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ABSTRACT

This article gives an introduction and survey in the theory and spectroscopy of
plasmons in the bulk, as well as on boundaries of metals. First, concepts to describe
the metallic state and its interaction with electromagnetic fields are summarized, then
various approaches to obtain the plasmon–dispersion relations are studied. Finally,
some actual questions such as correlation effects and the surface charge density profile
on the plasmon–dispersion are discussed.

I. INTRODUCTION

Plasmons are quantized wave-like excitations in a plasma, i.e. a system of mobile
charged particles which interact with one another via the Coulomb forces. The clas-
sical example is an ionized gas consisting of (positive) ions and (negative) electrons
in a discharge tube. In metals (and in some highly doped semiconductors, too) the
electrons likewise form a plasma. In contrast to the aforementioned example, however,
the electrons form a degenerate Fermi-system, i.e. even at low temperature, the elec-
trons have a large kinetic energy (≈ Fermi-energy) so that (room-) temperature has
little influence on the electronic excitations. The ions, on the other hand, because of
their large mass have little kinetic energy and their (crystal-) structure and collective
excitations (=phonons) are completely dominated by the electrons.

As a consequence of the long range nature of the Coulomb interaction the frequency
of the plasma oscillations,

ωp =

√

n0e2

m0ε0
(1)

is very high compared with other collective excitations like phonons. n0 is the density
and m0 is the (free-) electron mass. For example, in Al we have h̄ωp = 15eV , whereas,
typical phonon energies are in the 10meV range. For a survey, see Di Bartolo’s article
in this book.

Collective excitations in classical plasmas were first studied by Langmuir [1]. The
pioneering theoretical investigations on their quantum counterparts were carried-out by
Bohm and Pines, see Pines [2]. Experimental evidence for the existence of plasmons as a
well defined collective mode of the valence electrons of metals comes from characteristic
energy-loss experiments. In such an experiment, one measures the energy loss–spectrum
of keV electrons transmitted through a thin metallic foil, Fig. 1. The multiple excitation
of this mode is also direct evidence for the quantization of the plasmon energy in units
of h̄ωp.
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Figure 1. Electron-energy-loss spectrum for a beam of 20keV electrons passing through an Al foil of
2580Å thickness. ∆E = h̄ωp = 15eV . From Marton et al. [3]

Excellent books and reviews on the theory and spectroscopy of solid state plasmas
are available. In particular we recommend Pines and Nozieres [4], Platzman and Wolf
[5], and DiBartolo [6]. Electron–energy–loss–plasmon spectroscopy became a major
tool to study electronic excitations in solids, for surveys see Raether [7], Schnatterly
[8], and Fink [9].

II. CONCEPTS TO DESCRIBE THE METALLIC STATE

II. A. The Standard Model: Jellium

To describe the characteristic metallic properties like the groundstate energy, the
elementary excitations, and the interaction with electromagnetic fields, simple models
have been found which are of immense value to solid state physics. For an introduction
see e.g. Pines[2] or Ashcroft and Mermin [10].

The simplest quantum mechanical model of the metallic state is due to Sommerfeld.
The Coulomb interactions between electrons as well as with the ions are completely
neglected, yet the many particle aspect is taken into account. The single-electron
states are plane-waves with wave-number k and energy εk which - in accordance with
the Pauli-principle - will be “filled” in k-space up to the radius kF , the Fermi-wave
number.

single particle states:

| k〉 = exp(ikr)

ε(k) = (h̄k)2/2m0

Fermi ground state:

kF = (3π2n)1/3

εF = (h̄kF )
2/2m0

vF = h̄kF /m0

Figure 2. Momentum distribution of the noninteracting Fermi-gas at zero temperature. In addition,
a particle-hole excitation from initial state ki to final unoccupied state kf is shown.
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El Z n/Å3 rs kF /Å εF /eV h̄ωp/eV m∗/m0 ε∞ Ref
Li 1 0.0470 3.25 1.12 4.74 7.10 2.30 1.02 [7,10]
Na 1 0.0265 3.93 0.92 3.24 5.75 1.30 1.06 [10,15]
K 1 0.0140 4.86 0.75 2.12 3.80 1.20 1.15 [10,15]
Rb 1 0.0115 5.20 0.70 1.85 3.40 1.30 1.25 [10,15]
Cs 1 0.0091 5.62 0.65 1.59 2.90 1.50 1.29 [10,15]
Ag 1 0.0586 3.02 1.20 5.49 3.78 1.10 [7,10]
Be 2 0.2470 1.87 1.94 14.3 19.0 0.42 1.02 [7,10]
Mg 2 0.0861 2.66 1.36 7.08 10.5 1.30 1.01 [7,10]
Al 3 0.1810 2.07 1.75 11.7 15.0 1.40 1.11 [7,10,15]

Tab.1. Parameters for some selected metallic elements and compounds. ε∞ = 1 + 4πnα where α is
the polarizability of the ions. For Ag ε∞ shows a strong dispersion peak at ωp. Experimental data for
m∗ contain electron-electron and electron-phonon renormalization contributions and are, thus, larger
than the bandstructure mass which is needed in (1).

Next, we consider the influence of the Coulomb interaction between the electrons
and the ions. For the “simple” metals - which include the alkalis, Al, Ga, In, Be, and Mg
- the crystal potential is weak so that it is a good approximation to smear-out the ions
into a positive background charge density ρ+ = −en0: Jellium. To describe the strength
of the Coulomb interaction we compare the average kinetic and potential energy per
electron ∗

εkin =
3

5
εF , εpot ≈

e2

4πε0

1

< r >
, (2)

where 〈r〉 ≈ n−1/3 is the mean electron distance. It is convenient to use “atomic units”,
i.e. we measure the lengths in units of Bohr-radii, energies in Rydbergs and characterize
the density by the dimensionless Wigner-Seitz radius rs.

atomic units:







Bohr-radius: aB = 4π ε0 h̄
2 /m0 e

2 = 0.529 . . . Å
Rydberg-energy: Ry = e2 / 8π ε0aB = 13.56 . . . eV
rs-parameter: n−1 = 4π

3 (aB rs)
3

(3)

As εpot ∝ r−1s but εkin ∝ r−2s , the Coulomb interaction becomes weak in the high density
limit, rs < 1. In most cases, however, rs is not small but usually lies in the range 2..6,
Tab. 1.

The Hamiltonian of Jellium is given by

Ĥ =
N
∑

j=1

p̂2j

2m0
+

1

2

∑

i6=j

e2

4πε0

1

| r̂i − r̂j |
+ Ĥel−ion + Ĥion−ion (4)

The Coulomb interaction couples the states of all particles so that the exact eigenstates
of Ĥ are not analytically accessible, yet reasonable approximations have been found.
Owing to the uniform background charge the average field acting on one electron van-
ishes, so that as a first guess one might use a product of plane waves in accordance
with the exclusion principle - up to kF one electron per k and spin. This is the Hartree-
approximation, which, gives the same result for the ground state energy as the free elec-
tron model! To describe the metallic bound state one has to respect the antisymmetry
of the wave function with respect to interchange of any two particles. Fortunately, in
this Hartree-Fock approximation, the plane waves still provide a consistent basis, yet
the single particle energies are different from the free-electron energy εk, Fig 2. As a
result, the ground-state energy (per electron) is:

E0/N =
e2

8πε0aB

[

3

5
(kF aB)

2 − 3

2π
(kF aB)

]

=

[

2.21

r2s
− 0.916

rs

]

Ry (5)

The second term in (5) is termed “exchange energy” because it results from the exchange
of particles in the antisymmetrized wave-function. The difference between the exact
ground state energy and the Hartree-Fock result is -by definition - the “correlation

∗ Electron charge is −e, vectors in boldface, operators and tensors in boldface with hat.
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h̄q = h̄kf − h̄ki

h̄ω = εf − εi

h̄ω = ah̄vF q +
(h̄q)2

2m0

α = −1 . . . 1

Figure 3. Particle-hole excitation spectrum of a Fermi-gas (dotted area). The solid (dashed) lines
display the plasmon-dispersion in a quantum mechanical (hydrodynamic) description. rs = 2.

energy”. For Jellium a bound state is only possible for not too high densities, rs > 2.4.
In the low density limit, on the other hand, the electron behavior is dominated by
the Coulomb interaction. For rs > 100 the homogeneous state becomes unstable and
crystallizes in a “Wigner - lattice”, similar to the ions in a real metal [2,11].

To incorporate influences of the periodic crystal potential and the polarizability of
the ions one has to replace the free-electron mass m0 by a (bandstructure-) effective
mass m∗ and ε0 by ε0ε∞, where the “background” dielectric constant ε∞ accounts for the
polarizability of the ion cores. In semimetals and heavily doped degenerate semicon-
ductors the electron densities are quite small compared to ordinary metals, nevertheless
their coupling parameter rs may be even smaller than unity. For the ground state en-
ergy of real metals, the energy of the bottom of the band minimum and the electrostatic
energy of the ions must be taken into account as well [2].

II. B. Particle - Hole Excitations

Apparently, the simplest type of excitation in a degenerate Fermi-system (at con-
stant particle number) is by pushing one electron out of the Fermi-sea, leaving a hole
behind, Fig.2. Conservation of energy and momentum requires h̄q = h̄kf− h̄ki h̄ω = εf−εi
which leads to a quadratic function between ω and q. As a function of the parameter
a = kicosθ/kF = −1 . . . 1 the allowed region of excitations cover an entire region in the
ω − q plane, Fig. 3.

