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ABSTRACT

A tutorial on the dielectric description of matter is presented with particular attention
to semiconductor optics. The first part focuses on general concepts like the construction
of macroscopic fields, linear and quadratic response, and simple models how to describe
the reaction of matter with respect to the electromagnetic field. Beginning with the two–
level approximation of an atom, the second part will lead us to the semiconductor Bloch
equations which are the today’s standard model of semiconductor optics in the short
time regime. Together with the Maxwell equations these form a closed set of dynamical
equations for the electromagnetic field, polarization, and electron/hole population of a
semiconductor upon optical excitations. Some selected applications and problems are
added.

I. INTRODUCTION

For the electrodynamic description of semiconductors near the band edge, matter equa-
tions (or constitutive equations) are needed, which relate the charge density and cur-
rent (or polarization) to the electromagnetic field. The simplest models to describe this
coupling are the Lorentz-oscillator and the Drude-free carrier models. For a realistic
description, however, the valence - conduction band continuum, excitonic effects, and
electron/hole population dynamics must be considered. These phenomena are consis-
tently described by the semiconductor Bloch equations which are a set of nonlinear,
coupled differential-integral equations.
The scope of this article is twofold. First, in Chapter II, a survey on the macroscopic
electromagnetic description of matter is presented, including some new aspects, discus-
sion of basic models, and fundamentals of linear and nonlinear response.
Second, Chapter III is devoted to the foundation of the microscopic description of
the light-matter interaction based on a two-level approach. This will guide us to the
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Semiconductor Bloch Equations.
To round-off the material, some selected applications and supplements are given in
Chapter IV. In particular some properties of the photogalvanic effect are discussed which
describes a steady state unidirectional charge transport. Its spectacular properties are
the absense of a “driving force” (in the sense of traditional irreversible thermodynamics)
and the occurence of photovoltages up to 100 kV in ferroelectrics. Problems (with
solutions) are added.

II. MACROSCOPIC ELECTRODYNAMICS

The electromagnetic field (EMF, or just “field”) is descibed by the electrical and mag-
netic fields E(r, t),B(r, t) which are coupled to matter through the charge– and current–
density fields ρ(r, t) and j(r, t). To formulate a closed set of equations one needs, besides
the Maxwell–equations, either an explicit functional or a set of (differential–) equations
for ρ, j in terms of E ,B1.
The standard book in the field of macroscopic electrodymamics is Landau and Lifshitz
Vol. 8 [1], Wooten [2] gives an excellent introduction to optical properties of solids,
and Klingshirn [3] provides a modern introduction to and an overview of semiconductor
optics. Linear and nonlinear interactions of electromagnetic waves and matter is covered
by several articles of this course [5] and the previous one [4].

II.A. Field Equations

The state of the microscopic electromagnetic field in matter is described by Em,Bm

which satisfy the Maxwell–equations:

ε0µ0
∂Em(r, t)

∂t
− curl Bm(r, t) = −µ0 jm(r, t), (1)

∂Bm(r, t)

∂t
+ curl Em(r, t) = 0, (2)

ε0 div Em(r, t) = ρm(r, t), (3)

div Bm(r, t) = 0. (4)

The first set of Eqs. (1,2) which contain the time–derivatives of the fields are dynamical
equations like the Newton–equations for a mechanical system, jm(r, t) plays the role of
a “driving force”. The two other Eqs. (3,4) are of different type and represent “rigid”
conditions imposed by ρm(r, t) at time t. Together with the Lorentz–force (–density)

f(r, t) = ρ(r, t)E(r, t) + j(r, t)× B(r, t) (5)

these equations define the interacting field–matter system.
Em(r, t),Bm(r, t) contain large, spatially fluctuating contributions on an atomic scale
and it is impossible to calculate or measure these fields. (A typical value of such field
fluctuations is the field of a nucleus within atomic distances which is of the order of Em ≈
109V/cm.) To get rid of these fluctuations in a macroscopic description averaging upon
so–called physically infinitesimally, small volumes have been known since the Lorentz–
era, as a cureable method. If these volumes contain a large number of atoms they can
again be treated macroscopically. During the last decade, however, the russian school
around Keldysh [6],[7], recognized that this approach is not satisfactory for several
reasons, e.g.

1vectors and tensors are written in boldface, electric and magnetic fields in caligrafic style
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• the wavelength may be considerably reduced by a high refractive index,

• gyrotropy is related to the field gradient on molecular distances,

• the motion of charges is related to the actual field at the position of the particles
rather than to the average field.

Therefore, averaging of physically infinitesimally small volumes is abandoned and re-
placed by the standard method of statistical physics averaging over the Gibbs–ensemble
of all possible states of the field and matter, E =< Em >, B =< Bm >. Owing to the
linearity of the Maxwell-equations, this is formally simple and yields equations of the
same structure as Eqs. (1-4):

ε0µ0
∂E(r, t)
∂t

− curl B(r, t) = −µ0 [j(r, t) + jext(r, t)] , (6)

∂B(r, t)
∂t

+ curl E(r, t) = 0, (7)

ε0div E(r, t) = ρ(r, t) + ρext(r, t), (8)

div B(r, t) = 0. (9)

For convenience, the external sources ρext(r, t), jext(r, t) have been separated from the
matter fields ρ(r, t) =< ρm(r, t) >, j(r, t) =< jm(r, t) >. Here the adjective “external”
refers to the control, not to the location of the charges, i.e. we assume that they are
not affected by the charges in the medium.

II.B. Matter Equations

In a classical microscopic description the matter fields jm(r, t), ρm(r, t) are defined by

ρm(r, t) =
N
∑

k=1

ekδ(r− rk(t)), jm(r, t) =
N
∑

k=1

ekvkδ(r− rk(t)), (10)

where the trajectories ri(t) of the particles with masses Mk and charges ek are deter-
mined by the Newton-equations:

Mk
d2rk(t)

dt2
= ekE ′m(rk, t) + ekvk × B′m(rk, t), k=1. . . N. (11)

E ′
m
,B′

m
denote the fields without the self-contribution of particle #k. For example, such

calculations are presently performed numerically for high–power gyrotrons or particle
accelerators by using a “particle in cell code”.
For our purposes, a classical description of the EMF is sufficient, however, the matter
must be treated quantum mechanically. In this case one has to find the wave–function
(or statistical operator) from which the expectation values of the charge– and current–
denstiy operators can be calculated. This will be done in Chapter III.
Instead of solving the microscopic equations within some approximation and perform-
ing the average afterwards, a much better strategy is to derive and solve manageable
equations for ρ(r, t), j(r, t) in terms E(r, t), B(r, t). This is the main issue of this article.
A trivial example is the equation of continuity which likewise holds for the microscopic
and macroscopic charge- and current–density

∂ρ(r, t)

∂t
+ div j(r, t) = 0. (12)
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For stationary fields E(r) and B(r) are independent, whereas for time-dependent fields
B(r, t) is fixed by E(r, t) up to a time-independent field (which will be left–out below).
The same holds for ρ(r, t) and j(r, t):

B(r, t) = −
∫ t

t0

curl E(r, t′) dt′, (13)

ρ(r, t) = −
∫ t

t0

div j(r, t′) dt′. (14)

Thus, there is only a single independent matter field, namely j(r, t) = j[E(r, t)] which
can be written as a functional solely of E(r, t).
Instead of using the current density j(r, t) it is sometimes convenient to work with the
polarization P(r, t) defined by

j(r, t) =
∂P(r, t)
∂t

, ρ(r, t) = −div P(r, t). (15)

This definition includes the continuity equation (12).
Contributions from “free” charges or “magnetic” effects are not simply neglected but
they are contained in P(r, t). Splitting the matter–current into free, bound, and mag-
nitization currents is only useful for quasistationary fields but is neither necessary nor
advantageous in solid state optics. At high frequencies the oscillation amplitude of
“free” and “bound” charges are of the same order, hence, there is no physical differ-
ence. For an experimental investigation of “magnetic” contributions in the IR range see
Grosse [8]. The price to pay leaving the magnetization M(r, t) out of the game is the
need of a space–dependent polarization field even when in the convential description P
and M are (piecewise) constant. But this can be done on equal footing with spatial
dispersion (see chapter II.C.).
In the following, we shall preferably work with j(r, t) to describe “metallic” systems
(“free” charges, intraband dynamics) and P(r, t) for “dielectric” behaviour (“bound”
charges, interband dynamics). This is motivated by the fact that for slowly varying
fields (with respect to time and space) the following relations hold

j(r, t) = σE(r, t), P(r, t) = ε0χE(r, t), (16)

where constants σ, χ represent the electrical conductivity and susceptibility. These are
the simplest form of matter–equations. Systems which contain both types of carriers
are conventionally modelled just by adding both contributions.
On a phenomenological level the functional relation between j(r, t), P(r, t) and E(r, t)
may be represented by a power-expansion in terms of the field

j(r, t) =
∞
∑

k=1

j(k)(r, t), P(r, t) =
∞
∑

k=1

P (k)(r, t), j(k), P (k) ∝ Ek. (17)

Expansion (17) is possible if E is much smaller than typical atomic fields Eat ≈ 109

V/cm. Although such fields cannot be produced in steady state laboratory experiments,
ten times larger fields have been recently created in short laser pulses. In addition, fields
may be strongly enhanced near resonances as, e.g. in the dynamical Stark–effect.

