Ĥint =
V0

L

∑
k,p,q,η

ψ̂†η,kψ̂
†
η,pψ̂η,p+qψ̂η,k−q + ψ̂†η,kψ̂

†
η̄,pψ̂η̄,p+qψ̂η,k−q

− k2 − p2

k2
0

η
(
ψ̂†η,k+qψ̂

†
η̄,p−qψ̂η,pψ̂η,k + h.c.

)
+

(
k2 − (k − q)2

) (
p2 − (p+ q)2

)
k4

0

(
ψ̂†η,kψ̂

†
η,pψ̂η̄,p+qψ̂η̄,k−q

+ ψ̂†η,kψ̂
†
η̄,pψ̂η̄,k−qψ̂η,p+q

)
.

(10.12)

B. Calculations for the perturbation theory in the first order
of the T matrix

Here we calculate the corrections to AC conductivity due to the interaction hamilto-
nian (10.12) in first order of the T-matrix.

g4 process

First we calculate the matrix elements:

Akpqη121′2′ = 〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,ηψ̂p+q,ηψ̂k−q,ηψ̂

†
1ψ̂
†
2|0〉 (10.13)

= δη,η1′ δη,η2′ δη,η1δη,η2

(
δk,k2′ δp,k1′ − (1′ ↔ 2′)

)
(δk−q,k1δp+q,k2 − (1↔ 2)) . (10.14)

If we sum this expression over all internal degrees of freedom it vanishes i.e.

V0

L

∑
k,p,q,η

Akpqη121′2′ = 0. (10.15)

Therefore there are no matrix elements for g4 processes. Indeed transformed to real space
the corresponding operator is local (ψ̂†ηψ̂

†
ηψ̂ηψ̂η)(x) and therefore vanishes due to fermionic

anticommutation relations.
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g2 process

The matrix elements read:

Akpqη121′2′ = 〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,η̄ψ̂p+q,η̄ψ̂k−q,ηψ̂

†
1ψ̂
†
2|0〉 (10.16)

=
(
δk,k2′ δp,k1′ δη,η2′ δη̄η1′ − (1′ ↔ 2′)

)
(δk−q,k1δp+q,k2δη,η1δη̄,η2 − (1↔ 2)) . (10.17)

If summed over internal momenta and chiralities we get:

V0

L

∑
k,p,q,η

Akpqη121′2′ =
V0

L

∑
η

[δη,η2′ δη,η1δη̄,η1′ δη,η2 − δη,η1′ δη,η1δη̄,η2′ δη,η2

− δη,η2′ δη,η2δη̄,η1′ δη,η1 + δη,η1′ δη,η2δη̄,η2′ δη,η1 ]

× δk1+k2,k1′+k2′ .

(10.18)

By using the symmetry properties of C the collision integral yields:

Ik1,η1 = −2π
∑

k2,k1′ ,k2′

4C(k1,η1)(k2,η̄1),(k1′ ,η1)(k2′ ,η̄1)δk1+k2,k1′+k2′ . (10.19)

The contribution to the conductivity vanishes since
∑

k1,η1
Ik1,η1 = 0 as can be readily

checked by using the the symmetries of C.

g3 process

The matrix elements read:

Akpqη121′2′ = 〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,ηψ̂p+q,η̄ψ̂k−q,η̄ψ̂

†
1ψ̂
†
2|0〉 (10.20)

= δη1,η̄δη2,η̄δη1′ ,ηδη2′ ,η

(
δk,k2′ δp,k1′ − (1′ ↔ 2′)

)
(δk−q,k1δp+q,k2 − (1↔ 2)) . (10.21)

Now we include the rest of the operator to get:

V0

k4
0L

∑
k,p,q,η

(k2 − (k − q)2)(p2 − (p+ q)2)Akpqη121′2′ (10.22)

=
V0

Lk4
0

2h({k})δk1+k2,k1′+k2′

∑
η

δη1,η̄δη2,η̄δη1′ ,ηδη2′ ,η, (10.23)

where we defined the function

h(k1, k2, k1′ , k2′) := k2
1′k

2
2 + k2

1k
2
2′ − k2

1′k
2
1 − k2

2′k
2
2. (10.24)

For the collision integral one gets:

Ik1,η1 = −2π
4V 2

0

k8
0L

2

∑
k2,k1′ ,k2′

[h({k})]2C(k1,η1)(k2,η1),(k1′ ,η̄1)(k2′ ,η̄1)δk1+k2,k1′+k2′ . (10.25)

The combination of momentum and energy conservation leads to the constraint k1 = −k2

and thus the prefactor vanishes i.e. h({k}) = 0.

g1 process

First we calculate the matrix elements:

Akpqη121′2′ = 〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,η̄ψ̂k−q,η̄ψ̂p+q,ηψ̂

†
1ψ̂
†
2|0〉 (10.26)

=
(
δk,k2′ δp,k1′ δη,η2′ δη̄,η1′ − (1′ ↔ 2′)

)
(δk−q,k2δp+q,k1δη,η2δη̄,η1 − (1↔ 2)) . (10.27)
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Next we calculate the remaining sums to get:

V0

k4
0L

∑
k,p,q,η

(k2 − (k − q)2)(p2 − (p+ q)2)Akpqη121′2′ (10.28)

=
V0

Lk4
0

δk1+k2,k1′+k2′

∑
η

[
{(k2

2′ − k2
2)(k2

1′ − k2
1)δη1,η̄δη2,ηδη1′ ,η̄δη2′ ,η

− (1′ ↔ 2′)} − (1↔ 2)
]
.