II. C. Collective Excitations: Plasmons

Plasmons are collective excitations of the many electron system, i.e. all particles
move coherently with a common frequency and wave-vector. In the long wave-length
limit λ >> 1/kF this mode can be obtained quite simply. In addition we assume only
a single band to contribute (one-component plasma). Consider deviations ρ1 of the
electron charge-distribution from its equilibrium value ρ0. Then, the total charge dis-
tribution

ρ(r, t) = ρ+ + ρ0 + ρ1(r, t) (6)

will be the source of an electrical field

divE(r, t) = ρ1(r, t)/ε0, curlE(r, t) ≈ 0. (7)

Due to charge neutrality ρ0 + ρ+ = 0. In addition, the charge– and current density must
obey the continuity equation

∂ρ(r, t)

∂t
+ div j(r, t) = 0 (8)
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where j(r, t) = ρ(r, t)v(r, t) and v(r, t) denotes the mean velocity of the electrons. Fi-
nally, we need an equation to link the electron-velocity to the electrical field. In a
hydrodynamic-like description this equation reads (see appendix A1):

m0 n(r, t)
∂v

∂t
+ gradP (r, t) = −en(r, t)E(r, t). (9)

For low frequencies local thermodynamic equilibrium would hold and P (r, t) = 2E/3V =
2εFn(r, t)/5 is the pressure of the electron gas (at constant temperature, T = 0). For
small amplitude oscillations, | ρ1 |<<| ρ0 |, we obtain

[ ∂

∂t
+ γ

]

j(r, t) =
n0e

2

m0
E(r, t)− β grad ρ1(r, t) (10)

γ accounts for additional damping processes. Actually, plasma oscillations are a high
frequency phenomenon so that the correct value for β is different from βhyd = v2F /3. In
the “random phase approximation” which is valid for rs < 1 βRPA = 3v2F /5 [2,4]. Eq. (10)
is a generalization of the Drude-theory to inhomogeneous fields.

Assuming wave-like behaviour of all fields, e.g., ρ1(r, t) ∝ exp[i(qr− ωt)] and E, j ‖ q,
we obtain for the plasmon–dispersion

ωbp(q) =
√

ω2p + βq2 = ωp

[

1 +
β

2ω2p
q2 + . . .

]

. (11)

Bulk plasmons are, thus, longitudinally polarized charge–density waves. For neutral
Fermi-systems (ωp = 0) like liquid 3He the collective mode is a low-frequency phe-
nomenon with sound-like dispersion ω = c0q, c0 = vF /

√
3.

For small wave vectors, the stability of the plasmon is obvious from Fig. 3: the
decay into a single electron-hole pair is forbidden by conservation of momentum and
energy! Decay into several electron-hole pairs, however, is not excluded, yet as a higher
order process it leads only to a small transition rate. For larger wave vectors the
plasmon dispersion enters the particle-hole continuum and can decay directly into a
single electron-hole pair (Landau-damping). Thus, the plasmon is expected to disappear
as a well defined excitation beyond a critical wave-vector qc ≈ kF .

II. D. Interaction with Electromagnetic Fields

It is clearly not feasable to work with the complete microscopic Maxwell-equations
for real many particle systems. It is possible, though, to use “macroscopic fields” so
that the Maxwell equations still retain their form and to construct reasonable approxi-
mations. For an introduction see Wooten [12], whereas, the state of the art of dielectric
description of matter is layed down by Kirshnits et al. [13].

In a first step, one decomposes the charge and current densities into “external” and
“system” or “induced” quantities.

ρ(r, t) = ρext(r, t) + ρind(r, t), j(r, t) = jext(r, t) + jind(r, t). (12)

Here the adjective “external” merely refers to the control, not to the location of the
sources, i.e. we assume that they are not effected by the fields induced in the system.
Instead of ρext, jext one often uses Eext,Bext, the external fields in the absence of the
system charges.

For time-dependent fields, there is only but one independent “matter field”, jind(r, t),
- the charge density is already fixed (up to a constant) by integration of the continuity
equation.

∂ρind(r, t)

∂t
+ div jind(r, t) = 0. (13)

Instead of jind(r, t) one often introduces two other fields P, M, the polarization and
magnetization, by requiring

jind(r, t) =
∂P(r, t)

∂t
+ curlM(r, t), ρind(r, t) = −divP(r, t). (14)
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Equations (14) automatically fulfill the continuity equation for the system charges. Such
a decomposition is particularly useful for quasistatic fields for which P,M were originally
constructed. In addition, one tacitly assumes that curlP = 0. For high frequencies,
however, the decomposition of the current in terms of polarization and magnetization
currents is ambiguous and one may put M = 0 without loss of generality! In this “gauge”
D = ε0E + P, B = µ0H and the Maxwell equations become particularly simple:

curlE(r, t) =
∂B(r, t)

∂t
,

divD(r, t) = ρext(r, t),

curlB(r, t) = µ0

(

jext(r, t) +
∂D(r, t)

∂t

)

,

divB(r, t) = 0.

(15)

To specify the system under consideration, the Maxwell-equations must be supple-
mented by “material” equations, which - like (10) - link js or P,M to the external (or
total) fields. On a phenomenological level, this can be achieved by

D(r, t) = ε0ε̂E(r, t) = ε0

∫ ∫

ε(r, r′, t− t′)E(r′, t′)d3r′ dt′ (16)

or by the inverse relation

E(r, t) =
1

ε0
ε̂
−1D(r, t) =

1

ε0

∫ ∫

ε
−1(r, r′, t− t′)D(r′, t′)d3r′ dt′ (17)

where ε
−1(r, r′, t− t′) denotes the kernel of the operator ε̂

−1 which is inverse to ε̂.
For infinite, homogeneous systems, ε(r, r′, t− t′) is solely a function of r− r′ and the

Maxwell-equations can be simplified by Fourier-transformation.

E(r, t) =

∫ ∫

E(q, ω) ei(qr−ωt) d
3q dω

(2π)4
,

E(q, ω) =

∫ ∫

E(r, t) e−(iqr−ωt)d3r dt,

D(q, ω) = ε0 ε(q, ω)E(q, ω),

ε(q, ω) =

∫ ∫

ε(r, t)e−i(qr−ωt) d3rdt.
(18)

To solve the following set of algebraic equations,

iq×E(q, ω) = i ωB(q, ω),

iq ·D(q, ω) = ρext(q, ω),

iq×B(q, ω) = µ0
(

jext(q, ω)− i ωD(q, ω)
)

,

iq ·B(q, ω) = 0,
(19)

it is convenient to decompose all vector-fields into longitudinal and transverse compo-
nents with respect to wave vector q, i.e.

E(q, ω) = E` + Et =
(

E · n`
)

n` + n` ×
(

E× n`
)

(20)

with unit vector n` = q/ | q |. Even for homogeneous and isotropic systems, like Jellium,
the reaction of the charged particles with respect to transverse and longitudinal fields
is different, i. e. ε(q, ω) is still a tensor with two different principal components ε`, εt.

D(q, ω) = ε0 ε(q, ω)E(q, ω) = ε0ε`(q, ω)E` + ε0εt(q, ω)Et(q, ω) (21)

ε`(0, ω) = εt(0, ω) is the “optical” dielectric function ε(ω). The solution of (19) is given by

D`(q, ω) =
−i
q
ρext(q, ω),

E`(q, ω) =
−i ρext(q, ω)
ε0 ε`(q, ω) q

,

B`(q, ω) = 0,

Dt(q, ω) = ε0εt(q, ω)Et(q, ω),

Et(q, ω) =
i ω jext(q, ω)

ε0[c2 q2 − ω2 εt(q, ω)]
,

Bt(q, ω) =
1

ω
q×Et(q, ω).

(22)

The longitudinal component of the external current satisfies (jext − iωD)` = 0 which is
equivalent to the continuity equation. Apparently, B is purely transverse. For non-
relativistic particles, retardation effects may be neglected, hence, the electrical field is
almost longitudinal. Furthermore, for slab geometries, D is identical with ε0Eext, the
electrical field without the system-charges.
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In the hydrodynamic description the required dielectric functions are easily obtained
from the Fourier-transformed equations (7,8,10)

ε`(q, ω) = 1−
ω2p

ω(ω + iγ)− βq2
, εt(q, ω) = 1−

ω2p
ω(ω + iγ)

. (23)

Parameters γ, β can be used to fit the measured bulk losses and plasmon-dispersion. In
the high density limit rs < 1, βRPA = 3v2F /5 which will be used as a reference. εt(q, ω)
is identical with the standard Drude theory. Due to the singular structure of the
denominator for the transverse fields in (22), this approximation will be sufficient in
most cases.

The situation is more subtle for the longitudinal dielectric function. Clearly the
hydrodynamic ε`(q, ω) does not properly include particle-hole excitations which requires
a microscopic theory, i.e. a kinetic or quantum treatment. Explicit analytical results
were first obtained by Lindhard (see [2,4] and appendices A2,3), Fig. 4.

Causality requires that the kernel ε(r, r′, t−t′) = 0 if t′ > t, i.e. the system cannot react
before the pertubation is turned-on. This “trivial” property has deep consequences: In
Fourier-space, εt(q, ω) is an analytic function in the complex ω−half-plane =ω > 0 which,
in turn, leads to the Kramers-Kronig relations:

< εt(q, ω)− 1 =
1

π

∫ ∞

−∞

P
= εt(q, ω′)
ω′ − ω

dω′, = εt(q, ω) = −
1

π

∫ ∞

−∞

P
< εt(q, ω′)− 1

ω′ − ω
dω′ . (24)

Symbol “P” denotes “principal value integration”, which is a prescription how to eval-
uate the singular integrals.