Within a classical description the dynamics of conduction electrons in a semiconductor
or a metal is governed by a hydrodynamic type of equation which is the generalization
of the famous Drude–model:

(

∂

∂t
+ γ

)

j(r, t) + β grad ρ(r, t) =
−e
m∗ ρ(r, t)E(r, t). (18)
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m∗ is the effective mass, e the charge, γ the relaxation rate of the carriers, and β
denotes a dispersion constant which is proportional to the diffusion constant. (For
metals β = 3v2F/5, where vF is the Fermi–velocity.) In addition to the standard Drude
model, Eq.(18) includes diffusion. (The coupling to the magnetic field via the Lorentz–
force is left–out for simplicity.) For applications to metal–optics near the plasma–edge
see Forstmann and Gerhards [9], for plasmons see e.g. v. Baltz [10].
Bound charges like optical phonons can be modelled by an oscillator type of equation
which is known as the Lorentz–model [3]:

(

∂2

∂t2
+ γ

∂

∂t
+ ω2

0 + β∆

)

P(r, t) = ε0Ω
2
pE(r, t), (19)

where ω0 is oscillation frequency, n0 is the density of oscillators, Ω2
p = n0e

2/m∗ε0, and
β∆P accounts for the coupling to neighbouring oscillators [11].
These differential equations are supplemented by boundary conditions like the continu-
ity of the normal component of j or D = ε0E +P at surfaces or interfaces. Note, E(r, t)
denotes the total electrical field in matter - rather than the external field.

Problems:
1.) Find the general solutions of Eqs.(18-19) for the homogeneous case. (Neglect
nonlinearity in Eq.(18) replacing ρ(r, t) by −|e|n0, where n0 is the equilibrium electron
density.) Use j(−∞) = 0 and P(−∞) = 0 as boundary conditions.

2.) Screening of a point–charge by free carriers.
Find the stationary solution for the induced charge–density and potential of a point
charge in a metal within the hydrodynamic model as given by Eq. (18). Compare with
the bare Coulomb–potential.

II.C. Linear Response

The general form of the linear part of expansion (17) between the current or polarization
and the field reads:

j(1)α (r, t) =

∫ ∫

σ
(1)
αβ (r, r

′, t− t′)Eβ(r′, t′)d3r′dt′, (20)

P (1)
α (r, t) = ε0

∫ ∫

χ
(1)
αβ(r, r

′, t− t′)Eβ(r′, t′)d3r′dt′. (21)

For brevity we shall discuss only the P–E relation (21) in the following, as the current–
field relation (20) is analogous.
The “susceptibility–kernel” χ takes into account that the coupling between field and
polarization generally is

• nonlocal, i.e. the field at r′ can cause a polarization at another point r,

• has a memory, i.e. P may exist for some time after the field is switched–off,

• P may not be parallel to E , i.e. χ is a second rank tensor where α, β denote
cartesian components. Summation over repeated indices is implied.

For homogeneous matter susceptibility tensor χα,β is solely a function of r− r′ so that
the integral relation (21) becomes a convolution:

F (t) := [f1 ⊗ f2] (t) =

∫ ∞

−∞
f1(t− t′)f2(t

′)dt′ (22)
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which simplifies to a product under Fourier–transformation

F (ω) = f1(ω) · f2(ω). (23)

f(t), f(ω) denote a Fourier–pair:

f(t) =

∫ ∞

−∞
f(ω)e−iωt

dω

2π
, f(ω) =

∫ ∞

−∞
f(t)e+iωtdt. (24)

The (r, t)–Fourier–transformation is used in the following “plane–wave” form:

χ
(1)
αβ(r, t) =

∫ ∫

ei(qr−ωt)χ
(1)
αβ(q, ω)

d3qdω

(2π)4
, (25)

χ
(1)
αβ(q, ω) =

∫ ∫

e−i(qr−ωt)χ
(1)
αβ(r, t)d

3rdt, (26)

P (1)
α (q, ω) = ε0χ

(1)
αβ(q, ω)Eβ(q, ω). (27)

The q, ω dependence of the susceptibility (or σ) is termed spatial and temporal disper-

sion, respectively. χ(q, ω) = i
ε0ω
σ(q, ω).

To keep the presentation simple we omit the tensorial structure of χ, the superscript
(1), and spatial dispersion. The most important property of χ(t− t′) is the property of
causality: There is no response before the perturbation is turned on. This is one of the
fundamental laws of nature.

χ(t− t′) ≡ 0, t′ > t. (28)

Some consequences of causality in the frequency domain will be exploited in the next
section.
In contrast to the real response kernel χ(t−t′) in the time–domain its Fourier–transform
χ(ω) is complex

χ(ω) = χ1(ω) + iχ2(ω) =

∫ ∞

−∞
χ(t′′)eiωt

′′
dt′′. (29)

The real and imaginary parts of χ(ω) are even and odd functions of frequency. (This
holds regardless of causality.) Moreover, the real part of σ(ω) and the imaginary part
of χ(ω) are related to dissipation, whereas the other parts are connected to dispersion.
For details see [1], [2] or e.g. an overview given by Di Bartolo in this book [12].
As an illustration of the time and frequency dependence of response functions we state
the results for the Drude– and Lorentz–models (omitting spatial dispersion, q = 0. See
problems 1,3, and 4), Figs. 1,2.
The Drude conductivity and susceptibility are:

σ(t− t′) =
n0e

2

m∗ e
−γ(t−t′)θ(t− t′), (30)

σ(ω) =
n0e

2

m∗
1

γ − iω
, (31)

χ(t− t′) =
ω2
p

γ

[

1− e−γ(t−t
′)
]

θ(t− t′), (32)

χ(ω) = −
ω2
p

ω(ω + iγ)
, ω2

p =
n0e

2

m∗ε0
, (33)

where n0 and ωp denote the density and plasma–frequency, respectively.
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Fig. 1 Drude–conductivity and susceptibility. (Left) Time domain, (right) frequency
domain. (Dimensionless units).
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Fig. 2 Lorentz–susceptibility. (Left) Time domain, (right) frequency domain. (Dimen-
sionless units).
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The Lorentz–susceptibility is given by:

χ(t− t′) =
Ω2
p

Ω0

e−
γ

2
(t−t′) sin

[

Ω0(t− t′)
]

θ(t− t′), (34)

χ(ω) =
Ω2
p

ω2
0 − ω2 − iωγ

, Ω2
0 = ω2

0 − (
γ

2
)2. (35)

It is convenient to decompose all vector-fields into longitudinal and transverse compo-
nents with respect to wave vector q, i.e.

E(q, ω) = E`(q, ω) + Et(q, ω) = (E · nq)nq + nq × (E × nq) , (36)

with unit vector nq = q/|q|. Even for homogeneous and isotropic systems, like Jellium,
the reaction of the charged particles with respect to transverse and longitudinal fields is
different, i. e. σ(q, ω) and χ(q, ω) are tensors with two different principal components:

j(q, ω) = ε0 σ̂(q, ω) E(q, ω) = σ`(q, ω)E`(q, ω) + σt(q, ω)Et(q, ω). (37)

Transverse fields, j · q = 0, are source–free, div j = 0, and, thus, do not create charge
fluctuations: ρ = 0. On the other hand, longitudinal fields, j ‖ q, are irrotational and
create charge fluctuations: ρ(q, ω) = q j(q, ω)/ω.

Problems:

3.) Calculate σ(q, ω) and ε(q, ω) = 1 + iσ(q, ω)/ωε0 for longitudinal and transverse
fields in a metal by Fourier–transformation of Eq. (18). ε(q, ω) = 0 gives the dispersion
of longitudinal collective excitations(=plasmons) [10].

4.) Calculate the transverse electrical susceptibility for bound charges by Fourier–
transformation of Eq.(19). The poles of χ(q, ω) (or ε = 1 + χ) gives the dispersion of
transverse excitations. Compare with transverse optical phonons [3].

II.D. Nonlinear Response

In intense laser pulses many nonlinear phenomena are observed which are described
by the second and higher order terms in the expansion (17). For an introduction and
survey see, e.g., Boyd [13].
For simplicity we consider only the second–order current–field relation and omit spatial
dispersion. Then, an expansion analogous to Eq.(20) holds:

j(2)α (r, t) =

∫ ∫

σ
(2)
αβγ(t− t′, t− t′′)Eβ(r, t′)Eγ(r, t′′)dt′dt′′. (38)

As in the linear case, causality restricts the time–integration to t′, t′′ < t. In Fourier–
space the double time–integral is reduced to a single, convolution–type integral:

j(2)α (r, ω) =

∫

σ
(2)
αβγ(ω

′, ω − ω′)Eβ(r, ω′)Eγ(r, ω − ω′)
dω′

2π
, (39)

σ
(2)
αβγ(ω1, ω2) =

∫ ∫

σ
(2)
αβγ(t1, t2)e

i(ω1t1+ω2t2)dt1dt2. (40)

The quadratic response is described by a third rank tensor which, in contrast to linear
response, exists only in noncentrosymmetric crystals like GaAs or LiNbO3. Germanium
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and Silicon, on the other hand, have a center of inversion and the first nonvanishing
nonlinear contribution begins in terms of a cubic fourth rank tensor σ

(3)
αβγδ.