(10.29)

Thus the collision integral takes the form:

Ik1,η1 =− 2π
4V 2

0

k8
0L

2

∑
k2,k1′ ,k2′

[
{(k2

2′ − k2
2)2(k2

1′ − k2
1)2C(k1,η1)(k2,η̄1),(k1′ ,η1)(k2′ ,η̄1)

− (1′ ↔ 2′)} − (1↔ 2)
]
δk1+k2,k1′+k2′ .

(10.30)

The combination of energy and momentum conservation demands k1 = k1′ in the first
term. Therefore the prefactor vanishes and consequently all the terms vanish.

C. Calculations for the perturbation theory in the second
order of the T matrix

First we derive effective initial and final states that incorporate impurity scattering. As
an example we calculate them explicitely for forward scattering:

|̃12〉f := Ĝ0Ĥimp,f |12〉 =
U0

L

∑
kk′η

1

εi − Ĥ0 + iη
ψ̂†k+k′,ηψ̂k,ηψ̂

†
1ψ̂
†
2|0〉. (10.31)

First we use the algebra of fermionic operators to get:

ψ̂k,ηψ̂
†
1ψ̂
†
2|0〉 =

(
−ψ̂†1ψ̂k,ηψ̂†2 + ψ̂†2δη,η1δk,k1

)
|0〉 (10.32)

=
(
−ψ̂†1δη,η2δk,k2 + ψ̂†2δη,η1δk,k1

)
|0〉. (10.33)

With this (10.31) becomes:

|̃12〉f =
U0

L

∑
k′

Ĝ0

(
−ψ̂†k2+k′,η2

ψ̂†k1,η1
+ ψ̂†k1+k′,η1

ψ̂†k2,η2

)
|0〉. (10.34)

The initial energy is εi = ε1 + ε2, where εk,η = ηk and the action of the Greens function
operator is given by

Ĝ0|
(
k2 + k′, η2

)
, (k1, η1)〉 =

1

ε1 + ε2 − ε2+k′ − ε1 + i0
=

1

η2 (k2 − k2 − k′) + i0
(10.35)

= − 1

η2k′ + i0
, (10.36)

Ĝ0|
(
k1 + k′, η1

)
, (k2, η2)〉 = − 1

η1k′ + i0
. (10.37)

Thus we arrive at the expression:

|̃12〉f =
U0

L

∑
k′

[
1

k′η2 + i0
ψ̂†k2+k′,η2

ψ̂†1 − (1↔ 2)

]
|0〉. (10.38)
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Analogously we find

〈̃1′2′|f = 〈0|U0

L

∑
k′

[
1

k′η2′ + i0
ψ̂1′ψ̂k2′−k′,η2′

−
(
1′ ↔ 2′

)]
, (10.39)

and for backward scattering

|̃12〉b =
U0

k2
0L

∑
k′

[
(k1 − k′)ψ̂†k′,η̄1

ψ̂†2 − (1↔ 2)
]
|0〉, (10.40)

〈̃1′2′|b = 〈0| U0

k2
0L

∑
k′

[
(k′ − k2′)ψ̂1′ψ̂k′,η̄2′

−
(
1′ ↔ 2′

)]
. (10.41)

C.1. g4 and g2 processes combined with backscattering off the impurity

Let us start with g4 and calculate the matrix elements

Akpqk
′η

1′2′,12 ≡〈1′2′|Ĥ4 |̃12〉b (10.42)

=(k1 − k′)〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,ηψ̂p+q,ηψ̂k−q,ηψ̂

†
k′.η̄1

ψ̂†2|0〉 − (1↔ 2) (10.43)

=(k1 − k′)δη1,η̄δη2,ηδη1′ ,ηδη2′ ,η(δp,k1′ δk,k2′ − (1′ ↔ 2′))

× (δk−q,k′δk2,p+q − δp+q,k′δk−q,k2)− (1↔ 2) ,
(10.44)

and

Bkpqk′η
1′2′,12 ≡〈̃1′2′|bĤ4|12〉 (10.45)

=(k′ − k2′)〈0|ψ̂1′ψ̂k′,η̄2′
ψ̂†k,ηψ̂

†
p,ηψ̂p+q,ηψ̂k−q,ηψ̂

†
1ψ̂
†
2|0〉 − (1′ ↔ 2′) (10.46)

=(k′ − k2′)δη1,ηδη2,ηδη1′ ,ηδη2′ ,η̄(δk,k′δp,k1′ − δp,k′δk1′ ,k)

× (δp+q,k2δk−q,k1 − (1↔ 2))− (1′ ↔ 2′).
(10.47)

After summing over internal momenta and chiralities we find:∑
k,p,q

∑
k′,η

Akpqk
′η

1′2′,12 = 0 =
∑
k,p,q

∑
k′,η

Bkpqk′η
1′2′,12 . (10.48)

Therefore this process does not contribute to the conductivity. Next we study g2 processes
combined with backscattering from the impurity. The corresponding matrix elements are:

Akpqk
′η

1′2′,12 ≡〈1′2′|Ĥ2 |̃12〉b (10.49)

=(k1 − k′)〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,η̄ψ̂p+q,η̄ψ̂k−q,ηψ̂

†
k′,η̄1

ψ̂†2|0〉 − (1↔ 2) (10.50)

=(k1 − k′)(δp,k1′ δk,k2′ δη1′ ,η̄δη2′ ,η − (1′ ↔ 2′))

× (δη1,η̄δη2,η̄δk−q,k′δp+q,k2 − δη1,ηδη2,ηδp+q,k′δk−q,k2)− (1↔ 2),
(10.51)

and

Bkpqk′η
1′2′,12 ≡〈̃1′2′|bĤ2|12〉 (10.52)