The Kramers-Kronig relations (24) are strictly valid for the transverse dielectric
function only. Here, D is the response on the pertubation E. For longitudinal fields the
situation is opposite. ρext, or equivalently D, plays the role of an (arbitrarily prescrib-
able) pertubation rather than E. Hence, ε−1(r, r′, t − t′) = 0 if t′ > t is a causal function,
and ε−1` (q, ω) is analytic in =ω > 0 and, correspondingly, the Kramers-Kronig relations
read:

< 1

ε`(q, ω)
− 1 =

1

π

∫ ∞

−∞

P
= 1

ε`(q,ω′)

ω′ − ω
dω′, = 1

ε`(q, ω)
= − 1

π

∫ ∞

−∞

P
< 1

ε`(q,ω′) − 1

ω′ − ω
dω′. (25)

But, why is ε`(q, ω) not “as good” as ε−1` (q, ω)? ε−1` (q, ω) may well have a zero in
=ω > 0 so that its inverse would have a pole at just this frequency. Obviously, ε`(q, ω)
wouldn’t be analytic in =ω > 0 which, by “backshooting” kills causality between the
longitudinal D-response and E-pertubation. Eq. (24) is correct for transverse fields
whereas (25) holds for longitudinal fields! In mathematical terms: The operator ε̂ has
a zero eigenvalue (with “transverse eigenfunction”) so that its inverse does not exist.
Likewise for ε̂

−1 and longitudinal fields. To describe the longitudinal response it is best
to introduce a (longitudinal) susceptibility χ(q, ω) as it is done in microscopic treatments

1

ε`(q, ω)
= 1 +

e2

ε0q2
χ(q, ω) =

ρ(q, ω)

ρext(q, ω)
=

Φ(q, ω)

Φext(q, ω)
. (26)

χ(q, ω) denotes the Fourier-transform of the density response function [2,4,12,13]

χ(r, r′, t− t′) = − i

h̄
θ(t− t′)〈〈[N̂(r, t), N̂(r′, t′)]〉〉 (27)

which is related to the dynamic form factor S(q, ω) by

χ(q, ω) =

∫ ∞

0

S(q, ω′)
[ 1

h̄(ω − ω′) + iδ
− 1

h̄(ω + ω′) + iδ

]

dω′,

S(q, ω) =
1

Ω

∑

m

| 〈m | N̂†
q | 0〉 |2 δ(h̄ω − Em + E0), ω > 0.

(28)

| m〉, Em are the exact many-body states and energies, Ω is the volume, and N̂(r, t) is the
density operator. Clearly, the poles of χ(q, ω) are identical with the excitation energies
of the many body system.
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Figure 4. Real part (solid lines) and imaginary part (dotted lines) of the Lindhard dielectric function.
rs = 2.
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Figure 5. Location of singularities of χ(q, ω) in RPA. The branch cut describes the particle-hole
excitations whereas the poles correspond to the plasmon-mode.

With the aid of (24,25) and the high frequency behaviour of ε(q, ω)→ 1− (ωp/ω)
2 one

can prove the following sum rules[2,4]

∫ ∞

0

ω = −1
ε`(q, ω)

dω =

∫ ∞

0

ω = εt(q, ω) dω =
π

2
ω2p. (29)

Due to the translational symmetry of Jellium, the q = 0 limit of the exact dielectric
function is identical with the Drude-result in the absence of scattering

ε`(0, ω) = εt(0, ω) = 1−
ω2p
ω2
. (30)

III. BULK PLASMONS

III. A. Dispersion, Life-Time, and Oscillator Strength

A collective excitation always corresponds to a possible oscillation of the system
in the absence of an external field. Apparently, the dispersion relation ωbp(q) of these
modes is given by the poles of the density response function χ(q, ω), or equivalently, the
zeros of ε`(q, ω):

χ(q, ω) =∞, or : ε`(q, ω) = 0. (31)

Bulk plasmons are purely electrical waves, B = 0.
Causality warrants that the solutions of (31) are located on the real ω−axis or in

the lower ω−half-plane when continuing χ(q, ω) analytically to =ω < 0.

ω = ωb(q)− iΓ(q), Γ(q) = h̄/τ > 0. (32)

where τ is the plasmon life-time. Well defined collective modes are only those solutions
with Γ << ωp, Fig. 5.

The solutions of (31) lead to peaks in the loss-function

P0(q, ω) = =
−1

ε`(q, ω)
(33)

which describes the power dissipated by the external field, Fig. 6. Branch-cuts cor-
responding to the particle-hole excitation continuum may lead to peaks in the loss-
function which will be hard to distinguish experimentally from “true” collective modes.

In the small-q limit the dispersion is parabolic and their line-width is zero for
q < qc ≈ ωp/vF within the kinetic or RPA theory. If the pole is close to the real ω−axis
we may write

P0(q, ω) =
<Z(q) Γ(q)−=Z(q) [ω − ωbp(q)]

[ω − ωbp(q)]2 + Γ2(q)
+ Pinc(q, ω),

Z−1(q) =
∂ε(q, ω)

∂ω
, ω = ωbp(q),

(34)
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Figure 6. Loss-function for the Lindhard dielectric function [A3]. Instrumental resolution is simulated
giving ω a small imaginary part of 0.01EF . rs = 2.
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Figure 7. Geometry of the electron–energy–loss scattering experiment [9]

where Z(q) is the residue of the pole which is the plasmon-oscillator strength. Pinc(q, ω)
describes the “incoherent” background contribution of the particle-hole excitation con-
tinuum. If =Z(q) << <Z(q) the plasmon line-shape is lorenzian with width Γ(q). Due
to the sum-rule (29), Z(q) is largest at q = 0, and decreases with increasing momen-
tum transfer. Thus the plasmon is the dominant feature in P (q, ω) at low momentum
transfer.

III. B. Fundamentals of Electron-Energy-Loss-Spectroscopy (EELS)

Spectroscopy of plasmons requires the interaction with electromagnetic fields, either
by radiation or with charged particles like fast electrons. As plasmons are longitudinal
polarized they don’t couple directly to transverse electromagnetic waves. An almost
ideal tool, are fast (but nonrelativistic) electrons, which interact quasistatically via their
Coulomb-field “flying” with them [2,5-9]. We follow Fink [9] on “recent developments
on electron-energy-loss-spectroscopy”.

The geometry of an EELS experiment is shown in Fig. 7. In the Karlsruhe-
spectrometer of Dr. Fink (now at IFW Dresden) the primary energy is E0 = 170keV

which corresponds to k0 = 228.4Å−1. The scattered electrons are analyzed with respect
to energy- and momentum transfer. Small q’s require very small scattering angles, i.e.
for q = 1Å−1 the scattering angle is 4mrad ≈ 0.25◦. Decomposition of the scattering wave
vector into components parallel and perpendicular to the incoming beam reveals

q‖ ≈ k0(h̄ω/2E0), q⊥ ≈ k0 sin θ, (35)

with q2 = q2‖ + q2⊥. Optimum resolution of the instrument is achieved at lowest beam
current (15nA, beam cross section is 0.5mm after passing the monochromator): ∆E =

80meV , ∆q = 0.04Å−1 (full width at half maximum).
The basic quantity measured is the differential cross-section which, as usual, can

be factorized in an atomic form factor (=Rutherford cross section) and in the structure
function S(q, ω) which contains the dynamics of the system [2,5]. Instead of S(q, ω)
EELS–spectroscopists prefer the loss function P0(q, ω).

d2σ

dΩd(h̄ω)
=

4

a2Bq
4
S(q, ω) =

h̄

(πaB)2
1

q2
P0(q, ω). (36)

The EELS cross-section decreases with increasing momentum transfer. For X-ray scat-
tering the situation is opposite, yet EELS-resolution is much better.
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Fig.8. Excitation spectrum of Al in the range 1-250 eV. From Schnatterly [8].

Figure 9. Measured plasmon-dispersion and line-width in Al parallel to [100] direction compared to
least square fit curve (thin line) and theories. From Sprösser-Prou et al. [14].
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III. C. Experimental Results

In the last two decades plenty of experimental and theoretical work has been per-
formed on the dispersion of plasmons as well as on other excitations in metals. In
particular, the simple metals like Al and the alkali metals (apart from Li) are regarded
as nature’s closest realization of Jellium. In these metals, band structure effects are
expected to be small so that exchange and correlation effects may be studied. For a
survey on other materials see Raether [7].

Fig. 8 shows, as an example, the measured excitation spectrum of Al. In order of
increasing energy the features of the spectrum are: an interband transition at 1.5eV , the
surface plasmon at 7eV (oxidized surface), the bulk plasmon at 15eV , multiple excitation
of plasmons, and the LII,III soft X-ray threshold at 72.5eV etc. With one instrument,
all the elementary excitations from the near IR to the soft X-ray region can be studied
[8].

Results of a high resolution ELS study of the bulk plasmon dispersion with respect
to the absolute value and orientation of the transferred momentum in an Al single
crystal are shown in Fig.9. The dispersion has been observed to be biquadratic in q
with unique parameters over the entire q range up to the cut-off wave-vector, in contrast
to earlier studies as summarized e.g. in [7].

h̄ωbp(q) = h̄ωp + α
(h̄q)2

m0
+Bq4. (37)

However, substantial deviations from the RPA result αRPA = 3
5εF /h̄ωp = 0.44 have been

found: αexp = 0.30. Beyond the cut-off qc (indicated by an arrow) the plasmon still exists
but with an increased line-width.

Plasmon dispersion in the alkali’s seems to be even more puzzling, Fig. 10. Pre-
vious measurements of plasmon-dispersion in simple metals always showed a positive,
quadratic dispersion. Rb is the first metal with almost no dispersion at all. The de-
viations become even more pronounced in the case of Cs which exhibits a negative
dispersion. Deviations do not only occur with respect to the RPA, but to improved
theories as well, Fig. 11. Particularly, the deviations increase with rs and indicate the
increasing influence of correlation effects in the metallic regime. One might interpret
the negative dispersion in Cs as an incipient Wigner-crystallization of the electrons.