As ω1, ω2 are dummy variables in Eq.(38), χ
(2)
α,βγ(ω1, ω2) is symmetric (or can be chosen

to be symmetric) with respect to the pair of indices (α, ω1), (β, ω2). Further symmetry
properties can be found, e.g. in [13].
As an example, we consider the case in which the optical field incident upon a nonlinear
optical medium characterized by a quadratic conductivity σ(2) consists of two distinct
frequency components ω1, ω2, (ω2 > ω1):

E(t) = E1e−iω1t + E2e−iω2t +
[

1→ −1, 2→ −2
]

, (41)

E(ω) = 2π
[

E1δ(ω − ω1) + E2δ(ω − ω2)
]

+
[

1→ −1, 2→ −2
]

. (42)

[1→ −1] means a change of ω1 by −ω1 in the preceding expression etc. and E−1 = E∗1 .
Then, according to Eq.(38) the second–order current contribution is given by 2

j(2)(ω) = 2π
{

+E21σ(2)(+ω1,+ω1) δ(ω − 2ω1) + E22σ(2)(+ω2,+ω2) δ(ω − 2ω2) (43)

+2E1E2σ(2)(+ω1,+ω2) δ(ω − [ω1 + ω2]) (44)

+2E∗1E2σ(2)(−ω1,+ω2) δ(ω − [ω2 − ω1]) (45)

+
[

1→ −1, 2→ −2
]

,

+2
[

| E1 |2 σ(2)(−ω1,+ω1)+ | E2 |2 σ(2)(−ω2,+ω2)
]

δ(ω)
}

. (46)

Via the Maxwell–equations the induced current will in turn be the source of radiation.
The various terms describe:

• second harmonic generation (SHG), Eq. (43)

• sum frequency generation (SFG), Eq. (44)

• difference frequency generation (DFG), Eq. (45)

• optical rectification (OR), photogalvalvanic effect (PGE), Eq. (46).

For the description of high–frequency current phenomena SHG, SFG, and DFG the
point of view of a “free” charge current j(r, t) and a “bound” charge current ∂

∂t
P(r, t)

are fully equivalent. However, this is different for the ω = 0 component of the current
and the polarization. The ω = 0 component of P(r, t), known as optical rectification
describes an isothermal and isobaric change of the value of the polarization only. It
does not give rise to a steady–state current or an electromotive force. In contrast to OR
which describes charge separation across a finite distance, the ω = 0 component of j(r, t)
may be considered as a charge separation across infinite distances. In addition, OR is
nondissipative and can occur in the nominally transparent part of the spectrum (where
Im χ(ω) = 0) whereas absorption of light and, hence, dissipation is needed to induce a
direct (nonsupra)–current. For instationary excitations OR leads to a transient current
whose shape is given by the time derivative of the intensity profile j ∝ İ(t), whereas, the
PGE would lead to a current pulse which follows I(t). (As OR is of minor importance
in nonlinear optics little attention is usually paid for this subtle distinction and the
notation OR is sometimes ambiguous.) The occurence of a direct current upon light

2In nonlinear optics a redundant notation with three frequency arguments is used : σ(2)(ω3, ω2, ω1).
This is technically unnecessary in that ω3 is always ω1 + ω2. Analogous for the higher order terms.
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absorption in nonlinear crystals is now called photogalvanic effect (or bulk photovoltaic
effect) and some of its exciting properties will be discussed in chapter IV.C.
As in linear response there are Kramers–Kronig relations for second and higher order.
However, nonlinear phenomena are almost exclusively studied in the nonabsorptive part
of the spectrum so that these relations are of no practical importance.

III. QUANTUM THEORY OF ATOMS AND SEMICONDUCTORS

Our macroscopic description of linear and nonlinear properties of matter has mostly
made use of a power series of the current or polarization in terms of the field. Under
resonant excitation this approximation fails to provide an adequate description of the
response and a description by (nonlinear) equations like Eq.(99) are more appropriate.
Under resonant conditions it is usually sufficient to deal only with the two levels which
are nearly resonantly excited by the light. Even for semiconductors the optical transi-
tions between valence and conduction band can be visualized as transitions between a
collection of two–level systems (TLS).
The discussion of the Semiconductor–Bloch–equations (SBE) will proceed in three steps.
First we study the dynamics of atoms near resonance in the two–level approximation
and derive the atomic Bloch equations for the polarization. Next, this result is general-
ized to the case of a semiconductor with noninteracting valence and conduction bands.
Eventually, the influence of Coulomb–interaction between the electron–hole excitations
is considered. This will lead us to the SBE which presently are the standard model of
semiconductor optics in particular to describe nonlinear short pulse phenomena. Pre-
sumably Stahl [11] was the first to use such equations in a systematic way to describe
the electrodynamics of semiconductors near the band edge.
According to the scope of this article the presentation is kept on an introductory level
and “sophisticated” techniques are avoided. A thorough derivation of the SBE is out-
lined by Haug and Koch [14], which is the standard book in this field, or by Zimmermann
[15].

III.A. Dynamics of the Two–Level–System

The optical properies of TLS are presented in many texts, my favorites are the Feynman
lectures Vol. 3 in connection with the Ammonia maser [16] and the book by Allen and
Eberly [17].
To describe the optical properties of an atom near resonance, we only retain the pair
of nearly resonant stationary states |1 > and |2 > with energies ε1 and ε2, (ε2 > ε1),
respectively. In particular, we assume that these states have s and p symmetry so that
the optical transition is dipole–allowed. In this restricted “base” the state vector of the
atom

| ψ(t) >= c1(t)|1 > +c2(t)|2 > (47)

is represented by the coefficients c1, c2 which can be arranged in form of a two–component
column vector c. c† = (c1, c2).
The time–dependence of cj(t) is governed by the Schrödinger equation:

ih̄
∂

∂t

(

c1
c2

)

= Ĥ

(

c1
c2

)

. (48)
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The first term in the Hamiltonian

Ĥ = Ĥ0 − P̂E(t), Ĥ0 =

(

ε1 0
0 ε2

)

, P̂ =

(

0 p
p∗ 0

)

. (49)

describes the isolated atom, whereas the second term is the interaction with the elec-
trical field of the classical light wave in electrical dipole approximation. p is the dipole
matrix–element between |1 > and |2 >.
From the Schrödinger–equation (48) we obtain two coupled first–order differential equa-
tions for c1(t) and c2(t):

ih̄ċ1(t) = ε1c1(t)− pE(t)c2(t), (50)

ih̄ċ2(t) = ε2c2(t)− p∗E(t)c1(t). (51)

From c1(t), c2(t) the energy and the dipole moment of the TLS are fixed by:

E(t) = c†Ĥ0c = ε1|c1(t)|2 + ε2|c2(t)|2 =
ε1 + ε2

2
+
ε2 − ε1

2
I(t), (52)

p(t) = c†P̂c = pP (t) + p∗P ∗(t), (53)

I(t) = |c2(t)|2 − |c1(t)|2, (54)

P (t) = c∗1(t)c2(t), (55)

where I(t) is the inversion and P (t), the complex dipole moment, which are the basic
quantities to describe the physics of the TLS.
For the unperturbed atom (E ≡ 0) the time evolution of cj(t) is

cj(t) = dje
−iεjt/h̄, j = 1, 2, (56)

with constant prefactors d1 and d2. Hence, I(t) =const and P (t) = d∗1d2 exp(−iω0t),
where ω0 = (ε2 − ε1)/h̄ is the transition frequency between the energy levels εj.
To solve the coupled system of differential Eqs.(50,51) we first split–off the free time
evolution:

cj(t) = dj(t)e
−iεjt/h̄, j = 1, 2, (57)

ḋ1(t) = i
p

h̄
E(t)e−iω0td2(t), (58)

ḋ2(t) = i
p∗

h̄
E(t)e+iω0td1(t). (59)

These equations are somewhat simpler than Eqs.(50,51), but an analytical solution is
still not accessible. Near resonance, however, the product of E(t) = E0 cos(ωt) and e±iωot
contains a term which is almost constant and another one which oscillates rapidly. This
fast oscillating term will be neglected in the following (this is termed “rotating wave
approximation”, RWA. See the end of this chapter).
Besides the transition frequency ω0, there are two other characteristic frequencies:

• ν = ω − ω0, which is called “detuning”, and

• ωR = pE0/h̄, the Rabi-frequency.

Within the RWA, the system of differential Eqs.(58,59):

ḋ1(t) = i
ωR
2
e+iνtd2(t), (60)

ḋ2(t) = i
ωR
2
e−iνtd1(t), (61)

11
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Fig. 3 Rabi–oscillations of the excited state population. (Full line) Resonant excitation,
(dashed line) detuned excitation, ω = 2ω0.

still contains an explicit time dependence. Nevertheless, Eqs.(60,61) transform to the
harmonic oscillator when inserting Eq.(60) into Eq.(61). In contrast to the standard
oscillator equation, it contains “imaginary” rather than real damping:

[

d2

dt2
+ iν

d

dt
+ (

ωR
2
)2
]

d1(t) = 0. (62)

The solution can be found by the standard exponential Ansatz and reads:

d1(t) =
[

a cos(
ΩR

2
t) + b sin(

ΩR

2
t)
]

exp
(

i
ν

2
t
)

, (63)

d2(t) = −i 2

ωR
e−iνtḋ1(t). (64)

ΩR =
√

ω2
R + ν2 is the “detuned” Rabi–frequency.