=(k′ − k2′)〈0|ψ̂1′ψ̂k′,η̄2′
ψ̂†k,ηψ̂

†
p,η̄ψ̂p+q,η̄ψ̂k−q,ηψ̂

†
1ψ̂
†
2|0〉 − (1′ ↔ 2′) (10.53)

=(k′ − k2′)(δk,k′δp,k1′ δη1′ ,η̄δη2′ ,η̄ − δk1′ ,kδp,k′δη1′ ,ηδη2′ ,η)

× (δk1,k−qδp+q,k2δη1,ηδη2,η̄ − (1↔ 2))− (1′ ↔ 2′).
(10.54)

After summing over internal momenta and chiralities we find that these contributions
vanish too, ∑

k,p,q

∑
k′,η

Akpqk
′η

1′2′,12 = 0 =
∑
k,p,q

∑
k′,η

Bkpqk′η
1′2′,12 . (10.55)
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C.2. g3 with backscattering

Again we calculate the matrix elements:

Akpqk
′η

1′2′,12 ≡〈1′2′|Ĥ2 |̃12〉b (10.56)

=(k1 − k′)〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,ηψ̂p+q,η̄ψ̂k−q,η̄ψ̂

†
k′,η̄1

ψ̂†2|0〉 − (1↔ 2) (10.57)

=(k1 − k′)δη1,ηδη2,η̄δη1′ ,ηδη2′ ,η(δk,k2′ δp,k1′ − (1′ ↔ 2′))

× (δk′,k−qδp+q,k2 − δk2,k−qδp+q,k′)− (1↔ 2) ,
(10.58)

and

Bkpqk′η
1′2′,12 ≡〈̃1′2′|bĤ2|12〉 (10.59)

=(k′ − k2′)〈0|ψ̂1′ψ̂k′,η̄2′
ψ̂†k,ηψ̂

†
p,ηψ̂p+q,η̄ψ̂k−q,η̄ψ̂

†
1ψ̂
†
2|0〉 − (1′ ↔ 2′) (10.60)

=(k′ − k2′)δη1,η̄δη2,η̄δη1′ ,ηδη2′ ,η̄(δk,k′δp,k1′ − δk,k1′ δp,k′)

× (δk1,k−qδk2,p+q − (1↔ 2))− (1′ ↔ 2′).
(10.61)

After summing over internal momenta and chiralities we arrive after some calculations at:∑
k,p,q

∑
k′,η

Akpqk
′η

1′2′,12(k2 − (k − q)2)(p2 − (p+ q)2) (10.62)

=2
∑
η

δη1,ηδη2,η̄δη1′ ,ηδη2′ ,η(k1 + k2 − k1′ − k2′)(k
2
1′ − k2

2′)

× (k2
2 − (k1′ + k2′ − k2)2)− (1↔ 2),

(10.63)

and ∑
k,p,q

∑
k′,η

Bkpqk′η
1′2′,12(k2 − (k − q)2)(p2 − (p+ q)2) (10.64)

=2
∑
η

δη1,η̄δη2,η̄δη1′ ,ηδη2′ ,η̄(k1 + k2 − k1′ − k2′)(k
2
1 − k2

2)

× ((k1 + k2 − k1′)
2 − k2

1′)− (1′ ↔ 2′).

(10.65)

These matrix elements lead to the following expression for the term
∑

1 η1I1:

∑
1

η1I1 =

(
V0U0

k4
0L

2

)2

(−8π)Nimp

∑
{k}

η1(k1 + k2 − k1′ − k2′)
2
[
(k2

1′ − k2
2′)

2

× {(k2
2 − (k1′ + k2′ − k2)2)2C(k1,η1)(k2,η̄1),(k1′ ,η1)(k2′ ,η1)

+ (k2
1 − (k1′ + k2′ − k1)2)2C(k1,η1)(k2,η̄1),(k1′ ,η̄1)(k2′ ,η̄1)}

+ (k2
1 − k2

2)2{((k1 + k2 − k1′)
2 − k2

1′)
2C(k1,η1)(k2,η1),(k1′ ,η̄1)(k2′ ,η1)

+ ((k1 + k2 − k2′)
2 − k2

2′)
2C(k1,η1)(k2,η1),(k1′ ,η1)(k2′ ,η̄1)}

]
.

(10.66)

We can combine the terms using the symmetry properties of C12,1′2′ to get

∑
1

η1I1 =− 32π

(
V0U0

k4
0L

2

)2

Nimp

∑
{k}

(k2
1 − k2

2)2(k1 + k2 − k1′ − k2′)
2

× ((k1 + k2 − k1′)
2 − k2

1′)C(k1,R)(k2,R),(k1′ ,L)(k2′ ,R)

(10.67)

= 256π

(
V0U0

k4
0L

2

)2

Nimp

(
L

2π

)4 eE

(−iω)T
T 13g(ζ), (10.68)
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where we defined the function

g(ζ) =

∫
dx1dx2dx3 (x̃2

1 − x̃2
2)2x̃2

3((x̃1 + x̃2 − x̃3)2 − x̃2
3)2

× n(x1)n(x2)(1− n(−x3))(1− n(x1 + x2 + x3)).