Figure 10. Plasmon dispersion for polycrystalline K, Rb, and Cs (a-c). From v. Felde et al. [15].
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Figure 11. Normalized plasmon dispersion coefficient as a function of the density parameter rs.
Dotted line: RPA, solid and dashed lines: theory by Vashishta and Singwi [16] and Dabrowski [17].
From v. Felde et al. [15].

Figure 12. Calculated excitation spectrum of Cs. Upper part: Total density of states (solid line)
and contributions from individual bands (broken lines). Fermi energy is 1.88eV . Lower part: Loss
function for some wave vectors along the (1, 0, 0) direction. q = 2πκ(1, 0, 0)/a, for κ = 0.1, 0.2, 0.3, 0.6
(full, dashed-double dotted, dashed-dotted, and dashed lines). From Kollwitz and Winter [20].
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Figure 13. Angle dependence (left) and dispersion (right) of the bulk-plasmon in Bi2Sr2CaCu2O8,
a high Tc superconductor in the normal state. From Nücker et al. [22].

The construction of a reasonable approximation for the interacting electron gas
in the intermediate coupling range is a long standing problem. Deviations from the
RPA arise from the neglected exchange and correlation as well as from the periodic
crystal potential, which, both reduce α with respect to the RPA result. Up to 1986
the theoretical results, e.g. [16-17] converged to the result diplayed in Fig. 11 by the
solid and dashed lines. Remarkably, the results of these ambitious many-body theories
agrees very well with a kinetic theory when the many-body interactions are included
by a standard density functional description, appendix A2, where

α/αRPA = 1−
[

0.092rs +
0.0034r2s
1 + rs/21

]

. (38)

Stimulated by the experimental results by v. Felde et al. [15] several groups ob-
tained a qualitative improvement. Taut and Sturm [18] considered the combined effect
of exchange-correlation and crystal potential and Lipparini et al. [19] worked out a
sum-rule approach taking multipair excitations into account. Kollwitz and Winter [20]
and Aryasetiawan and Karlson [21] calculated the density response function within a
LDA formalism. The Cs-density of states resembles those of a transition metal, Fig 12.
Thus, the heavier alkalis are not free-electron–like metals!

Fig. 13 gives the “in-plane” plasmon dispersion at 300Kin Bi2Sr2CaCu2O8 - one of
the new high Tc superconductors [22]. The most important bands are essentially formed
by the occupied orbitals in the Cu−O plane. Those with the largest overlap being the
Cu 3dx2−y2 and the O 2px, O 2py orbitals forming a quasi two-dimensional tight-binding
bandstructure

E(k) = −1

2
t

[

cos(kxa) + cos(kya)

]

(39)

with t ≈ 1.5eV and O − O distance a = 3.8Å. Approximating the matrix elements in the
RPA dielectric function, A3, by their free electron values (=1)

ε(q, ω) = 1− e2

ε0q2
4

∫

d3k

(2π)3
f(E(k)

∆E

(h̄ω + i0)2 − (∆E)2
(40)

where ∆E = E(k + q)− E(k) the plasmon dispersion becomes in the q → 0 limit [22]

h̄ωbp(q) =

√

(h̄ωp)2 +
1

6
(ta)2q2

[

3

2
+

1

2
cos4φ

]

, (41)

where φ is the angle between q in the x− y plane and the x axes. Other parameters are
ε∞ = 4.5, m∗/m0 = 1.7, n0 = 9 × 1021cm−3. There is a remarkable good agreement with
experiment.
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Figure 14. Dispersion (left) and Loss-function (right) of a two component Fermi-system. ωp2 =
0.5ωp1, τ1 = τ2 = 71/ωp1. Dashed lines: τj =∞. From [27].

III. D. Acoustic Plasmons in a Two-Component Fermi-System

A Fermi-system with two (or more) different types of mobile charge carries e.g. a
transition metal with s and d electrons exhibits two distinct collective charge density
excitations: a high frequency “optical” plasmon and a sound-like “acoustic” plasmon.
The dispersion of these modes, in the limit q → 0 and in absence of scattering, is given
by [23,24],

ωopt(q) =
√

ω2p1 + ω2p2 +O(q2),

ωac(q) =

√

ω2p1β2 + ω2p2β1

ω2p1 + ω2p2
q.

(42)

ωpj and βj denote the plasma frequencies and dispersion coefficients of the components
j = 1, 2.

In contrast to optical plasmons, which are well-established experimentally, their
acoustic counterparts have not yet been unambiguously identified, e.g. [25]. Neverthe-
less, there are several speculations in serious journals about their relationship to the
“old high Tc” superconductors, e.g. Nb3Sn [26].

Analogous to plasmons in a one–component Fermi–system the dispersion of acoustic
and optical plasmons is obtained from

ε(q, ω) = 1 + Π1(q, ω) + Π2(q, ω) = 0, (43)

where Πj(q, ω) denotes the polarization of the individual components. In the hydrody-
namic description (23), we obtain

ε(q, ω) = 1−
ω2p1

ω(ω + iγ1)− β1q2
−

ω2p2
ω(ω + iγ2)− β2q2

. (44)

For γj = 0 the two branches of the solutions of (43) are given by (41). Results of
a numerical study within a kinetic theory are displayed in Fig. 14. Notice that the
acoustic mode is overdamped near q = 0 and its oscillator strength is very small.
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IV. SURFACE PLASMONS

IV. A. Concept of a Surface Plasmon

The concept of surface plasmons was introduced by Ritchie[28] shortly after the
discovery of bulk plasmons in metals. In recent years surface plasmons have been
observed in a wide range of materials using both electron and photon spectroscopy.
In addition, significant progress has been made towards a systematic use of surface
plasmons as a diagnostic tool to investigate the surface charge profile of metals. For
surveys see, e.g. Raether [29].

Suppose an electron gas confined to the half-space z < 0 with a smooth electron
charge distribution near the metal-vacuum boundary, Fig. 15. If an external field acts
on the plasma boundary it will induce a charge which is concentrated near the surface,

ρ(r, t) = <
[

exp[i(qxx− ωst)]d(z)

]

, (45)

where qx is the wave number and ωsp the frequency of the surface charge density wave.
For metals, the “spill-off” of the charge density across the geometrical boundary

z = 0 is of the order of 1/kF ≈ 1Å, so that a macroscopic description may be sufficient
for a qualitative understanding of surface charge density wave.

The charge oscillations are in turn the sources of electromagnetic fields. In partic-
ular, we are looking for “evanescent” waves, i.e. fields which decay exponentially from
the surface. First, divE demands:

E(r, t) = <
[

(αA, 0, iqxA)e
i(qxx−ωt)e−αz

]

(46)

where qx is the same in both half-spaces but the amplitudes A± and decay-constants
α = ±α± are different. Second, the wave equation requires

∆E + (
ω

c
)2 ε±(ω)E = 0, q2x − α2± = (

ω

c
)2ε±(ω), (47)

and, third, we have to respect the boundary condition at z = 0:

Continuity of Ex:

Continuity of Dz:

−α+A+ = α−A−,

qxε+A+ = qxε−A−.
(48)

Nontrivial solutions for A± of (48) require the determinant to vanish

α+ε−(ω) + α−ε+(ω) = 0, (49)

Figure 15. Electron charge distribution (left) and electromagnetic field (right) for a plasmon at a
plane surface.

17



or, when using the relation between α± and qx:

√

q2x − (
ω

c
)2ε+(ω) ε−(ω) +

√

q2x − (
ω

c
)2ε−(ω) ε+(ω) = 0. (50)

This equation may be solved for qx as a function of ω

q2x = (
ω

c
)2

ε+(ω)ε−(ω)

ε+(ω) + ε−(ω)
, (51)

which is a true solution only if < ε+/ε− < 0.
For a Drude-metal bounded by a nondispersive dielectric εb, we have:

ωsp(qx) =















c√
εb
qx

[

1− 1

2
(
c

ωp
)2q2x . . .

]

, qx << ωp/c

ωp√
1 + εb

[

1− 1

2
(
ωp
c
)2
( εb
1 + εb

)2
q−2x . . .

]

, qx >> ωp/c.

(52)

Core-polarization effects in the metal can be taken into account by rescaling ωp →
ωp/

√
ε∞, c→ c/

√
ε∞, εb → εb/ε∞.

The phase velocity of the surface-plasmon is always smaller than the speed of light
in the adjacent dielectric. Thus, without participation of another system which may
take-off momentum the surface-plasmon cannot decay radiatively. Even the decay into
other surface-plasmons of smaller energy is not possible. Any structural feature which
breaks the symmetry of the plane surface, however, may give rise to coupling: surface
roughness, phonons, grating-rulings,. . . (For the discussion of “radiative plasmons” see
Raether [29].)

The discussion of surface-plasmons can be alternatively presented as a problem
of optics: Does the (inverse) reflection problem have an outgoing solution for vanish-
ing amplitude of the incoming field?[30,31] For p-polarized light the standard Fresnel
formulae for the reflection of light at a plane surface are [32]:

Rp =
tan(α− β)

tan(α+ β)
,

sin(α)

sin(β)
= nr =

√

ε−(ω)

ε+(ω)
. (53)

Rp denotes the amplitude reflection-coefficient and α, β are related by Snell’s diffrac-
tion law which is a consequence of the continuity of qx at the boundary. (Formally,
these relations are valid for complex α and β, too.) In the limit of vanishing incoming
amplitude a nonzero outgoing wave is only possible for Rp = ∞, i.e. α − β = π/2 or
cosα = − sinβ. Using tanα = qx/q⊥ = −nr and q2⊥+q2x = (ω/c)2ε+ immediately leads to (51).
(α = π/2− iα′). In addition, we notice that Rp = 0, i.e. α + β = π/2 is just the condition
for the Brewster-angle.