For example, at resonance and for the initial conditions c1(0) = 1, c2(0) = 0 we have:

d1(t) = cos(
ωR
2
t), d2(t) = i sin(

ωR
2
t). (65)

The probability to find the atom in the excited state is given by the absolute square of
d2(t) which oscillates with the Rabi–frequency ωR. At time t1 = π/ωR the atom is in
the excited state and at 2π/ωR it is back again in the ground state. For detuned fields,
the oscillation period becomes shorter and the amplitude is less than unity, Fig. 3.
For example, for atomic sodium the parameters for the 3s − 3p transition are: p =
2.5aBe, λ0 = 589nm. For an intensity of 127 Watt cm−2 the Rabi–frequency ωR/2π =
1GHz becomes larger than the natural line width [13].
Next, we reformulate the problem and set up an equation for the complex dipole moment
and the inversion themselves in terms of the driving field. P(t) and I(t) likewise fulfill
first order differential equations

[

d

dt
+ iω0

]

P (t) = −ip
∗

h̄
E(t)I(t) + Ṗsc, (66)

dI(t)

dt
= −4 Im

[p

h̄
E(t)P∗(t)

]

+ İsc. (67)
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The advantage of these equations with respect to Eqs.(50,51) is the possibility to include
damping (=collisions, scattering, or incoherent motion). In a simple phenomenological
description this is accomplished by:

Ṗsc = −
P

T2
, İsc = −

I(t)− Ieq
T1

. (68)

T1 and T2 are called “longitudinal” and “transverse” relaxation times. As I is the
square of an amplitude we expect T2 ≈ 2T1. Ieq is the equilibrium value of the inversion
in the absence of the driving field. At zero temperature Ieq = −1.
Without damping, there is a conserved quantity,

4 |P (t)|2 + I2(t) = const (69)

which may be used to eliminate the inversion from Eq.(66). Its origin becomes obvious
from a remarkable analogy between a two-level system and a spin-system in a magnetic
field: The level-splitting between the ground state and the excited state of the atom
plays the role of a constant magnetic field in z-direction, whereas the light field is
equivalent to an oscillatory magnetic field in x-direction. The expectation value of the
spin operator, S = (S1, S2, S3), is closely related to the complex dipole moment and the
inversion:

S1 = < σ̂x >= c∗1c2 + c1c
∗
2 = 2 Re P (t), (70)

S2 = < σ̂y >= −ic∗1c2 + ic1c
∗
2 = 2 Im P (t), (71)

S3 = < σ̂z >=| c1 |2 − | c2 |2 = −I(t), (72)

and obeys the atomic Bloch-equations:

dS(t)

dt
= Ω×S(t)+ Ṡsc, Ṡsc =





−S1/T2
−S2/T2

−(S3 − Seq3 )/T1



 , Ω =





−ωR cosωt
ωR sinωt
−ω0



 , (73)

which describe a rotation of S around vector Ω at each instant of time. The second
component of Ω is a consequence of the RWA so that the notation eventually becomes
obvious.
In the absence of relaxation, the length of the Bloch vector S is conserved and its motion
can be nicely visualized, Figs. 4,5. We consider two limiting cases. Without a time
dependent field, S rotates on a cone around the z-axis which is called Larmor-precession:

S(t) = (a sinω0t, a cosω0t, const) . (74)

If the system is excited at resonance from initial state S(0) = (0, 0, 1) it performes
Rabi–oscillations:

S(t) = (sinωRt sinω0t, sinωRt cosω0t, cosωRt) . (75)

Problems:

5.) Calculate dj(t) according to Eqs.(63,64) for arbitrary detuning and initial conditions
d1(0) = 1 and d2(0) = 0.

6.) At resonance there are states of the coupled TLS–electrical field with time–independent
probabilities |dj(t)|2 = const. Find these states!
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Fig. 4 Larmor–precession of the Bloch–vector, according to Eq.(74).

Fig. 5 Rabi–oscillation: Trace of the Bloch–vector upon resonant excitation (without
damping), according to Eq.(75), 0 ≤ ωRt ≤ π.

Fig. 6 Sketch of the band structure and optical transitions in a semiconductor.
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III.B. Semiconductor with Noninteracting Bands

The generalization of the atomic Bloch-equations to the case of a two–band semicon-
ductor is straightforward, Fig 6. In the dipole approximation the optical transitions are
vertical in k-space. Without scattering or nonradiative recombination processes, the
two band semiconductor is just an assembly of uncoupled TLS and resembles the case
of a inhomogeneously broadened line problem in atomic physics:

ih̄
∂P (k, t)

∂t
=

[

Ec(k)− Ev(k)
]

P (k, t) + pE(t)
[

nc(k, t)− nv(k, t)
]

+ ih̄Ṗsc, (76)

∂nc(k, t)

∂t
= −2 Im

[

pE(t)P ∗(k, t)
]

+ ṅscc , (77)

∂nv(k, t)

∂t
= +2 Im

[

pE(t)P ∗(k, t)
]

+ ṅscv . (78)

Eqs.(76-78) are called optical Bloch equations. In the absence of scattering the equa-
tions are uncoupled and k merely acts as a parameter. From the complex polarization
P (k, t) the electronic polarization P(r, t) of the semiconductor can be obtained from

P(t) = 1

V

∑

k,s

[pcv(k)P (k, t) + cc], (79)

where V denotes the crystal volume (normalization volume of the wave–functions) which
eventually drops out when performing the sum over wave numbers k by an integral

1

V

∑

k,s

. . . = 2
1

(2π)d

∫

. . .ddk. (80)

d = 1, 2, 3 is the spatial dimension and the factor 2 arises from spin. The k-dependence
of the dipole matrix element pcv(k) can often be neglected near the band edge.
As an application, we state the linear response result where nc = fc(k) and nv = fv(k)
are the Fermi-functions. As k is merely a parameter, the required solution of Eq.(76)
can be found by the Ansatz

P (k, t) = Q(k, t) exp
[

i(εv(k)− εc(k))− h̄ω)t
]

(81)

with a simple integration forQ(k, t). When separating the different Fourier–components
the susceptibility can be read–off:

χ(ω) =
1

V ε0

∑

k,s

|pcv(k)|2
{

fv(k)− fc(k)

Ec(k)− Ev(k)− h̄(ω + iδ)
+

fv(k)− fc(k)

Ec(k)− Ev(k) + h̄(ω + iδ)

}

.

(82)
For parabolic bands and k–independent dipole matrix elements the absorptive part of
the susceptibility becomes proportional to the joint density of states which rises as a
square–root above the gap χ2(ω) ∝

√

h̄ω − Eg.

III.C. Semiconductor Bloch-Equations

We are close to the summit of our tour towards the SBE – which is today’s standard
model of semiconductor optics. Two features have not yet been taken into account:
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• There is a change in Coulomb energy of the interacting many electron ground state
when exciting an electron to the conduction band and leaving a hole behind. This
(exchange) interaction turns out to be an attractive Coulomb potential.

• With increasing band filling there is a renormalization of the electron/hole band
energy by the (repulsive) electron/hole Coulomb interaction:

ih̄
∂P (k, t)

∂t
=

[

Eg + Ee(k) + Eh(k)
]

P (k, t) +
[

ne(k, t) + nh(k, t)− 1
]

h̄ΩR(k, t) + ih̄Ṗsc, (83)

∂nc(k, t)

∂t
= −2 Im

{

ΩRP
∗(k, t)

}

+ ṅscc , (84)

∂nh(k, t)

∂t
= −2 Im

{

ΩRP
∗(k, t)

}

+ ṅsch . (85)

For convenience, the change in population of the valence band is formulated within the
hole picture as indicated by the index h:

nv(k, t) = 1− nh(k, t), Ev(k, t) = −Eg − Eh(k, t). (86)

Ee(k, t), Eh(k, t) are the electron/hole (Hartee–Fock) energies including the interaction
with other electrons/holes. For parabolic bands these are:

Ej(k, t) =
h̄2k2

2mj

− 1

V

∑

q

V (k− q)nj(q, t), j = e, h. (87)

Note, mh > 0. ΩR(k, t) denotes the Rabi-frequency function:

h̄ΩR(k, t) = pE(t) + 1

V

∑

q

V (k− q)P (q, t). (88)

V (q) is the Fourier–transform of the electron–hole Coulomb–potential screened by a
“background” dielectric constant ε̄:

V (q) =
e2

ε0ε̄q2
, V (r) =

e2

4πε0ε̄r
. (89)

In addition, this interaction will be screened by mobile electrons and holes in terms of
a dielectric function ε`(q, ω) as discussed in problem 3.

IV. APPLICATIONS AND SUPPLEMENTS

IV.A. Causality and Kramers–Kronig Relations

There are three equivalent formulations of causality [18]:

1. The original formulation (28) of the polarization or current response just states,
that the present value of the polarization does not depend on future fields:

χ(t− t′) ≡ 0, t′ > t. (90)

A function of this type is called a causal function.
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2. The Fourier–transform (29) of a causal function

χ(ω1 + iω2) =

∫ ∞

0

χ(t)eiω1t−ω2tdt (91)

is an analytic function of ω = ω1+ iω2 in the upper part of the complex ω–plane,
ω2 > 0. In this half–plane χ(ω) has no poles or other singularities. For real ω,
χ(ω) is the boundary value of this analytic function.