(10.69)

Here x̃1,2 = x1,2 + ζ, x̃3 = x3 − ζ. If ζ � 1 we expand the polynomial and take only the
leading order in ζ to get:

g(ζ) = 256ζ8

∫
dx1dx2dx3 (x1 − x2)2n(x1)n(x2)(1− n(−x3))

× (1− n(x1 + x2 + x3)) + o(ζ7)

(10.70)

≈ 256ζ8 × 103.93 + o(ζ7). (10.71)

C.3. g1 with backscattering

We calculate the matrix elements:

Akpqk
′η

1′2′,12 ≡〈1′2′|Ĥ1 |̃12〉b (10.72)

=(k1 − k′)〈0|ψ̂1′ψ̂2′ψ̂
†
k,ηψ̂

†
p,η̄ψ̂k−q,η̄ψ̂p+q,ηψ̂

†
k′,η̄1

ψ̂†2|0〉 − (1↔ 2) (10.73)

=(k1 − k′)(δη1,η̄δη2,η̄δk′,p+qδk−q,k2 − δη1,ηδη2,ηδk′,k−qδp+q,k2)

× (δp,k1′ δk,k2′ δη1′ ,η̄δη2′ ,η −
(
1′ ↔ 2′

)
)− (1↔ 2) ,

(10.74)

and

Bkpqk′η
1′2′,12 ≡〈̃1′2′|bĤ1|12〉 (10.75)

=(k′ − k2′)〈0|ψ̂1′ψ̂k′,η̄2′
ψ̂†k,ηψ̂

†
p,η̄ψ̂k−q,η̄ψ̂p+q,ηψ̂

†
1ψ̂
†
2|0〉 − (1′ ↔ 2′) (10.76)

=(k′ − k2′)(δp,k1′ δk,k′δη1′ ,η̄δη2′ ,η̄ − δp,k′δk,k1′ δη1′ ,ηδη2′ ,η)

× (δη1,ηδη2,η̄δk1,p+qδk−q,k2 − (1↔ 2))− (1′ ↔ 2′).
(10.77)

Summing over internal degrees of freedom we get after some algebra:∑
k,p,q

∑
k′,η

Akpqk
′η

1′2′,12(k2 − (k − q)2)(p2 − (p+ q)2) (10.78)

= 2
∑
η

δη1,ηδη2,ηδη1′ ,ηδη2′ ,η̄(k1 + k2 − k1′ − k2′)

×
[
(k2

2 − k2
2′)(k1′ + k2′ − k2)2 + k2

1′(k
2
1 − k2

2)

+ (k2
2′ − k2

1)(k1′ + k2′ − k1)2
]
−(1′ ↔ 2′),

(10.79)

and ∑
k,p,q

∑
k′,η

Bkpqk′η
1′2′,12(k2 − (k − q)2)(p2 − (p+ q)2) (10.80)

= 2
∑
η

δη1,ηδη2,η̄δη1′ ,η̄δη2′ ,η̄(k1 + k2 − k1′ − k2′)

×
[
(k2

1 − k2
2)(k1 + k2 − k2′)

2 + k2
2(k2

2′ − k2
1′)

+ (k2
1′ − k2

1)(k1 + k2 − k1′)
2
]
−(1↔ 2).

(10.81)
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Note that g1 and g3 processes do not mix when taking the absolute square since they have
distinct chiral factors. Proceeding analogously as in the case of g3 processes, we get for∑

1 η1I1 after some simplifications:∑
1

η1I1 = 256π

(
V0U0

k4
0L

2

)2

Nimp

(
L

2π

)4 eE

(−iω)T
T 13g1(ζ), (10.82)

where we defined the function

g1(ζ) =

∫
dx1dx2dx3 x̃

2
3[(2x̃3 − x̃1)2(x̃2

2 − x̃2
3) + (x̃1 + x̃2 − x̃3)2

× (x̃2
1 − x̃2

2) + (2x̃3 − x̃2)2(x̃2
3 − x̃2

1)]2n(x1)n(x2)

× (1− n(−x3))(1− n(x1 + x2 + x3)).

(10.83)

We expand the polynomial as before and get for ζ � 1:

g1(ζ) ≈ 144× 1757.97ζ6 + o(ζ5). (10.84)

Therefore these processes give only subleading corrections compared with the g3 processes
discussed previously.

C.4. g5 with forward scattering

First we decompose the g5 hamiltonian as follows:

Ĥ5 =− V0

k2
0L

∑
k,p,q,η

(k2 − p2)η
(
ψ̂†η,k+qψ̂

†
η̄,p−qψ̂η,pψ̂η,k + h.c.

)
(10.85)

=Ĥ
(I)
5 + h.c. , (10.86)

Ĥ
(I)
5 ≡− V0

k2
0L

∑
k,p,q,η

(k2 − p2)ηψ̂†η,k+qψ̂
†
η̄,p−qψ̂η,pψ̂η,k. (10.87)

Now we calculate the required matrix elements:

Akpqk
′η

1′2′,12 ≡〈̃1′2′|f Ĥ
(I)
5 |12〉 (10.88)

=
1

η2′k′ + i0
〈0|ψ̂1′ψ̂k2′−k′,η2′

ψ̂†k+q,ηψ̂
†
p−q,η̄ψ̂p,ηψ̂k,ηψ̂

†
1ψ̂
†
2 − (1′ ↔ 2′) (10.89)

=δη1,ηδη2,η(δk1,kδk2,p − (1↔ 2))
[ 1

η2′k′ + i0

× (δk2′−k′,k+qδp−q,k1′ δη1′ ,η̄δη2′ ,η − δk2′−k′,p−qδk+q,k1′ δη1′ ,ηδη2′ ,η̄)

− (1′ ↔ 2′)
]
,

(10.90)

Bkpqk′η
1′2′,12 ≡〈1′2′|Ĥ

(I)
5 |̃12〉f (10.91)

=
1

η2k′ + i0
〈0|ψ̂1′ψ̂2′ψ̂

†
k+q,ηψ̂

†
p−q,η̄ψ̂p,ηψ̂k,ηψ̂

†
k2+k′,η2

ψ̂†1 − (1↔ 2) (10.92)

=
1

η2k′ + i0
δη1,ηδη2,η(δk2+k′,kδk1,p − δk1,kδk2+k′,p)

× (δk2′ ,k+qδp−q,k1′ δη1′ ,η̄δη2′ ,η − (1′ ↔ 2′))− (1↔ 2).