Standard optics for metals as well as for semiconductors is based on the assump-
tion that only transverse electromagnetic waves can propagate in the material. At
frequencies comparable with the plasma-frequency the inertia of the conduction elec-
trons prevents instant screening and, besides the transverse electromagnetic waves, a
longitudinal plasma wave can propagate inside the metal[31].

An elegant formulation of the reflection properties is by using the surface impedance
Zp (in units of

√

µ0/ε0 ≈ 377Ω)[32].

Rp(α, ω) =
Zp − cosα

Zp + cosα
(54).

For p-polarized light, incident from the vacuum at an angle α from the surface normal,
the surface impedance is given by[33]

Zp =
Ex(−0)
Hy(−0)

=
1

2π

(2iω

c

)

∫ ∞

−∞

dqz
q2

[

q2x
(ω/c)2 ε`(q, ω)

+
q2z

(ω/c)2 εt(q, ω)− q2

]

(55)

where q2 = q2x+ q2z , qx = ω sinα/c. Eq. (55) is valid for a sharp surface and if the electrons
are scattered specularly at the surface.
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The surface plasmon dispersion is obtained from the pole of (54)

√

q2x − (
ω

c
)2 = − 2

π

∫ ∞

0

dqz
q2

[

q2x
ε`(q, ω)

+
q2z

εt(q, ω)− (cq/ω)2

]

. (56)

Result (56) includes many previous results for the sharp-barrier approximation.
For example, in the local approximation ε`(q, ω) = εt(q, ω) = ε(ω) (51) is obtained. If
retardation is neglected by letting c→∞ in (56), only the term involving the longitudinal
dielectric function remains,

−1 =
2qx
π

∫ ∞

0

dqz
q2ε`(q, ω)

, (57)

which, in the hydrodynamic approximation and small wave vectors becomes Ritchie’s
“classic” result [28]

ωsp(qx) =
ωp√
2

[

1 + (a1 + ia2)qx

]

, a1 =

√

3

10

vF
ωp
, a2 = 0. (58)

Historic Remark: Before the discovery of the ionosphere, Zenneck and Sommerfeld
[34] set-up a theory for the long distance propagation of radio-waves over (conducting)
earth or sea-water of just the same type as given by (45-51), (as cited in [31]).

IV. B. Surface-Plasmon Spectroscopy

As the phase-velocity of the surface plasmon is always smaller than the velocity of
light in the adjacent dielectric (or vacuum), surface plasmons cannot directly be excited
by light. There are, however, two tricks to overcome this problem [29].
(a) Use of periodic surface structures. If there is a line-grating in the surface with

spacing d the photon with frequency ω0 may pick-up momentum Km = 2πm/d, m =
0,±1,±2, . . . from the surface: qx = ω0 sinα/c + Km. If (qx, ω0) is on the dispersion
curve, a surface plasmon may be emitted. The latter can decay and, thus, power is
absorbed from the reflected beam. Radiative decay with momentum transfer Kn is
also possible and lead to additional diffraction peaks which were first observed by
Wood[35] as early in 1902. (As cited by Ritchie et al. [36]).

(b) ATR (attenuated total reflection) or prism method. At the boundary of a dielectric
with refractive index n light with frequency ω0 is totally reflected if the angle of
incidence, α, satisfies sin α > 1/n, Fig. 17. In this case, there is an evanescent
wave outside the dielectric propagation along the surface with wave-vector qx =
n(ω0/c) sin α in perfect analogy with the surface plasmon. Photons in evanescent
waves have n sin α times larger momentum than in vaccuum! The range of accesible
wave vectors is ω0/c < qx < nω0 /c.

Methods using periodic surface structures were first applied to metals where the
plasma-frequency is in the UV region. It has not yet been possible to produce grating
distances of the same order as the wavelength of light so that only but a small part of
the dispersion curve near the light line has been accesible. These experiments, however,
have been performed with high accuracy and even then small zone boundary gaps have
been observed, Fig. 16. For doped semiconductors, on the other hand, the plasma-
frequency is in the IR region and the full excitation curve has been investigated [37].

The ATR technique has two main advantages over the grating technique. (1) The
surface of the sample is not destructively disturbed. (2) In the weak coupling limit, i.e.
when the gap between the sample and the prism is large enough, the frequencies of the
reflectivity minima directly yield the surface plasmon dispersion, Fig. 17.
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Figure 16. Dispersion curve of surface-plasmons in Al and Au by a concave grating for varying angles
between entrance and exit slits. Upper inset shows a zone-boundary gap, lower insets gives a Feynman
diagram of the creation and radiative decay of the plasmon. From Ritchie et al. [36]

Figure 17. Dispersion of surface plasmons in InSb as obtained from ATR-spectra. ωp = 426.5cm−1,
kp = ωp/c. ε∞ = 15.68, γ = 0.03ωp. From Fischer et al. [37]
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Figure 18. Surface plasmon dispersion of Al. Experimental data from Krane and Raether[39]. The
dashed–dotted and solid lines represent the result of a sharp barrier and a two-step model within the
hydrodynamic description. From Forstmann and Stenschke[40].

Passage of high energy electrons through a metal has already been discussed in con-
nection with the spectroscopy of bulk-plasmons, however, the influence of the surfaces
has been neglected. Fig.7 shows that, at normal incidence, the momentum transferred
parallel to the surface is h̄qx = h̄k0θ The angles β and θ are related by

tanβ = θ/θ∆E , θ∆E = ∆E/2E0 (59)

where E0 is the kinetic energy of the primary electrons. If θ surpasses θ∆E the angle
β quickly approaches 90◦ so that large qx are easily possible. However, details of the
light-line requires high angular resolution. Here photons are a more suitable tool.

The loss-function for a metal foil of thickness d and area A imbedded in a dielectric
with permeability εb (at normal incidence and neglecting retardation) is [29]

P (q, ω) ∝ =
{

−1
ε(q, ω)q2

d+
2q⊥
q4

[

ε(ω)− εb
]2

ε(ω)εb
A

[

sin2( ωd2v0 )

L+(ω)
+

cos2( ωd2v0 )

L−(ω)

]}

(60)

with
L+(ω) = ε(ω) + εb(ω) tanh(

q⊥d

2
), L−(ω) = ε(ω) + εb(ω) coth(

q⊥d

2
). (61)

q2 = q2⊥ + (ω/v0)
2. (qx = q⊥). Energy losses inside the (infinite) dielectric boundaries are

omitted.
With decreasing film-thickness the surface-modes at both sides become coupled

and split into two modes with different frequencies. The zeros of L± define the coupled
surface-plasmon frequencies (in the nonretarded limit).

εb − ε(ω)

εb + ε(ω)
= ∓eqxd. (62)

For a Drude metal imbedded in a dielectric we have for qx > ωp/c

ω±(qx) =
ωp√
1 + εb

√

1± e−qxd. (63)

The plus/minus sign correspond to a symmetric/antisymmetric mode in which an excess
charge at one side of the surface is accompanied by an excess/deficiency of charge just
opposite at the other side of the slab. The splitting into two modes can be neglected if
qxd/2 > 1. In the case of 50keV electrons this condition means θd > 10−2 (d in Å and θ in
degrees).
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Figure 19. Surface plasmon dispersion (left) and width (right) for Potassium. Data are shown for two
different incident electron energies. Dashed Line: Feibelman’s theory [44]. From Tsuei et al. [41,44].

Experimental results for Al are displayed in Fig. 18. Contrary to the sharp barrier
result (58) the expected steep increase is not observed. Bennet[38] was the first who
realized that the surface plasmon-dispersion is sensitive to the surface-charge density
profile. A “soft’ boundary decreases the linear term in (58), which can even become
negative.

There is extensive literature devoted to the study of spatial dispersion and a diffuse
surface electron profile on the plasmon-dispersion curve at a metal surface. For a survey
see [41]. For small wave-vectors (but still qx > ωp/c) the surface-plasmon is of the form
(58). The coefficient a1 is the centroid of the induced surface-charge density [42-44].

a1 = −
∫∞

−∞
zδρ(z) dz

∫∞

−∞
δρ(z) dz

. (64)

(δρ(z) = d(z), Fig. 15). In the absence of impurities or phonon scattering a2 results from
particle-hole excitations (Landau-damping).

Angle resolved inelastic low-energy electron reflection scattering has been used for
alkali films [41,45], Fig. 19. For all alkali metals measured the dispersion coefficient a1 <
0. At the frequency of the surface plasmon oscillation the induced charge is outside of the
geometrical boundary, thus, the surface plasmon-dispersion is negative. Feibelman[44]
has shown from microscopic considerations that, similar to the nonlocal description in
the bulk in term of longitudinal and transverse dielectric functions, nonlocal surface
effects can be expressed in terms of two surface response functions d⊥(ω), d‖(ω) which
only depend on frequency. Remarkably, ωsp(0) does not depend on the surface charge
profile and, thus, is a bulk property of the metal.

For Ag, on the other hand, a1 > 0 and, a strong azimutal anisotropy is observed
[45-48].
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V. PLASMONS IN SMALL PARTICLES AND CLUSTERS

V. A. Multipolar Plasmons

In recent years, small particles have received growing attention because of their
interesting physical properties and technical importance. For an overview see e.g. [49].
Concerning the interaction of a transverse, monochromatic plane wave with a single
spherical (metallic or dielectric) particle, the basic theory has been developed by Mie
and Debye more than 80 years ago [50], see [32]. The analogous problem for longitudinal
(electric) fields, however, received attention much later in connection with electron–
energy–loss spectroscopy [51].