3. Real and imaginary parts of χ(ω) are connected by the Kramers–Kronig relations:

χ1(ω) =
+1

π

∫ ∞

−∞
P

χ2(ω
′)

ω′ − ω
dω′, (92)

χ2(ω) =
−1
π

∫ ∞

−∞
P

χ1(ω
′)

ω′ − ω
dω′. (93)

Apart from causality the following assumptions have been made to derive Eqs.(92,93):

• χ(ω) has no singularities on the real ω–axis,

• χ(ω) tends to zero at large frequencies.

If there are singularities in χ(ω) which lie perfectly on the real axis (like the pole of
the Drude susceptibility at ω = 0, Eq.(33)) these terms have to be subtracted before
applying the Kramers–Kronig relations: χ→ χ̄ = χ(ω)− χpole(ω).
If χ(ω) tends to a finite value at ω =∞, χ→ χ̄ = χ(ω)−χ(∞) in Eqs.(92,93). For the
magnetic susceptibility such a constant term arises from the diamagnetic contribution.
In addition, Im χmag > 0 is not guaranteed! [20]. However, the electrical susceptibility
and the conductivity always fulfill χ(∞) = 0, σ(∞) = 0. To describe the low–frequency
properties of semiconductors (e.g. the contribution of optical phonons) it is sometimes
convenient to neglect dispersion at high frequencies (e.g. of the electronic interband
transitions) by introducing a constant χ∞. For instance, for GaAs, ε∞ = 1+χ∞ = 10.6
which holds up to half of the band edge at h̄ω = 1.4eV [3]. The resistivity, on the other
hand, has a first order pole at ω = ∞ so that this pole has to be likewise subtracted
from ρ(ω) before applying the Kramers–Kronig relations to ρ = 1/σ.
In Eqs.(92,93) the “P” denotes “principal value” which is a prescription how to treat
the singular integral:

g(ω) =
1

π

∫ ∞

−∞
P

f(ω′)

ω′ − ω
dω′ = lim

δ→0+

1

π

(∫ ω−δ

−∞
+

∫ ∞

ω+δ

)

f(ω′)

ω′ − ω
dω′. (94)

In mathematics this relation is termed Hilbert– transformation.
Another way to interpret this limiting process is to replace the singular function 1

ω′−ω by

a “regularized” function P 1
ω′−ω which are almost identical except near the singularity.

There P 1
ω−ω′ becomes zero in an (anti–) symmetrical fashion. For instance, 1

ω′−ω is put
to zero (anti–)symmetrically around the singularity from ω−δ to ω+δ with δ → 0. This
is just a reformulation of Eq.(94). But any other symmetrical replacement is equivalent
and resembles the way the Dirac delta–function is constructed, e.g.

P
1

ω
' ω

ω2 + δ2
, δ(ω) ' 1

π

δ

ω2 + δ2
, δ → 0+. (95)

P 1
ω
has a precise meaning only under an intergral and is - like δ(ω) - another example

of a distribution.
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Fig. 7Sequence of function which “converge” to the principal value (left) and to the
delta function (right).

Because of the singular structure of the integrand in Eqs. (92-94) these integrals cannot
be simply numerically calculated, e.g. by just using a Simpson–routine. For some
elementary functions f(ω), however, the integral and the limiting process in Eq.(94) can
be done analytically (see problem 8). In other cases, f(ω) is too complex or only known
numerically. Then, one possibility to perform the Hilbert–transformation numerically
is to fit f(ω) piecewise by a parabolic function (or a cubic spline), do the integral
piecewise analytically and eventually sum all contributions numerically. Problem 9
supplies another possibility.
Traditionally, the proof of the Kramers–Kronig relations is by using tools from complex
analysis, e.g. [1],[2], or [12]. A much shorter and almost “trivial” proof, however, can
be found in Stößel’s book on Fourier–Optik [19]:

• A causal function (90) trivially obeys χ(t) ≡ χ(t)θ(t), where θ(t) is the unit step
function. This relation holds if there is no singular part in χ(t) of the type χ∞δ(t)
which corresponds to a nonvanishing contribution in χ(ω) at ω =∞.

• Using the convolution theorem (22,23), Fourier–transformation yields:

χ(ω) = χ(ω)⊗ θ(ω). (96)

As θ(t) does not converge to zero at t =∞ its Fourier–transform needs, as usual
in such cases, an adiabatic switching–off factor exp(−δt) to define the integral

θ(ω) =

∫ ∞

0

1 · eiωte−δt dt = 1

δ − iω
= P

i

ω
+ πδ(ω). (97)

• Separation of real and imaginary parts in Eq.(96) immediately leads to the Kramers–
Kronig relations (92,93).

For a detailed discussion of Kramers–Kronig relations in connection with sum–rules we
refer to the seminal article by Martin [20].

Problems:

7.) Sketch the loci of the singularities of χ(ω) and σ(ω) in the complex ω–plane.
(a) For the Drude and (b) the Lorentz–model. (Use results of problems 3,4).
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8.) Calculate the Hilbert–transform (94) of the “box–function” box(ω) = 1 for | ω |< 1,
otherwise box(ω) = 0.

9.) The Hilbert–transformation (94) is again a convolution and, thus, may be trans-
formed to a product in time–domain

g(t) = f(t) · s(t), (98)

where s(t) is the Fourier–transform of P 1
ω
.

Show that s(t) = − i
2
sign(t) with sign(t) = +1 for t > 0 and sign(t) = −1 for t < 0.

Thus the Hilbert–transformation can be performed by two Fourier–transformations:
First transform from ω to time–domain, multiply by s(t) and transform back to frequeny
domain. Numerically, this can be done efficiently by standard FFT routines [21].
Hint: Prove that the Fourier–transform of s(t) is P 1

ω
. Use an adiabatic switching–factor

exp(−δ | t |), δ → 0+.

IV.B. Oscillator with a Quadratic Nonlinearity

We consider the case of charges bound in a noncentrosymmetric crystal which can
be modelled by adding a quadratic force term in the Lorentz–model Eq.(19). (For
simplicity spatial dispersion and vector properties of P and E will be omitted.)

[ d2

dt2
+ γ

d

dt
+ ω2

0

]

P(t) + λP2(t) = ε0Ω
2
pE(t). (99)

No analytic solution of Eq.(99) is known, which is not surprising, as this model contains
rich physics from periodic to chaotic phenomena. Note that there are two independent
parameters λ and Ω2

p which can be used to set up perturbation expansions.
If E(t) is sufficiently weak, the nonlinear term λP2 will be much smaller than the
“restoring-force” −ω2

0P so that a pertubation expansion of P(t) of the form Eq.(17)
may be used

P(t) = P (1)(t) + P (2)(t) + P (3)(t) . . . . (100)

The various orders obey the following chain of differential equations

[ d2

dt2
+ γ

d

dt
+ ω2

0

]

P (1)(t) = ε0Ω
2
pE(t), (101)

[ d2

dt2
+ γ

d

dt
+ ω2

0

]

P (2)(t) = −λ
[

P (1)(t)
]2
, (102)

[ d2

dt2
+ γ

d

dt
+ ω2

0

]

P (3)(t) = −2λ
[

P (1)(t)P (2)(t)
]

. (103)

The first-order solution is identical with the Lorentz-solution

P (1)(ω) = ε0χ
(1)(ω)E(ω), (104)

χ(1)(ω) = Ω2
pG(ω), (105)

G(ω) =
1

ω2
0 − ω2 − iγω

. (106)

In mathematics, G(ω) is termed (retarded) Green–function of Eq.(101).
The nonlinear susceptibilities are calculated in an analogous manner, where the prod-
ucts on the rhs of the equations for P (k)(t) become convolutions in the frequency
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domain, e.g.

G−1(ω)P (2)(ω) = −λ
∫

dω′

2π
P (1)(ω − ω′)P (1)(ω′), (107)

G−1(ω)P (3)(ω) = −2λ
∫

dω′

2π
P (1)(ω − ω′)P (2)(ω′). (108)

Inserting Eq.(105) in Eqs.(107,108) the higher order susceptibilities can be read–off:

χ(2)(ω1, ω2) = −λΩ4
pG(ω1)G(ω1 + ω2)G(ω2), (109)

χ(3)(ω1, ω2, ω3) = −2λ2Ω6
pG(ω1)G(ω2)G(ω3)G(ω1 + ω2 + ω3)

×1

3

[

G(ω1 + ω2) +G(ω1 + ω3) +G(ω2 + ω3)
]

. (110)

Eq.(110) for the cubic susceptibility has second-order poles in the degenerate case (some
of the ωn are equal). The origin of these singularities is seen from the geometric expan-
sion [7]

1

x− a
=

1

x
+

a

x2
+
a2

x3
. . . , | a |<| x | . (111)

The lhs of Eq.(111) has a first-order pole at x = a, but the expansion on the rhs shows
poles of all orders at x = 0, yet the expansion is not valid there. In Eq. (110) the
situation is of the same type. The remedy of the “dangerous” terms (poles of second
and higher order) in Eq.(110) is a partial resummation of all singular terms in the
infinite perturbation series (100). For a monochromatic field with frequency near ω0 we
have

P (1)(t) + P (3)(t) + · · · = ε0

{

1 +
λ2

ω2
0 − ω2 − iγω

|χ(1)E|2 + . . .
}

χ(1)(ω)E(ω). (112)

The first terms of this expansion might be thought as the beginning of a geometric
series. Summation can be cast in the quasilinear form:

P (t) = ε0χ(ω;E)E(ω), (113)

χ(ω;E) =
Ω2
p

Ω2 − ω2 − iγω
, Ω2 = ω2

0 − λ2 |P |2 , (114)

where Ω describes an intensity dependent eigenfrequency. For stationary fields, its
quantum analogue is termed Stark–effect.