(10.93)

The other matrix elements can be obtained by noticing:

〈1′2′|(Ĥ(I)
5 )† |̃12〉f =

(
〈̃12|f Ĥ

(I)
5 |1′2′〉

)†
= Akpqk

′η
12,1′2′ , (10.94)

〈̃1′2′|f (Ĥ
(I)
5 )†|12〉 =

(
〈12|Ĥ(I)

5 |̃1′2′〉f
)†

= Bkpqk′η
12,1′2′ . (10.95)
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After summing over internal degrees of freedom we get:∑
k,p,q

∑
k′,η

Akpqk
′η

1′2′,12η(k2 − p2) =0, (10.96)

∑
k,p,q

∑
k′,η

Bkpqk′η
1′2′,12η(k2 − p2) =2

∑
η

ηδη1,ηδη2,η(δη1′ ,η̄δη2′ ,η − (1′ ↔ 2′))

×
[

(k1′ + k2′ − k1)2 − k2
1

η(k1′ + k2′ − k1 − k2) + i0
− (1↔ 2)

]
.

(10.97)

With these matrix elements we calculate the collision integral:

∑
1

η1I1 =− 32π

(
U0V0

k2
0L

2

)2

Nimp

∑
{k}

C(k1,R)(k2,R),(k1′ ,L)(k2′ ,R)

×
[
(k1′ + k2′ − k1)2 − k2

1 − (k1′ + k2′ − k2)2 − k2
2

]2
(k1′ + k2′ − k1 − k2)2 + ε2

,

(10.98)

where we renamed the infinitesimal i0→ iε. The expression can be rewritten to:

∑
1

η1I1 =64π

(
U0V0

k2
0L

2

)2

Nimp(
L

2π
)4 eE

(−iω)
T 4g2(ζ), (10.99)

with the dimensionless factor:

g2(ζ) =

∫
dx1dx2dx3

[
(2x3 + x2)2 − x2

1 − (2x3 + x1)2 + x2
2

]2
4x2

3 + ε2

× n(x− ζ)n(x2 − ζ)(1− n(−x3 − ζ))(1− n(x1 + x2 + x3 − ζ))

(10.100)

=

∫
dxdydz

[
x2 − y2

]2
4(z − ζ)2 + ε2

1

1 + ex−z
1

1 + ey−z
e−z

1 + e−z
ex+y−z

1 + ex+y−z , (10.101)

where we made the substitutions x = x1 + x3, y = x2 + x3 and then z = x3 + ζ. The
resulting integral has to be evaluated numerically. Plotting g2(ζ) over ζ with ε = 10−2

in Fig. C.1, we find that it decays faster than ζ−1. Therefore the correction due to these
processes does not contribute in leading order in ζ for ζ � 1.

20 30 40 50
Ζ

5

10

15

20

25

30

Figure C.1.: Dimensionless factor g2(ζ) describing the temperature dependance of conductivity
corrections due to g5 interactions and impurity scattering (blue dots). As comparison
a function of order ζ−1 is plotted as a blue line.
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D. Calculation of the conductivity correction due to effective
processes

Inelastic scattering

The generic Hamiltonian is:

Ĥ1P = −g1P

L2

∑
k,p,q,q′,η

k ψ̂†q′,ηψ̂
†
q,η̄ψ̂p,ηψ̂k,η + h.c. . (10.102)

First we calculate the matrix elements:

A1′2′12
kpqq′η = 〈0|ψ̂1′ψ̂2′ψ̂

†
q′,ηψ̂

†
q,η̄ψ̂p,ηψ̂k,ηψ̂

†
1ψ̂
†
2|0〉 (10.103)

= δη1ηδη2η (δk1kδk2p − (1↔ 2))
(
δη1′ η̄δη2′ηδk1′ ,qδk2′ ,q

′ − (1′ ↔ 2′)
)
, (10.104)

B121′2′
kpqq′η = 〈0|ψ̂1′ψ̂2′ψ̂

†
η,kψ̂

†
η,pψ̂η̄,qψ̂η,q′ψ̂

†
1ψ̂
†
2|0〉 (10.105)

= δη1′ηδη2′η

(
δk1′pδk2′k − (1′ ↔ 2′)

) (
δη1ηδη2η̄δk1,q′δk2,q − (1↔ 2)

)
. (10.106)

With this we get:∑
kpqq′η

A1′2′12
kpqq′ηk =

∑
η

δη1ηδη2η(k1 − k2)(δη1′ η̄δη2′η − δη2′ η̄δη1′η), (10.107)

∑
kpqq′η

B1′2′12
kpqq′ηk =

∑
η

δη1′ηδη2′η(k2′ − k1′)(δη2η̄δη1η − δη1η̄δη2η). (10.108)

Therefore the collision integral reads:

Ik1,η1 = −2π
g2

1P

L3
nimp

∑
k2,k1′ ,k2′

[2(k1 − k2)2C(k1,η1)(k2,η1),(k1′ ,η̄1)(k2′ ,η1)

+ (k1′ − k2′)
2
(
C(k1,η1)(k2,η̄1),(k1′ ,η1)(k2′ ,η1) + C(k1,η1)(k2,η̄1),(k1′ ,η̄1)(k2′ ,η̄1)

)
].