The system under consideration consists of a metallic sphere of radius R imbedded
in a dielectric host with dielectric function εh(ω). The metal inside the sphere will be
either described by the Drude-function with εD(ω), or within a hydrodynamic theory.

In a local dielectric description the total potential φ = φind+φext fulfills the Poisson-
equation, ∆φ = −ρext/ε0ε, so that φind is related to φext by

φind(x, ω) =
(1

ε
− 1

)

φext + f(x, ω) . (65)

f(x, ω) is a regular solution (except on the surface) of the Laplace-equation, ∆f = 0. In
terms of spherical harmonics, this function is represented by

f`m(r, ω) = C`m
1 (ω) θ(R− r) (

r

R
)` + C`m

2 (ω) θ(r −R) (
R

r
)`+1 . (66)

Coefficients C1 and C2 are determined by the requirement of continuity of the tangential
component of E and normal component of D at the surface of the sphere. As a result,
we obtain

r ≤ R : φind`m (r) =
`+ 1

`
αc`` ε

−1
met φ

ext
`m (R)

( r

R

)`

+
( 1

εmet
− 1

)

φext`m (r)

r ≥ R : φind`m (r) = −αc`` ε−1h φext`m (R)
(R

r

)`+1

+
( 1

εh
− 1

)

φext`m (r) .

(67a, b)

The key quantity is the classical multipolar polarizability (divided by R2`+1)

αc`` (ω) =
εmet(ω)− εh(ω)

εmet(ω) +
`+1
` εh(ω)

. (68)

`=1,2,. . . . For a spherical void filled with a dielectric (a noble gas “bubble”) εmet, εh
have to be interchanged.

The eigenfrequencies of the collective modes can be obtained from the poles of (68).
For a metallic particle with a Drude-dielectric function, imbedded in a nondispersive
host these modes are known as Mie-resonances.

ω` =
ωp

√

1 + `+1
` εh

, (69)

As pointed out by Ekardt [52], the classical result has several deficiencies which
become important for particle diameters 2R in the range of 2nm or less. For instance,
according to (69) there is always a pronounced dipole resonance at ω1 = ωp/

√
1 + 2εh,

but this structure disappears in a quantum treatment for small radii. For ` → ∞, (69)
approaches the surface-plasma frequency of an infinite plane metal-vacuum boundary,
ω` → ωp/

√
1 + εh, whereas in quantum theory it becomes overdamped and effectively

disappears.
A qualitative similar behaviour is obtained in a hydrodynamic description, where

the collective excitations are determined by the transcendental equation [53-55]:

j`+1(kR)

j`−1(kR)
=

`

`+ 1

k2

k2 + κ2 (2`+1)εh

(`+1)εh+`

(70)
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where j`(x) denotes a spherical Bessel-function and

k2 = β−2
[

ω(ω + iγ)− ω2p
]

, κ2 = ω2p/β. (71)

The solutions of (70) fall into two classes:
(a) Surface-modes (ω` < ωp, ` = 1, 2...).

These modes correspond to imaginary values of k so that the induced charge density
is concentrated near the surface. For large spheres, j`+1/j`−1 → −1, yielding ω` of
(69). With decreasing sphere-radius, ω` increases and eventually reaches ωp at a
critical radius R` and becomes a bulk mode.

(b) Bulk-modes (ωα > ωp), α = (l, ν).
k is real and the charge density oscillations are spread over the whole particle
volume. For ` = 0, the solution of (70) is given by kR = x1,ν, where x`,ν is the νth

positive root of j`(x) = 0. From a graphical discussion, we deduce that the modes of
higher multipolarity are lying in the intervals x`+1,ν ≤ k R ≤ x`−1,ν+1. As k R increases
from zero to infinity, the left hand side of (70) has first order poles at x`−1,ν whereas
the right hand side is positive and finite. The bulk modes are thus labelled by
` = 0, 1, . . . and an additional index ν = 1, 2.... To a first approximation, we have
k R ≈ x`−1,ν+1, which (for ` > 0 and R > R`) leads to

ω`,ν ≈ −iγ/2 + ωp

√

1 +
(x`−1,ν+1

κR

)2 − (γ/2ωp)2 . (72)

The `, ν dependence of the collective modes is analogue to the bulk-plasmon disper-
sion. For ` = 0, which is known as the breathing mode x`−1,ν+1 is replaced in (72)
by x1,ν . In plasma physics the bulk modes are known as Tonks-Dattner resonances
[56]. In thin metallic films they can be excited optically by p-polarized light [57]
(` ≥ 1).

V. B. Spectroscopy of Cluster–Plasmons and Experimental Results

At present two different experimental techniques are used to study the electronic
excitations of small particles: Electron-energy loss spectroscopy (EELS) and scanning
transition electron microscopy (STEM) [58]. EELS controls the momentum transfer
whereas STEM controls the impact parameter.

In an EELS experiment the scattered electrons excite multipolar modes up to ` ≈ qR,
where R is the radius of the particles so that the analysis of cluster–loss-spectrum
is far more complicated than for plane surfaces. As a result, for the dielectric and
hydrodynamic description the loss-functions are [55]:

Pdiel(q⊥, ω) =
e2

π2h̄v2εo

1

s2
=
{R3

3

−1
εmet

+
−1
εh

∫ ∞

R

r2dr

+R3(
1

εh
− 1

εmet
)

∞
∑

`=1

(2`+ 1)(`+ 1)
εmet − εh

εmet +
`+1
` εh

[j`(sR)

sR

]2}

.

(73)

s =| q |=
√

q2⊥ + (ωv )
2. v is the electron velocity. In (73) εmet and εh may have arbitrary

frequency dependencies. An approximate result has been given before by Ashley and
Ferrell [59]. For void in a metal the loss function is simply obtained from (73) by
interchanging εh and εm.

Phydro(q⊥, ω) =
e2

h̄π2v2εos2
=
{R3

3

−1
ε(s, ω)

+
−1
εh

∫ ∞

R

r2dr
}

+

+
e2

h̄π2v2εo
=
{( 1

ε(s, ω)
− 1

)2 kR2

κ2s3

∞
∑

`=0

(2`+ 1)2 × s j`(kR) j`−1(sR)− k j`−1(kR) j`(sR)

J`
×

×
( 1

εh

`

`+ 1
j`−1(sR)−

1

εD
j`+1(sR) +

s3

k3
εh − 1

εh
`
1

kR
j`(sR)

)}

+

+
e2

h̄π2v2εo
=
{( 1

εh
− 1

)R2

s3

∞
∑

`=0

(2`+ 1)2
j′`(kR)

J`
j`(sR)×

( 1

εh

`

`+ 1
j`−1(sR)−

1

εD
j`+1(sR)

)}

(74)
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ε(s, ω) denotes the longitudinal wave-vector dependent dielectric function of the bulk
metal in hydrodynamic approximation (23). The first and second terms of (73,74)
within the curly brackets represent the contributions inside and outside the particle,
whereas the other terms describes surface excitations.

Results for potassium clusters in MgO are displayed in Figs. 20. (The loss functions
have been divided by the prefactor of (73) and R3/3 so that the result is dimension-
less). Experimentally, the volume-plasmon half-width of h̄γ = 0.6 eV [60] is considerably
enhanced in comparison to its bulk value (0.24 eV) [15]. In contrast to the dielectric
description, the maxima of the loss function show a considerable “blue-shift”, originat-
ing from spatial dispersion for small radii which is in qualitative agreement with the
experiment. The bulk-plasmon modes of higher polarity are resolved only in very small
particles and for low damping.

For large radii, R→∞, the loss-functions (73,74) converge to their infinite medium
results (when averaged on the incident directions): On the other side, for small radii or
small momentum transfer, sR→ 0, we obtain:

P (q⊥, ω) =
e2

4πh̄v2ε0

V

s2
=
[ 3

εh
α1(ω)

]

, (75)

α1(ω) denotes the (electrical) dipole-polarizability.
Collective excitations on voids or noble gas bubbles in metals have also attracted

experimental as well as theoretical interest, e.g. [61-64].
The size-dependence of the surface-plasmon is still an open problem. In the past

there was a general agreement that the observed red-shift (with drecreasing size) is due
to the spill-out of the charge density whereas theories based on sharp surfaces gave a
blue-shift. For clusters imbedded in a dielectric host or voids filled with a dielectric, the
spill-out is reduced by the exclusion principle so that the assumption of a fixed boundary
condition seems to be well-justified. For small metallic particles in vacuum the correct
surface charge density profile must be taken into account and clusters eventually require
a full self-consistent quantum treatment[65].

How many metal atoms are needed to form a cluster which displays metallic be-
haviour? For Hg 25 atoms seem to be enough! [66-67], Fig. 21. The Hg atom has a
5d106s2 closed shell electronic structure so that small clusters are dominantly van der
Waals bound. The width of the occupied 6s and empty 6p bands increase rougly propor-
tional to the number of nearest neighbors. Thus the band gap decreases for increasing
cluster size and becomes zero around N = 20.

For Na the evolution towards the bulk values of the plasmons in clusters comprising
from 8 to 338 atoms has been calculated by Yannouleas et al [68] who found an increase
of the Mie-plasmon energy from 2.7 to 3.2eV . The latter value is close to ωp/

√
3.
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Figure 20. Energy-loss spectrum of K-clusters in MgO [60]. (Left) experimental results, (right)
hydrodynamic theory (74). Particle radius: R = 20Å.