Problems:

10.) Calculate the amplitude–dependent eigenfrequency Ω = Ω(A1) of the nonlinear
undamped oscillator

d2x(t)

dt2
+ x+ λx2 = 0 (115)

up to second order in the amplitude A1 of the fundamental mode:

x(t) =
∞
∑

m=−∞
Ame

imΩt, A−m = A∗m. (116)

Hints: First, derive the set of nonlinear equations for Am. Then, expand the equations
for m = 0, 1, 2 to leading order in A1. Note that A0, A2 are proportional to the square
of A1, other coefficients Am are of higher order.
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IV.C. Photogalvanic Effect

According to the standard rules of irreversible thermodynamics a steady-state (non-
supra) current in a solid is always driven by the gradient of the electrochemical potential
η = µ+ eφ [22],

j = −σ
e
grad η. (117)

µ and φ denote the chemical and electrical potential of the charge carriers, respectively.
Thus, inhomogeneities are necessarily needed which may either reside in the system
itself (e.g. a p − n junction) or are imposed by external conditions (e.g. gradients
in temperature or electrical potential). In addition, a photo–induced current solely
depends on the number of absorbed photons (regardless of their polarization) and the
open circuit voltage is limited by the band gap of the semiconductor.
In noncentrosymmetric crystals, however, an additional direct current originates from
the quadratic term in the current-field relation (46):

jα = IPαβγ(ω)eβe
∗
γ. (118)

In contrast to Eq.(117) this bulk photovoltaic current is intimately connected to the
light polarization described by the complex polarization vector e and intensity I.
Pαβγ(ω) ∼ σ

(2)
αβγ(ω,−ω). Such a third rank tensor exists in all noncentrosymmetric

crystals. In particular ferroelectrics, like LiNb03, allow for nonzero tensor elements
with equal indices β = γ, and, hence, a photocurrent can occur even for unpolar-
ized light. The phenomenon described by Eq.(118) in now called photogalvanic effect
(PGE). For a survey and further references see Ruppel et al. [23] or v. Baltz [24].
For sake of completeness, we note that there is another contribution to the radiation
impressed current which, in distinction to Eq.(118), explicitely depends on the direction
of light propagation and, hence, is related to the momentum of the absorbed photons.
This phenomenon is called photon drag effect but it is mainly important in the IR
region.
There were many fingerprints of the PGE before Glass at Bell Laboratories [25] recog-
nized it as a new photovoltaic mechanism whose spectacular property is the occurence
of photovoltages larger than 100 kV even under perfect homogeneous conditions. As-
tonishingly, the main research activities were almost exclusively done later in the former
Sovietunion so that this phenomenon is rarely known in the western hemisphere. To
illustrate the discovery and some of its unusual properties of the PGE we give some
examples.

• Local changes of indices of refraction were observed in ferroelectrics upon illumi-
nation. This leads to a (reversible) “damage” of the phase-matching conditions
when using these materials in nonlinear optics. This photorefractive effect results
from a small imposed current which charges the faces of the crystal. In a high
resistive crystal, like LiNbO3 the (intensity dependent) resistivity is in the range
of ρ ≈ 1015 . . . 1012Ωcm so that even a tiny current can lead to very large electric
fields. According to the Pockels effect, this field causes a change in the refractive
index, Fig. 8.
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Fig. 8 Current flow into the c faces of LiNbO3 vs time with uv illumination.
From Chen [26].

Fig. 9 Oscilloscope traces of the optical rectification from LiTaO3. (Left) Cu–
doped, (right) undoped crystal. Time scale 2 nsec/div. From Auston et al. [27].
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Fig. 10 Optical transitions from impurities in a ferroelectric crystal resulting in
a difference between the generation rates in ±z direction. Asymmetric potentials,
(a) with and (b) without a barrier. From Ruppel et al. [23].
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• Austin et al. [27] discovered efficient “optical rectification” in polar crystals due
to impurity absorption. The induced current contains two contributions: one
from genuine OR following the derivative of the intensity profile of the laser and
a photogalvanic current proportional to the light intensity, Fig. 9.

• Glass [25] recognized the PGE as originating from an asymmetry in the optical
transition probabilities, Fig. 10. In a ferroelectric the transition probalitities
p+ and p− from a bound (Fe, Cu) impurity state to the conduction band can
be different in ±c directions thus leading to a net charge transfer along the c–
direction upon optical excitation. This asymmetry is not compensated under
recombination because these processes are mostly nonradiative.

It is convenient to represent the photogalvanic current in the following form:

jPGE = I κ K = e
I

h̄ω
K s, s = (p+ − p−)λ, (119)

where K is the absorption constant, κ = e
h̄ω
s the Glass–constant, λ the mean free

path of the photoexcited carriers, and s the anisotropy distance (“Schublänge”).
For LiNbO3 s ≈ 1A whereas for KNbO3 s ≈ 18A. Recent investigations of the
photogalvanic tensor components of LiNbO3 were reported by Karabekian and
Odulov [28].

• The tensorial dependence of the photogalvanic current in n–doped GaP on the
light polarization was studied by Gibson et al. [29] in connection with the investi-
gation of fast responding IR detectors, Fig 11. GaP is a noncentrosymmetric cubic
crystal with 4̄3m point symmetry. Therefore, the only nonvanishing components
of the photogalvanic tensor are P123 = P132 and cyclic permutations of indices.
Linear polarized light propagating along the z–direction induces a photogalvanic
current which varies sinusoidally with the polarization of light

jz = I P123 sin 2φ. (120)

φ is the angle between the polarization vector and the crystal x–axis.

• In GaP the microscopic mechanism of the PGE is different from the ”ballistic”
mechanism in LiNbO3. The spectral shapes of the photogalvanic current and the
interband optical absorption are almost identical which indicates that the PGE
is due to transitions near the X point from the conduction band minimum to the
next upper band. However, this apparently contradicts the bandstructure theory!
According to time–reversal symmetry the band structure obeys E(−k) = E(k)
so that the velocities v(k) = ∇E(k) at ±k have opposite sign. As the transition
rates are the same at ±k there is no net current upon photoexcitation regardless
of crystal symmetry. Most remarkably, however, there is a shift in real space of
the valence and conduction band wave–packets upon photoexcitation, Fig. 12. In
noncentrosymmetric crystals, these shift vectors at ±k0 do not compensate each
other and lead to a photogalvanic current which can be represented as [30]:

jPGE = |e| I
h̄ω

e2

2π2ε0m2
0ncω

2

∫

(fc − fv) |< ck |ep| vk >|2 ×

s(k) δ(Ec(k)− Ev(k)− h̄ω) d3k, (121)

s(k) = Xcc(k)−Xvv(k) +∇kΦcv(k), (122)

Xmn(k) =

∫

unitcell

i u∗mk(r)∇kunk(r)d
3r. (123)
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Fig. 12 Optical transitions of wave packets in a noncentrosymmetric semiconductor.
(Left) k–space, (right) real space.
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Φcv(k) denotes the phase of the interband momentummatrix element< ck|ep|vk >,
n is the refractive index of the material, and unk(r) is the periodic part of the
electron Bloch function. For the X1 → X3 transition in GaP the shift of wave
packets is s ≈ 8A.

The shift vectors Xmn(k) are known for almost 40 years from the work of Adams
and Blount [31] in connection with the Bloch–representation of the position operator.
However, these quantities are rarely explicitely used or even notified. Exceptions are
e.g. their connection to Bloch–oscillations, e.g. [32], nonlinear optical susceptibilities
[33], or the definition macroscopic polarization in a ferroelectric or piezolectric materials
in terms of a Berry–phase [34].
Recently the PGE and related phenomena found new interest. For example Schneider
et al. [35] reported on IR photodetectors which were made of asymmetric quantum
wells, directed motion of Brownian particles was proposed to occur in “thermal ratch-
ets” (=periodic arrangement of potentials given in Fig. 10b) upon periodic perturbation
[36],[37], or small amplitude swimming of a pulsating body [38]. The unifying aspect
is the occurence of an unidirectional motion from oscillatory disturbances in noncen-
trosymmetric structures.