(10.109)

Next we use the symmetry properties of C12,1′2′ to calculate the term,∑
1

η1I1 =− 8π
g2

1P

L3
nimp

∑
{k}

(k1 − k2)2C(k1,R)(k2,R),(k1′ ,L)(k2′ ,R) (10.110)

=
16π

(2π)4

eE

(−iω)
nimpg

2
1PT

4f1P (ζ), (10.111)

where the resulting dimensionless integral is given by:

f1P (ζ) =

∫
dx1dx2dx3 (x1 − x2)2n(x1)n(x2)(1− n(−x3))(1− n(x1 + x2 + x3)) (10.112)

≈103.9 . (10.113)

Therefore the resulting conductivity correction is independant of the ratio between tem-
perature and Fermi energy, ζ, and is given by:

σ
(1)
1P = −103.9

2

π2

e2

h(−iω)
nimpg

2
1PT

4. (10.114)

Two-particle scattering

The effective hamiltonian for the two particle scattering process reads:

Ĥ2P =
g2P

L2

∑
k,p,q,q′,η

kq ψ̂†η,kψ̂
†
η,pψ̂η̄,qψ̂η̄,q′ . (10.115)
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We start by calculating the matrix element:

A121′2′
kpqq′η = 〈0|ψ̂1′ψ̂2′ψ̂

†
η,kψ̂

†
η,pψ̂η̄,qψ̂η̄,q′ψ̂

†
1ψ̂
†
2|0〉 (10.116)

= δ1η̄δ2η̄δ1′ηδ2′η

(
δ1q′δ2q − (1↔ 2)

) (
δ1′pδ2′k −

(
1′ ↔ 2′

))
. (10.117)

After summation over internal degrees of freedom we arrive at:∑
k,p,q,q′,η

kqA121′2′
kpqq′η =

∑
η

δ1η̄δ2η̄δ1′ηδ2′η(k2′ − k1′)(k2 − k1). (10.118)

Thus the result for the collision integral reads:

I1 = −2π
g2

2P

L3
nimp

∑
k2,k1′ ,k2′

(k2′ − k1′)
2(k2 − k1)2C(k1,η1)(k2,η1),(k1′ ,η̄1)(k2′ ,η1). (10.119)

Using the symmetry properties of C we get:∑
1

η1I1 = −4π
g2

2P

L3
nimp

∑
{k}

(k2′ − k1′)
2(k2 − k1)2C(k1,R)(k2,R),(k1′ ,L)(k2′ ,L) (10.120)

=
16π

(2π)4
nimpg

2
2P

eE

(−iω)
T 6f2P (ζ), (10.121)

with

f2P (ζ) =

∫
dx1dx2dx3 (2x3 + x1 + x2)2(x1 − x2)2n(x1)n(x2)(1− n(−x3))

× (1− n(x1 + x2 + x3)) ≈ 1757.97 .

(10.122)

Therefore the conductivity correction is again independant of ζ and given by the following
expression:

σ(1) = −1757.97
e2

h(−iω)2

2

π2
nimpg

2
2PT

6. (10.123)

E. Exact form of the functions determining the integral equa-
tions for DC transport

We will often need the polylogarithm function which is defined as:

Lis(z) =
∞∑
k=1

zk

ks
, (10.124)

for all complex orders of s and |z| < 1. It can also be analytically continued to the whole
complex plane. The asymptotics of the polylogarithm function are given by:

lim
x→∞

Lin(−ex) = − xn

Γ(n+ 1)
= −x

n

n!
, (10.125)

lim
|x|→0

Lin(x) = x, (10.126)

Lin(−ex) = −η(n)− η(n− 1)x− η(n− 2)x2 +O(x), for |x| � 1. (10.127)

The last limit is obtained by using the series representation (10.124) and expanding in
small x. The Dirichlet eta function is given by:

η(n) =
∞∑
k=1

(−1)k

ks
, (10.128)
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and can be calculated as:

η(n) =

{
ln(2) , forn = 1

(1− 21−n)ζ(n) , else.
(10.129)

Here ζ(n) =
∑∞

k=1 k
−n is the Riemann zeta function. Furthermore we will need the

asymptotics of:

An,ζ(x)≡(n− 1)!
[
Lin(−ex) + (−1)nLin(−e−x)− Lin(−eζ)− (−1)nLin(−e−ζ)

]
.

(10.130)

For ζ � 1 they are given by:

An,ζ(x) ≈ −x
n − ζn
n

. (10.131)

In the case where |x| � 1 this follows from the asymptotics Eq. (10.127). In the case that
x is not large the terms with x can be neglected with respect to the terms concerning ζ
and the approximation in Eq. (10.131) is still valid.

E.1. g5 process

Calculation of Aζ,±(x)

The functions Aζ,±(x) are defined in Sec. 6.2.1 as integrals over known functions Kζ(x, y)
and Gζ(x, y). These integrals can be computed analytically and yield the following terms:∫

dy Kζ(x, y) ≡ tK,ζ(x)pK,ζ(x), (10.132)∫
dy Gζ(x, y) ≡ tG,ζ(x)pG,ζ(x). (10.133)

The thermal factors t and the polynomials p are defined as:

tK,ζ(x) =
ex + eζ

(−1 + ex)(1 + eζ)
≈ e−ζ ex + eζ

(−1 + ex)
, (10.134)

tG,ζ(x) =
eζ(ex + eζ)

(1 + eζ)(−ex + e2ζ)
≈ (ex + eζ)

(−ex + e2ζ)
, (10.135)

pK,ζ(x) = 2x5 − 4x2A3,ζ(ζ − x) + 2A5,ζ(ζ − x) ≈ 16

15
x5 + 2x4ζ − 4x2ζ3 + 2xζ4, (10.136)

pG,ζ(x) = x4(2ζ − x)− 4x3A2,ζ(x− ζ) + 4x2A3,ζ(x− ζ) ≈ −1

3
x2(x− 2ζ)2. (10.137)

Approximations are carried out in the regime ζ � 1.