Figure 21. Experimental Photoabsorption spectra of doubly charged Hg clusters showing an abrupt
transition from atomic to collective, plasmon-like absorption as a function of cluster size. From Haber-
landt et al. [66].
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VI. HETROSTRUCTURES AND LOW-DIMENSIONAL SYSTEMS

A metallic heterostucture is an arrangement of different metals in close contact, i.e.
an array of metallic sheets in which there is a negligible charge transfer between the
components. In the limit of thick enough layers, one can treat the layers individually by
Drude dielectric functions (23) or hydrodynamic equations (10). Typically the thick-
ness of the individual layers lies in the range 100 . . . 5000Å. These structures resemble
semiconductor quantum-wells but little work by both theory and experiment appears
to have been done on their metallic counterparts.

VI. A. Interfaces

The simplest heterostructure consists of two semi-infinite metals bounding together
just in the same way as it was studied for the surface-plasmon in chapter IV. Apart
from the bulk and surface plasmons in each metal there is an interface-plasmon whose
dispersion is given by (51) where ε±(ω) are both Drude-functions with bulk-plasma
frequencies ωp±, Fig. 22. Neglecting retardation the frequency of the interface-plasmon
is given by

ωint =

√

ω2p+ + ω2p−
2

. (76)

For small qx → 0 ω = ωp− < ωp+. Experimental studies on interface-plasmon excitations
in Cu/RbF/GaAs and Cu/Rb/Ge heterostructures were reported by Klauser et al. [69].

VI. B. Sandwich-Configurations

A metallic slab or foil of thickness d and dielectric function ε(ω) imbedded in a
metallic host with dielectric function εh(ω) displays two interface modes with disper-
sions ω±(qx), Fig. 23. The plus/minus sign correspond to a symmetric/antisymmetric
configuration of induced charges at the interfaces. Neglecting retardation as well as
spatial dispersion these modes are determined by the zeros of L±(ω) of (61)

L+(ω) = ε(ω) + εh(ω) tanh(
qxd

2
) = 0, L−(ω) = ε(ω) + εh(ω) coth(

qxd

2
) = 0. (77)

Figure 22. Geometry (left) and interface-plasmon dispersion (right) of a metal-metal contact.
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Figure 23. Geometry (left) and interface-plasmon dispersions (right) of a metallic sandwich.

VI. C. Two-Dimensional Systems

Ritchie [28] first noted that the plasmon in a thin sheet has a square-root dispersion
(d → 0 for the “-” mode (77)). Stern [70] later derived the explicit dispersion relation
for the 2D plasmon (in the nonretarded limit but including spatial dispersion))

ω2D(qx) =

√

Nse2

2m∗ε0ε̄(q, ω)
qx , (78)

where Ns is the areal carrier density and ε̄ is an effective dielectric function. For a MOS
configuration consisting of a semiconductor with dielectric constant εsc, an (SiO2-oxide)
insulator with εox and thickness d, and a perfectly screening gate

ε̄(qx, ω) =
1

2

[

εsc(ω) + εox(ω)coth(dqx)
]

. (79)

Such 2D-plasmons have been observed in AlGaAs−GaAs heterostructures where the elec-
trons are confined in a very narrow potential well, see e.g. Heitmann [71], or Wilkinson
et al. [72].

VI. D. Two-Layer Systems

In a layered electron gas, the free charges are constrained to move on parallel planes
spaced by a distance d. Such a two-layer system was studied by Olego et al. [73] and
Yuh et al. [74]. Here, the plasmon-dispersion relation is quite different from that in 2D
or 3D plasmas

ω(q) =

√

Nse2

2ε0εMm∗

sinh(q‖)

cosh(q‖d)− cos(q⊥d)
. (80)

εM is the dielectric constant supporting the planes and q‖ = qx and q⊥ are the in-plane
and normal components of wave vector q. For large separations q‖d >> 1 the dispersion
reduces to that of a 2D plasma. For q‖d << 1 the planes oscillate in phase and the
dispersion is 3D like. However, when q⊥ 6= 0 the contributions from the induced fields
in different planes tend to cancel. Then (80) takes the distinctive linear dependence

ω(q) = q‖

√

Nse2

2ε0εMm∗

d

1− cos(q⊥d)
. (81)
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Figure 24. Dispersion relation for a two-layer plasma in GaAs− AlGaAs heterostructures. Solid and
dashed lines are evaluations of (80) and (81), respectively. From Olego et al. [73].

In this regime (q‖d << 1, q⊥ 6= 0) the response is most different from that in 2D or 3D
plasmas, Fig. 24.

VI. E. Superlattices

Superlattices are structures composed of alternating layers of different materials,
Fig. 25. Theoretical studies on superlattice plasmons and their spectroscopy were
reported e.g. by Babiker [75], Shi and Griffin [76], and Lopez-Olazagasti et al. [77].

More recently the theory of infinite metallic superlattices has found a new applica-
tion in the study of high Tc superconductors. These can be viewed as periodic arrays
of unit cells with a typical spacing of about 12Å, each of which contains up to three
closely spaced CuO2 sheets. Even at these small separations, the electronic bands are
2D like [78,79].
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APPENDICES

A.1 Hydrodynamic Description

Following Bloch [80] and Jensen [81], the state of the plasma is described by the
density and velocity fields n(r, t), v(r, t), respectively. For the longitudinal response
the velocity field is irrotational, v(r, t) = −gradΨ(r, t), where Ψ(r, t) denotes the velocity
potential. The equations of motion can be derived from the action principle

δ S = 0, S[n,Ψ] =

∫

L[n(r, t),Ψ(r, t)] dt (A1.1)

with Langrangian L and Hamiltonian H

L[n,Ψ] = m0

∫

n(r, t)
∂Ψ

∂t
dr−H (A1.2)

H =
m0

2

∫

n(r)
[

gradΨ(r)
]2
dr− e

∫

Φ+(r)n(r)dr +
1

2

e2

4πε0

∫ ∫

n(r)n(r′)

| r− r′ | drdr
′ + E0[n(r)] (A1.3)

where E0[n] is the (exact) ground state energy of the interacting electron gas at (local)
density n(r) and Φ+(r) is the potential of the positive ion background.

We are interested in the small density oscillations of the plasma around it equilib-
rium density n0. Correspondingly, we expand H[n,Ψ] around its minimum at n = n0,
Ψ = 0. Therefore, this expansion begins with quadratic terms in n1 = n− n0:

H = H0 +
m0

2

∫

n0
[

gradΨ(r)
]2
dr +

1

2

e2

4πε0

∫ ∫

n1(r)n1(r
′)

| r− r′ | drdr′ +
1

2

∫

∂2E0[n0]

∂n20
n21(r)dr . . .

(A1.4)
Variation with respect to n1(r, t) and Ψ(r, t), leads to

m0
∂Ψ(r, t)

∂t
+ eφ1(r, t)− P0 n1(r, t) = 0,

d

dt

[

m0n1(r, t)
]

−m0div
[

n0gradΨ(r, t)
]

= 0 (A1.5)

with

∆φ1(r, t) = −
1

ε0
(−e)n1(r, t), P0 =

∂2E0[n0]

∂n20
. (A1.6)

In a local Hartree-Fock approximation (5)

E0[n(r)] =

∫
[

3

5
εF [n(r)]−

3

4π
e2kF [n(r)]

]

n(r)dr (A1.7)

we obtain for the plasmon dispersion-coefficient

β =
m0

n0
P0 =

1

3
v2F −

1

3π

e2kF
m0

. (A1.8)

As already noted in chapter 2, (A1.8) is not quantitatively correct so that β will be
used as a parameter to fit the experimental plasmon–dispersion. The reason of this
discrepancy lies in the roots of the hydrodynamic description itself which is correct
for small q, ω, whereas, plasmons are a high frequency phenomenon. Nevertheless, the
description is based on conservation laws and contains the essential physics.

A2. Kinetic Theory

In a kinetic description the state of a (one-component) plasma is described by a
phase-space distribution function f(r,p, t) which obeys the Boltzmann-Vlasov equation
[82]

∂f

∂t
+ v

∂f

∂v
+ F

∂f

∂p
= I(f) . (A2.1)
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v is the velocity of the particles with energy-momentum relation ε(p) and F = −e(E+v×B)
is the Lorentz-force. For isotropic and elastic (impurity-) scattering the collision integral
becomes

I(f) =
1

τ

(

〈f〉Ω − f

)

, 〈f〉Ω =
1

4π

∫

f(r,p, t)dΩp, (A2.2)

where τ is the scattering time and 〈..〉 denotes the angular average on the momentum
directions.

Eq(A2.1) must be jointly solved with the Maxwell-equations which, in the qua-
sistatic approximation, reduce to

E(r, t) = −gradΦ(r, t), ∆Φ(r, t) = − 1

ε0

[

ρ+ − en(r, t) + ρext(r, t)
]

, (A2.3)

where n(r, t) is the electron-density

n(r, t) =
2

(2πh̄)3

∫

f(r,p, t)d3p. (A2.4)

Next we consider small pertubations by the external field, ∆Φext = −ρext/ε0,

f = f0 + f1, n(r, t) = n0 + n1(r, t). (A2.5)

f0(ε(p) is the Fermi-function and n0 is the equilibrium electron density. In linearized
form, (A2.1) can be solved by Fourier-transformation with respect to t, r, see e.g. [27]

−iωf1(q,p, t) + ivqf1(q,p, t) + ieqΦ
∂f0
∂εp

v = I(f1). (A2.6)

In particular, in the absence of collisions (τ =∞), we optain:

f1(q,p, t) = −eΦ(r, t)
∂f0
∂εp

qvp

qvp − ω
, Φ(q, ω) = − e

ε0q2
n1(q, ω). (A2.7)

From (A2.5)

n1(q,p, t) =
em0pF

π2h̄3

{

1− ω

2qvF
ln

[

1 +
(

qvF

ω

)

1−
(

qvF

ω

)

]

}

. (A2.8)

Exchange and correlation effects can be included in the same way as in appendix A1
(yet the kinetic energy has to be left-out)

−eΦ→ −eΦ+
δ2Exc[n]

δn20
n1. (A2.9)

Near q = 0 the plasmon dispersion is given by

ω2 = ω2p +

[

3

5
v2F +

n

m

δ2Exc[n]

δn20

]

q2 + . . . (A2.10)

In a standard local density approximation [11]

Exc[n(r)] =

∫

εxc[n(r)]n(r) dr,

εxc[n(r)] =
−0.916
rs

− 0.045

[

(1 + x3)`n(1 +
1

x
) +

x

2
− x2 − 1

3

]

.