IV.D. Photon–Echo

The analogy of the TLS with the Spin-problem offers the description of an interesting
phenomenon which is called photon–echo. Here, we examine the rather marvellous
notion that not all decay processes are irreversible. This technique was developped by
Hahn [39] for nuclear spin systems and, apart from its beautiful physics, it plays an
important role to measure the T2–time. For a survey and thorough discussion we refer
to chapter 9 of Allen and Eberly [17].
In an experiment many TLS are involved and because of different local environments
these have individually slightly different transition frequencies (=inhomogeneous line
broadening, spectral width is parameterized by 1/T ∗2 ). To describe the dynamics of the
Bloch–vector it is convenient to transform to a frame rotating with the frequency of the
light around the 3–axis:

R1(t) = S1(t) cosωt− S2(t) sinωt, (124)

R2(t) = S1(t) sinωt+ S2(t) cosωt, (125)

R3(t) = S3(t). (126)

(In complex notation the 1, 2 components are summarized by R = Seiωt.) In this frame
the equations of motion become 3:

Ṙ1(t) = −νR2(t)−
R1(t)

T2
, (127)

Ṙ2(t) = +νR1(t) + ωRR3(t)−
R2(t)

T2
, (128)

Ṙ3(t) = −ωRR2(t)−
R3(t)−Req

3

T1
. (129)

These linear differential equations have constant coefficients so that the solution can be
found by an exponential Ansatz. In particular, for ωR = 0 the Bloch–vector performs

3Some signs are different from Allen and Eberly [17] who use a different numbering of the ground
state and excited state.
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Fig. 13 Pulse condition for the photon echo experiment. (Full lines) externally applied
pulses, (dashed lines) polarization which give rise to the free polarization decay and the
echo.

a (damped) Larmor–precession around the 3–axis:

R1(t) = [R1(0) cos νt−R2(0) sin νt] e
− t
T2 , (130)

R2(t) = [R1(0) sin νt+R2(0) cos νt] e
− t
T2 , (131)

R3(t) = R3(0) e
− t
T1 . (132)

At resonance, ν = 0, and neglecting damping a light pulse causes a rotation of the
Bloch–vector around the 1–axis:

R1(t) = +R1(0), (133)

R2(t) = +R2(0) cosωRt+R3(0) sinωRt, (134)

R3(t) = −R2(0) sinωRt+R3(0) cosωRt. (135)

In the discussion of a photon–echo experiment four periods have to be distinguished,
Fig. 13. To simplify matters, we shall assume that the pulse duration is short with
respect to T1, T2, T

∗
2 and intense, ωRT

∗
2 >> 1, so that the influence of damping and

detuning can be safely neglected during the pulses.

1. All TLS start from the same initial state R(0) = (0, 0, 1). Then the ensemble of
atoms is polarized by a first light pulse (duration τ1) which leads to a common
Bloch vector R(1) = (u, v, w).

2. After the first light pulse the individual Bloch-vectors R(2) precess according
to Eqs.(130-132). Because of their slightly different frequencies the individual
dipolemoments get out of phase and add to zero in a time T ∗2 which is much
shorter than T2.

3. After time T a second light pulse is applied (duration τ2, phase φ2 = ωRτ2) which
according to Eqs.(133 - 134) “tips” the polarization to R(3).

4. After the second pulse the Bloch–vectors R(4) again rotate freely around the 3–
axis. As a result, we obtain for the 1–component:

R
(4)
1 (t) =

{

u [cos νT cos νt− cosφ2 sin νT sin νt] (136)

−v [sin νT cos νt+ cosφ2 cos νT sin νt]
}

e
− t+T

T2 (137)

+w sinφ2 sin νt e
− t+T

T1 , (138)
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where the time t counts from the end of the second pulse. For φ2 = π the terms
in the [..] brackets combine to cos ν(t − T ) and sin ν(t − T ) and all individual
Bloch–vectors again are in phase at time 2T after the first pulse, and add up in
phase to a macroscopic polarization. This causes the emission of a light pulse,
the photon echo.

The resurrected free polarization signal has the magic quality of something coming from
nothing. However, this resurrection is only possible for times which are comparable with
the T2–time. For larger times, the intensity of the photon echo decays as the square of
exp(−2T/T2) i.e. exp(−4T/T2). T2 is also called dephasing–time.
It is interesting that the existance of the echo is not attributed to the π–character
of the second pulse as it is frequently imputed. When decomposing the products of
trigonometric functions cos νT cos νt etc., in terms of sum and differences we realize
that there is a contribution to the polarization of the form:

R
(4)
1 =

1− cosφ2
2

{

u cos [ν(T − t)]− v sin [ν(T − t)]
}

e
− t+T

T2 + . . . (139)

Thus, a second pulse of any duration will induce an echo. However, its intensity is
largest for φ2 = π.

Problems:

12.) Find the general solution of the coupled set of differential equations Eqs(127-129)
for the Bloch–vector R(t). Express the integration constants in terms of R(0).
Hint: The solution can be obtained by an exponential Ansatz R(t) = ρ exp(λt), where
ρ is a time–independent 3–component vector.

IV.E. Linear Susceptibility: Excitons

To demonstrate the potential and simplicity of the SBE (e.g. compared with an evalu-
ation of the Kubo formula) we derive the linear optical susceptibility of the interacting
electron-hole system in the low excitation limit. This will lead us to the exciton and
the famous Elliott–formula for the optical absorption.
At zero temperature nv = nh = 0 and the set of Eqs.(83-85) reduce to:

ih̄
∂P (k, t)

∂t
=
[

Eg +
h̄2k2

2mr

]

P (k, t)− 1

V

∑

q

V (k− q)P (q, t)− pE(t), (140)

where mr denotes the reduced electron-hole mass. In addition to the optical Bloch
Eqs.(76-78) there is a interaction part which couples different k’s so that k is no longer
just a parameter. However, this interaction term is of convolution type and the integral
equation can be Fourier-transformed to a well known differential equation:

ih̄
∂P (r, t)

∂t
=
[

Eg +
h̄2

2mr

∆
]

P (r, t)− V (r)P (r, t)− p E(r, t) δ(r). (141)

This is the (inhomogeneous) Schrödinger equation of the hydrogen atom, P(r, t) playing
the part of the wave–function.
For E(r, t) = 0 the stationary states are well known from standard texts on Quantum
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Mechanics.

Pstat(r, t) = exp
(

− i
Eµ

h̄
t
)

Ψµ(r), (142)

Eµ = −Ry
∗

n2
, (143)

Ry∗ = 13.56
mr/m0

ε̄2
eV, (144)

with the quantum numbers µ = (n, l,m), which have their usual meaning and run over
the discrete as well as over the continuum states. In a semiconductor, the (bound)
hydrogenic states are called excitons [3]. If the excitonic Rydberg Ry∗ is smaller than
the LO–phonon energy ε̄ is given by the static dielectric constant εs, otherwise ε̄ = ε∞.
For E(r, t) 6= 0 we seek the solution of P (r, t) in terms of the complete set of the
stationary states (142):

P (r, t) =
∑

µ

Qµ(t)e
−iEµ

h̄
tΨµ(r). (145)

Q(r, t) can be found by a simple integration

Qµ(t) = ipΨµ(r = 0)

∫ t

−∞
E(t′)ei

Eµ

h̄
t′eδt dt′, δ → 0+, (146)

from which it becomes obvious that only those excitonic states couple to the light which
have nonvanishing wave function at the origin. These are the s–states. (This result,
however, originates from our assumption pcv(k) = const. If the dipole element becomes
zero at the band edge the coupling is to p–states).
Inserting Eq.(145) in Eq.(80) and using the completeness relation of the stationary
states Eq.(142),

∑

µ

Ψ∗µ(r
′)Ψµ(r) = δ(r− r′), (147)

we finally obtain the electron-hole-pair susceptibility as [14]

χ(ω) = 2|pcv|2
∑

µ

|Ψµ(r = 0)|2
[

1

h̄(ω + iδ + Eg + Eµ)
− 1

h̄(ω + iδ − Eg − Eµ)

]

. (148)

Using the Dirac identity (97) the imaginary part is given by:

χ2(ω) ∝
∞
∑

n=1

4π

n3
δ(∆ +

1

n2
) + θ(∆)

πe
π√
∆

sinh( π√
∆
)
. (149)

∆ = (h̄ω − Eg)/Ry
∗ denotes the normalized photon energy. This result is first derived

by Elliott [40]. The corresponding real part can be calculated from the Kramers–
Kronig relation (92). Recently Tanguy [41] succeeded to express the real part of the
susceptibility in terms of known functions.
The optical absorption spectrum of a semiconductor is diplayed in Fig. 14 which gives a
lively impression about the importance of the Coulomb interaction and excitonic states
near the band gap. The optical absorption spectrum consists of a series with rapidly
decreasing oscillator strength ∝ n−3 and a continuum part. In the very best samples
excitonic lines up to n = 3 can be resolved, see [3] page 201. Close to the ionization
continuum, ∆→ 0 the absorption assumes a constant value, in striking difference with
the square–root law for noninteracting bands. Thus, the attractive Coulomb interaction
not only creates bound states below the gap but leads to a pronounced enhancement
of the absorption above the gap. (“Sommerfeld–enhancement”).
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the interacting electron hole system, Eq.(149), (B) Im χ of the noninteracting system,
Eq.(82). Note the different frequency scale above and below the gap. An appropriate
broadening is included. From Stahl and Balslev [11].