Calculation of Hζ(y)

The integrals defining Hζ(y, z) can also be calculated exactly. Here we show the results
and the approximations we made for ζ � 1:

•
∫

dz Hζ(y, z) = t1,ζ(y)p1,ζ(y), with

t1,ζ(y) =
cosh( ζ2)

sinh(y2 + ζ)

1

cosh(y+ζ
2 )

, (10.138)

p1,ζ(y) =
1

2
(y + 2ζ)y4 + 2y3A2,ζ(−y − ζ) + 2y2A4,ζ(x) ≈ 1

6
y2(y + 2ζ)3. (10.139)
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•
∫

dy Hζ(y, z) = t2,ζ(y)p2,ζ(y), with

t2,ζ(y) =
e
z
2

−1 + ez
cosh( ζ2)

cosh( z+ζ2 )
, (10.140)

p2,ζ(y) = 4z2A3,ζ(ζ − z) + 4zA4,ζ(ζ − z) +A5,ζ(ζ − z) (10.141)

≈ 8z5

15
− z4ζ + 2z2ζ3 + zζ4. (10.142)

•
∫

dy Hζ(z − y, z) = t3,ζ(y)p3,ζ(y), with

t3,ζ(y) =
ey(1 + eζ)

(−1 + ey)(ey + eζ)
, (10.143)

p3,ζ(y) = y5 − 2y2A3,ζ(ζ − y) +A5,ζ(ζ − y) ≈ 8

15
y5 + y4ζ − 2y2ζ3 − yζ4. (10.144)

• Using our approximate result from the integration over y we get an analytical ap-
proximation which holds for ζ >> 1,

Hζ =

∫
dydz Hζ(y, z) (10.145)

=
1

6
cosh(

ζ

2
)
[16

63

1

cosh( ζ2)

(
2π6 − 945

[
Li6(−eζ) + Li6(−e−ζ)

])
+ 192ζ

1

cosh( ζ2)

[
Li5(−eζ)− Li5(−e−ζ)

]
+ 4ζ2(π2 + ζ2)2 sinh( ζ2)

sinh(ζ)

] (10.146)

≈11

90
ζ6. (10.147)

The functions defined in Sec. 6.2.1 are now obtained as:

Hζ,1(y) = −t1,ζ(−y)p1,ζ(−y), (10.148)

Hζ,2(y) = t2,ζ(−y)p2,ζ(−y), (10.149)

Hζ,3(y) = t3,ζ(y)p3,ζ(y). (10.150)

We will also need Hζ for ζ � 1. This result is obtained by expanding Eq. (10.145) in small
ζ as Hζ = H0 + ∂ζHζ |ζ=0 ζ + · · · . The necessary integrals are calculated numerically and
we obtain

Hζ = 480.7 + 161.3 ζ2 + 12.6 ζ4 +O(ζ6). (10.151)

All approximations have been checked numerically and are in very good agreement with
the exact expressions.

E.2. Inelastic process

Calculation of B1,ζ(x)

We find: ∫
dz B1,ζ(x, y, z) = tB1,ζ(x, y)pB1,ζ(x, y), (10.152)
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where we defined the functions,

tB1,ζ(x, y) =
1 + ex−ζ

(1 + eζ−y)(1− ex+y−2ζ)
, (10.153)

pB1,ζ(x, y) =2(x2 + y2)(2ζ − x− y)− 4(x+ y)A2,ζ(x+ y − ζ)

+ 4A3,ζ(x+ y − ζ).
(10.154)

If ζ were very large we could approximate the polylogarithm by its asymptotics and cal-
culate the integral over y with the approximated function. The end result is

B1,ζ(x) =
4

3
(x− ζ)2(π2 − 3B2,ζ(x− ζ))− 8(ζ − x)B3,ζ(x− ζ) +

8π4

45
− 8B4,ζ(x− ζ).

(10.155)

Here we defined:

Bn,ζ(x) = Lin(−ex−ζ)− (−1)nLin(−e−x+ζ) (10.156)

We note that B1,ζ(x) = B1(x−ζ) and that its proportional to ζ4. Thus a resonable ansatz
would be

B1,ζ(x) = (x− ζ)4 + π4 (10.157)

where the π4 comes from calculating B1,ζ(ζ) numerically. We checked numerically that
this is a good approximation for all values of ζ.

Approximations for M1,ζ(x, y, z)

One integral can again be done analytically yielding:∫
dzM1,ζ(x, y, z) = tM1,ζ(x, y)pM1,ζ(x, y). (10.158)

The thermal factor and the polynomial are given by:

tM1,ζ(x, y) =
1 + ex−ζ

(1 + eζ−y)(ex+y−2ζ − 1)
, (10.159)

pM1,ζ(x, y) = 4xy(2ζ − x− y)− 4(x+ y)A2,ζ(x+ y − ζ) + 4A3,ζ(x+ y − ζ) (10.160)

≈ 2

3
(x+ y − 2ζ)(x2 − 4xy + y2 + 2(x+ y)ζ − 2ζ2). (10.161)

Under the assumption x ≈ ζ, motivated in Sec. 6.2.2 in the main text, we approximate
tB1,ζ(x, y) ≈ tB1,ζ(ζ, y). In the polynomial we use the asymptotics of polylogarithm func-
tions Eq. (10.131) and furthermore set (2ζ − x − y) ≈ (ζ − y). This is necessary to keep
the analytical properties of M1 intact.1. Summarizing,∫

dzM1,ζ(x, y, z) ≈
2

3

y − ζ
sinh(y − ζ)

(x2 − 4xy + y2 + 2(x+ y)ζ − 2ζ2). (10.162)