(A2.11)

rs is the density parameter and x = rs/21. As a result we obtain for the q2-coefficient
defined by (37), (A2.10)

α

αRPA
= 1−

[

0.092rs +
0.0034r2s
1 + rs/21

]

(A2.12)
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agrees very well with the Vashishta and Singwi’ result [16]. For rs = 6, α/αRPA = 0.35
and α = 0 at rs = 8.83. Nevertheless, the experimental dispersion coefficient shows a
much stronger rs-dependence as given by (A2.12).

As a result we obtain for the longitudinal and transverse dielectric functions (with-
out exchange and correlation effects but including collisions)[27,57]

ε`(q, ω) = 1−
ω2p

ω(ω + iγ)

3

a2

(

1− tan−1 a

a

)[

1 + i
γ

ω

(

1− tan−1 a

a

)

]−1

εt(q, ω) = 1−
ω2p

ω(ω + iγ)

3

2a2

(

1 + a2

a
tan−1 a− 1

)

, (A2.13)

with abbreviations

a2 = − q · qv2F
(ω + iγ)2

, tan−1 z =
1

2i
ln

(

1 + iz

1− iz

)

. (A2.14)

(A2.13) hold even for complex wave-vectors, Ima ≥ 0, ln(1) = 0.

A3. Quantum Self-Consistent-Field-Approximation (SCFA)

In the self consistent field approximation, the response of the interacting electrons to
a weak (scalar) external potential Φext(r, t) is approximated by a system of noninteracting
electrons, responding to the total potential Φ = Φext +Φind [2,83].

Ĥ =
p̂2

2m0
+ U(r, t) + V (r, t) (A3.1)

where U(r, t) is the periodic crystal potential and V (r, t) = −eΦ(r, t). The microscopic
dielectric (ε̂-operator) is defined through

V = ε̂
−1Vext, Vext = ε̂V (A3.2)

In particular we consider a monochromatic external potential with wave-vector Q and
and frequency ω

Vext(r, t) = Vext(Q, ω)e
i(Qr−ωt) + cc, (A3.3)

where Q = q+G and q is within the first Brillouin-zone and G is a vector of the reciprocal
lattice. Due to the periodicity of the crystal potential the induced charge distribution
additionally includes contributions from other reciprocal lattice vectors even if Q is
small (socalled local field contributions),

Vind(r, t) = Vind(Q, ω)e
i(Qr−ωt) +

∑

G′ 6=G

Vind(Q
′, ω)ei(Q

′r−ωt) + cc. (A3.4)

Q′ = q+G′. Reasoning along the same lines, the total potential in (A3.1) is coupled to
the external potential by (A3.2) which becomes a matrix equation

Φext(q + G, ω) =
∑

G′

εGG′(q, ω)Φ(q + G′, ω). (A3.5)

For a crystal εGG′(q, ω) is the analogue of the Jellium ε`(q, ω).

Four steps are necessary to obtain the microscopic dielectric matrix [84,85]:
(a) First, the correction of the electron density operator is calculated to first order in

the total field V (r, t), ρ̂ = ρ̂0 + ρ̂1, where ρ̂0 describes thermal equilibrium.
(b) The induced charge density is obtained from n1(r, t) = Sp[ρ̂1(t)δ(r− r̂)].
(c) Poisson equation ∆Φind = en1(r, t)/ε0.
(d) Φind[Φ] is a (linear) functional of the total potential. When writing Φ = Φind + Φext

in the form of (A3.5) the dielectric matrix can be read-off as

εGG′(q, ω) = ε∞δGG′ − e2

ε0Ω | q + G |2
∑

αα′

f(Eα)− f(Eα′)

Eα − Eα′ − h̄(ω + iδ)
〈α | e−iQ′r | α′〉〈α′ | eiQr | α〉

(A3.6)
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Ω is the crystal volume and ε∞ accounts for core- states not explicitly contained
in states numbered by α. For Bloch electrons α = (n,k), where n denotes the band
index and k the wave-number. For a review see Sturm [86].

In an EELS-experiment the observed response V (q+G) has the same Fourier-com-
ponents as the pertubation Vext(q+G). It is convenient to define a macroscopic dielectric
function

[

εmacro(q + G, ω)
]−1

=
[

ε̂
−1

]

GG
(q, ω). (A3.7)

If local field effects are neglected

εmacro(q + G, ω) ≈ εGG(q, ω) (A3.8)

(A3.6) leads to the Ehrenreich-Cohn result [83]. For free electrons the Lindhard–
function (see [2,5]) is obtained

εL(q, ω) = 1+
3

16x3
( h̄ωp
EF

)2

{

2x+
[

1−
(y − x2

2x

)2]
ln

[

y − x2 − 2x

y − x2 + 2x

]

−
[

1−
(y + x2

2x

)2]
ln

[

y + x2 − 2x

y + x2 + 2x

]

}

,

(A3.9)
where x = q/kF and y = h̄(ω + iδ)/EF . Explicit forms for the real and imaginary parts
may be found, e.g. in [2,4].

According to translational symmetry of the interacting electron gas, momentum is
conserved and ε`(0, ω) = 1 − (ωp/ω)

2 is an exact result. Therefore, the plasma frequency
as given by (1) is the exact bulk-plasmon frequency for Jellium at q = 0. (A3.9) is
identical with the random phase approximation (RPA) which was worked out by Bohm
and Pines (see [2]) to solve the equation of motion of the density operator.

It is well known that the effects of collisions in a degenerate electron gas cannot
be taken into account merely by replacing ω by ω + iγ in the (collisionless) Lindhard
function (A3.9). According to Mermin [87] the correct procedure is

εM (q, ω) = 1 +
(1 + iγ/ω)[εL(q, ω + iγ)− 1]

1 + (iγ/ω)[εL(q, ω + iγ)− 1]/[εL(q, ω)− 1]
. (A3.10)

Because of the complexity of the many body problem, knowledge of the exact
dielectric function is still lacking. Approximate forms for the dielectric function are
commonly written as

εL(q, ω) = 1− v(q)χ0(q, ω)

1 + v(q)G(q, ω)χ0(q, ω)
, (A3.10)

where v(q) = e2/ε0q
2 is the Fourier–transform of the Coulomb potential, χ0(q, ω) is the

Lindhard–susceptibility (of the noninteracting electron gas), ε`(q, ω) = 1 − v(q)χ0(q, ω),
and G(q, ω) is the socalled “local field function”. The latter describes the short-range
exchange and correlation effects which are responsible for the local depletion in the
density around each electron. In this scheme the self-consistent potential in (A3.1) is
given by

V = −e
[

Φext + (1−G)Φind

]

(A3.11)

which leads to a self-consistency equation

Φ = Φext + v(q)χ0
[

Φext + (1−G)Φind

]

(A3.12)

from which (A3.10) is obtained.
In the RPA or standard SCFA, G(q, ω) = 0, yet the pair correlation function g(r)

becomes negative at small distances and the compressibility sum-rule is violated [2,4,16].
Reasonable approximations for G(q, ω) can be found in [16,17]. For instance, in the
Hubbard–approximation

GH(q, ω) =
1

2

q2

q2 + k2F
. (A3.13)

In today’s ab initio calculations exchange and correlation effects can be taken into
account within the local density approximation which, in most metals, leads to satis-
factory results, yet with enormous numerical efforts, see e.g. [20,21,88].
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A4. Bulk Loss-Function

To relate the inelastic electron scattering probability to the dielectric function we
start from the work done by a particle moving parallel to the z-axis with constant
velocity v = (0, 0, v0) and impact vector r0 = (x0, y0, 0). According to the Maxwell–
equations (22) the electron charge distribution

ρext(r, t) = −eδ(r− vt− r0) (A4.1)

leads to longitudinal field components

D`(q, ω) =
2πie

q
δ(ω − q‖v0) exp(−iq⊥r0). (A4.2)

For fast but nonrelativistic electrons, the reaction of the dielectric on the electron as
well as contributions from Et and B can be neglected. The work done per unit time by
the electron is given by

dW

dt
=

∫

jext(r, t)Eind(r, t)d
3r,

= −evEind(vt+ r0, t),

= −
∫

2iπe2ω

ε0q2
[ 1

ε`(q, ω)
− 1

]

δ(ω − q‖v0)
d3qdω

(2π)4

. (A4.3)

The real part of ε`(q, ω) is an even function with respect to frequency and, therefore, it
drops-out from (A4.3). As a result we obtain

dW

dt
=

∫ ∫

h̄ωP (q, ω)
d3q d(h̄ω)

(2π)4
(A4.4)

with

P (q, ω) =
2πe2

ε0h̄q2
Im

[

− 1

ε(q, ω)

]

δ(h̄ω − h̄q‖v0). (A4.5)

The loss-function P (q, ω) can be interpreted as the rate for excitation of “photons” with
energy h̄ω and momentum q.
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