V. OUTLOOK

Sofar the damping mechanismn in the SBE was described phenomenologically. In a
next step this can be improved by setting up kinetic (Boltzmann) equations for the
electron and hole populations with appropriate collision integrals for the carrier–phonon
scattering. These equations are coupled nonlinear differential–integral equations which
can be solved only by advanced numerical treatments.
The many body effects which are omitted in the SBE as given by Eqs.(83- 85) lead to
a further renormalization of the electronic energies, screening of the interactions, and
additional collision terms. The success of this theory to descibe numerous linear and
nonlinear effects is obvious from Haug and Koch [14] and the contributions presented
by Klingshirn [42] and Hvam [43] in this book.
Recent studies by Stahl [44] and his collaborators indicate, however, that the SBE treat-
ment becomes questionable for the tera–Hertz emission in a narrow band superlattice.
For ulrashort pulses the formulation of collision integrals in terms of energy conserving
processes is no longer possible and quantum kinetic equations are needed.
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SOLUTIONS

1a) The general solution of the first order differential equation for the current Eq.(18)
consists of the general solution of the homogeneous equation, which is C exp(−γt), and
a particular solution of the inhomogeneous equation. The boundary condition requires
that C = 0. The particular solution can be found by “variation of the constant”,
C → C(t) and yields:

σ(t− t′) =
ne2

m
e−γ(t−t

′)θ(t− t′) (150)

1b) The susceptibility in the time domain is the Green–function of Eq.(19), i.e. the
particular solution for a delta–pulse E(t) = δ(t−t′) at fixed time t′. For t < t′, P(t) ≡ 0,
whereas for t > t′ the puls creates a free oscillation which rises continously from zero
with slope ε0Ω

2
p so that the second derivative becomes a delta function. As a result, we

obtain:

χ(t− t′) =
Ω2
p

Ω0

e−
γ

2
(t−t′) sin

[

Ω0(t− t′)
]

θ(t− t′). (151)

Ω2
0 = ω2

0 − (γ/2)2. This result holds also for the overdamped and even for the critically
damped case, ω0 = γ/2, if the appropriate limit is taken.
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2.) In the homogeneous case the negative electron charge density compensates the
positive ionic background charge so that E = 0 everywhere. The presence of an external
charge Q at r = 0 attracts or repells the mobile electrons and, hence, induces an
electrical field E = −grad Φ. In linear approximation, we obtain from Eq. (18):

β grad ρ(r) = − e

m∗ ρ0 grad Φ(r). (152)

The required solution which fulfills the boundary condition Φ(∞) = 0, ρ(∞) = ρ0 is

ρ(r) = − n0e

m∗β
Φ(r) + ρ0. (153)

From the Poisson–equation

∆Φ = − 1

ε0

[

Qδ(r) + ρ(r)− ρ0

]

, (154)

we obtain the Thomas–Fermi equation for the potential

∆Φ(r) + κ2Φ(r) = − 1

ε0
Qδ(r), κ2 =

n0e
2

ε0βm∗ . (155)

The solution of Eq.(155) reads:

Φ(r) =
Q

4πε0

1

r
e−κr, (156)

where 1/κ is the Thomas–Fermi screening length.

3.) Fourier–transformation of Eqs.(18,12) yield (in linear approximation)

(−iω + γ) j(q, ω) + β(−iq)ρ(q, ω) =
n0e

2

m∗ E(q, ω), (157)

−iωρ(q, ω) + q j(q, ω) = 0. (158)

For transverse fields q j = 0 so that ρ = 0 whereas in the longitudinal case ρ = qj/ω.
As a result we obtain:

σt(q, ω) =
e2n0
m∗

γ − iω
, σ`(q, ω) =

e2n0
m∗

γ − i(ω − q2/ω)
. (159)

Equivalently, we may describe j(r, t) as a displacement current with susceptibility χ =
iσ/ωε0 and dielectric function ε = 1 + χ by

ε`(q, ω) = 1−
ω2
p

ω(ω + iγ)− βq2
, εt(q, ω) = 1−

ω2
p

ω(ω + iγ)
. (160)

Neglecting damping, the dispersion of the longitudinal collective excitations (plasmons)
ω = ω(q) is determined by ε(q, ω) = 0:

ω(q) =
√

ω2
p + βq2 (161)

4) Fourier–transformation of Eq.(19) together with P = ε0χE yields:

χ`(q, ω) =
Ω2
p

ω2
0 − ω2 − iγω − βq2

. (162)
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The dispersion of the transverse collective excitations in given by the poles of χ`(q, ω).
As a result we have in the limit of small wave–numbers

ω(q) = − iγ
2

+ ω0 +
β

2ω0

q2. (163)

This result agrees qualitavely with the dispersion of TO phonons near q = 0 [3].

5.) Off resonance the solution of Eqs.(63-64) reads:

d1(t) =

[

cos

(

ΩR

2
t

)

− i
ν

ΩR

sin

(

ΩR

2
t

)]

ei
ν
2
t, (164)

d2(t) = i
ωR
ΩR

sin

(

ΩR

2
t

)

e−i
ν
2
t. (165)

The probability finding the atom in the excited state is

| d2(t) |2=
(

ωR
ΩR

)2

sin2
(

ΩR

2
t

)

. (166)

For ν = ωR the Rabi–amplitude is reduced to 1
2
and the period is shortened by a factor

of 1√
2
if compared with the resonant case.

6.) At resonance, there are two orthogonal states with |dj(t)|2 = const. These are
obtained by chosing a = ±ib in Eqs.(63, 64):

d+(t) =
1√
2

(

+1
−1

)

e−i
ωR
2
t, d−(t) =

1√
2

(

+1
+1

)

e+i
ωR
2
t. (167)

The state of the atom is represented by

| Ψ+(t) =
1√
2

{

e−i(ε1+
ωR
2
)t | 1 > −e−i(ε2+

ωR
2
)t | 2 >

}

, (168)

| Ψ−(t) =
1√
2

{

e−i(ε1−
ωR
2
)t | 1 > +e−i(ε2−

ωR
2
)t | 2 >

}

. (169)

These time–dependent states are the analoga of the stationary states | 1 >, | 2 > of the
isolated atom where the energies are replaced by ε1± ωR

2
, ε2± ωR

2
. Hence, an additional

weak perturbing field with variable frequency will induce transitions at three different
frequencies ω0, ω0 + ωR, and ω0 − ωR, where ω0 = (ε2 − ε1)/h̄. To observe the Rabi–
splitting the amplitude of the driving field at frequency ω0 has to be large enough so
that ωR is larger than the line width.

7.) The singularities of the response functions are located at:
a) Drude–conductivity: ω = −iγ.
b) Drude–susceptibility: ω = 0 and −iγ.
c) Lorentz–susceptibility: ω = −i γ

2
±
√

ω2
0 −

(

γ
2

)2

In the weak damping case there are two poles which lie closely below the real axis near
the frequency of the undamped oscillator. With increasing damping these poles move
towards the negative imaginary ω–axis. At critical damping there is a single quadratic
pole at ω = −iγ

2
.

8.) Hilbert–transform of a box–function:
If ω 6∈ [−1, 1] the integral is not singular and it can be obtained by elementary means

g(ω) =
1

π
ln

∣

∣

∣

∣

1− ω

1 + ω

∣

∣

∣

∣

. (170)
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For ω ∈ (−1, 1) logarithmic terms ln δ appear but, eventually, they drop out and the
result given above even holds in this case. Note, the Hilbert–transform of the box
function is antisymmetric and has logarithmic singularities at the edges of the box at
ω = ±1. For ω →∞, g(ω) converges to zero as const/ω.

9.) Kramers–Kronig transformation by double Fourier–transformation.
When using Eq.(95) it is easy to verify that the Fourier–transform of s(t) is P 1

ω
.

10.) Anharmonic oscillator.
The coupled set of equations for the Fourier–coefficients read:

[

1− k2Ω2
]

Ak + λ
∞
∑

m=−∞
AmAk−m = 0. (171)

In particular, the equations for k = 0, 2 are given by

A0 + λ
[

2|A1|2 +O(A4
1

)

] = 0, (172)
[

1− 4Ω2
]

A2 + λ
[

A2
1 +O(A4

1)
]

= 0. (173)

Up to second order in A1 we obtain:

A0 = −2λ|A1|2, A2 =
λ

3
A2

1. (174)

Inserting these results in Eq.(171) with k = 1:

[

1− Ω2
]

A1 + λ
[

2A0A1 + 2A−1A2 +O(A5
1)
]

= 0 (175)

yields up to second order

Ω2 − 1 = −10

3
λ2|A1|2 (176)

11.) The general solution of the Bloch Eqs.(127-129) (neglecting damping) are:

R1(t) = R1(0)
ω2
R + ν2 cosΩRt

Ω2
R

−R2(0)
ν

ΩR

sinΩRt−R3(0)
νωR
Ω2
R

[1− cosΩRt] ,

(177)

R2(t) = +R1(0)
ν

ΩR

sinΩRt+R2(0) cosΩRt+R3(0)
ωR
ΩR

sinΩRt, (178)

R3(t) = −R1(0)
νωR
Ω2
R

[1− cosΩRt]−R2(0)
ωR
ΩR

sinΩRt+R3(0)
ν2 + ω2

R cosΩRt

Ω2
R

.

(179)

In particular, on resonance ν = 0 and for R(0) = (0, 0, 1) we obtain:

R1(t) = 0, R2(t) = sinωt, R3(t) = cosωt. (180)

Compare with Eq.(75) and Eqs.(124-125)!
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