E.3. Two particle process

Approximations for M2,ζ(x, y, z)

First we calculate the kernel by evaluating the following integrals:

1Note that M1 has a removable singularity at y = 2ζ − x.
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(A) Integral over y,

MA,ζ(x, z) ≡
∫

dyM2,ζ(x, y, z) = tA,ζ(x, z)pA,ζ(x, z). (10.163)

Here the thermal factor and the polynomial are defined as:

tA,ζ(x, z) =
ez(ex + eζ)

(−1 + ex+z)(1 + ez+ζ)
, (10.164)

pA,ζ(x, z) =(x4 + 4x3z + 4x2z2)(x+ z)− 4(x2z + 2xz2)

×A2,ζ(−x− z + ζ) + (−2x2 − 4xz + 4z2)A3,ζ(−x− z + ζ)

+ 4zA4,ζ(−x− z + ζ) +A5,ζ(−x− z + ζ).

(10.165)

(B) Integral over z,

MB,ζ(x, y) ≡
∫

dzM2,ζ(x, y, z) = tB,ζ(x, z)pB,ζ(x, z). (10.166)

Here we defined:

tB,ζ(x, z) =
ey+ζ(ex + eζ)

(ey + eζ)(e2ζ − ex+y)
, (10.167)

pB,ζ(x, z) =(x4 − 2x2y2 + y4)(2ζ − x− y)

− 4(x3 − x2y − xy2 + y3)A2,ζ(x+ y − ζ)

+ (4x2 − 8xy + 4y2)A3,ζ(x+ y − ζ).

(10.168)

Now we are able to write down the approximate expression for the integral kernel,∫
dz (M2,ζ(x, y, z) + 2M2,ζ(x, z,−y)) = (MB,ζ(x, y) + 2MA,ζ(x,−y)). (10.169)

Explicitely,

MB,ζ(x, y) ≈ ey+ζ(ex + eζ)

(ey + eζ)(e2ζ − ex+y)

[
1

3
(x− y)2(2ζ − x− y)3

]
, (10.170)

MA,ζ(x,−y) ≈ ey(ex + eζ)

(e2ζ − ex+y)(ey + eζ)

1

15
(x− y)

[
8x4−47x3y+93x2y2−47xy3

+8y4 +15(x+ y)(x2 − 4xy + y2)ζ+90xyζ2−30(x+ y)ζ3 +15ζ4
]
.

(10.171)

Now we approximate the thermal factors by their value at x = ζ to get:

ey+ζ(ex + eζ)

(ey + eζ)(e2ζ − ex+y)
≈ − 1

sinh(y − ζ)
, (10.172)

ey(ex + eζ)

(e2ζ − ex+y)(ey + eζ)
≈ − 1

sinh(y − ζ)
. (10.173)

This allows us to combine the polynomials. However, to keep the analytic structure of the
functions correct we have to pull a factor (ζ−y) out of each poynomial. Consequently the
form we will be using is:∫

dy (MB,ζ(x, y) + 2MA,ζ(x,−y))
ψζ,R(y)

D
(10.174)

≈−
∫

dy
(ζ − y)

sin(y − ζ)
(pI,ζ(x, y) + 2pII,ζ(x, y))

ψζ,R(y)

D
(10.175)

=

∫
dy

(y − ζ)

sin(y − ζ)
pζ(x, y)

ψζ,R(y)

D
, (10.176)
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where

pI,ζ(x, y) =
1

3
(x− y)2(x+ y − 2ζ)2, (10.177)

pII,ζ(x, y) =
1

15

[
8x4−47x3y+93x2y2−47xy3 +8y4 +15(x+ y)(x2 − 4xy + y2)ζ

+ 90xyζ2−30(x+ y)ζ3 +15ζ4
]
,

(10.178)

pζ(x, y) =pI(x, y, ζ) + pII(x, y, ζ). (10.179)

Calculation of B2,ζ(x)

For B2 we find the following approximation:

B2,ζ(x) =

∫
dyMB,ζ(x, y) (10.180)

≈− 1

3

∫
dy

ey+ζ(ex + eζ)

(ey + eζ)(e2ζ − ex+y)
(x− y)2(x+ y − 2ζ)3 (10.181)

=− 1

3

∫
dỹ

e−x+ỹ+3ζ(ex + eζ)

(eỹ−x+2ζ + eζ)(e2ζ − eỹ+2ζ)
(2(x− ζ)− ỹ)2ỹ3, (10.182)

where we made the substitution ỹ = x+ y − 2ζ. Thus we get

B2,ζ(x) ≈ 4(x− ζ)2g0,ζ(x, ζ)− 4(x− ζ)g1,ζ(x) + g2,ζ(x), (10.183)

where

gn,ζ(x) = −1

3

∫
dỹ

e−x+ỹ+3ζ(ex + eζ)

(eỹ−x+2ζ + eζ)(e2ζ − eỹ+2ζ)
ỹ3+n, (10.184)

g0,ζ(x) =
2π4

45
− 2

[
Li4(−ex−ζ) + Li4(−e−x+ζ)

]
, (10.185)

g1,ζ(x) = −8
[
Li5(−ex−ζ)− Li5(−e−x+ζ)

]
, (10.186)

g2,ζ(x) =
16π6

189
− 40

[
Li6(−ex−ζ)− Li6(−e−x+ζ)

]
. (10.187)

We see that B2 is a function of (x − ζ) only and goes as (x − ζ)6. Thus we approximate
it as:

B2,ζ(x) =
11

90
(x− ζ)6 +

π6

2
. (10.188)

The approximation has be checked numerically and is in good agreement with the exact
expression independant of the value of the parameter ζ.
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