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ABSTRACT

An introduction to the description of energy transfer processes in condensed
matter is given with special emphasis on the definition of the energy– and
energy–current–density, relevant modes, coherent/incoherent and Markovian/
non–Markovian dynamics.

1. Introduction

According to our present understanding of nature the notion of energy forms
the basis of physics1 as well as other natural sciences, industry, economy, and society.2

Quoting Freeman J. Dyson:3

“Even within the framework of physical science energy has a transcendent
quality. On many occasions when revolutions in thought have demolished
old sciences and created new ones, the concept of energy has proved to be
more valid and durable than the definitions in which it was embodied”.

The central role of energy originates – apart from its conservation – that its
change is accomplished with the change of at least one further extensive quantity, e.g.
linear and angular momentum (p,L), position (r), charge (Q), vector potential (A),
polarization (P), magnetization (M), Entropy (S), Volume (V ), or particle number
N , etc.4

dE = vdp−Fdr+ΩdL+ΦdQ+ jdA+ EdP +HdM+ TdS − pdV + µdN . . . , (1)
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Table. 1. Examples of energy transfer.

system modes of energy transport examples

vacuum electromagnetic radiation solar energy flux
kinetic energy of massive particles particle reactions
internal (or chemical) energy excited atoms

gases flow, convection atmosphere
density waves sound waves
type–II collisions between atoms He–Ne laser pump

fluids heat flow house heating system
particle flow hydraulic system
flow of chemical energy oil pipe line
convection, diffusion,. . .

solids charge transport electric power lines
localized states photosynthesis
collective excitations phonons, excitons. . .

where the intensive variables v (velocity), F (force), etc. have their usual meaning.∗

With exception of r and V , all other extensive variables have a density and a current
and, thus, they play a different role: r labels different spatially separated subsystems
of size V which are described by densities of energy, momentum, etc. In a perceptive
view p, L, Q, . . . play the part of “energy-carriers”.

A review on energy transfer processes up to 1983 can be found in the Pro-
ceedings of a previous summer institute on the same topic5 whereas this volume6

documents the progress obtained. Since 1969 the INSPEC database provides more
than 53000 entries on energy transfer processes, yet only about 1100 papers are related
to coherence and 130 study (non-) Markovian properties. The latter subjects are of
interest in the excitonic energy transport in molecular crystals7 and, in particular, for
the description of ultrafast processes in optically excited semiconductors.8 The scope
of this article is to give an introduction of the description of the conservation and flow
of energy (Chapter 2.), construction of energy density and energy current density of
the systems of interest, and examples of (normal-) modes (Chapter 3.), description of
(ir–)reversible and (in-)coherent dynamics (Chapter 4.), and (non-)Markovian (mem-
ory function) properties (Chapter 5.). Various examples will be given or can be found
in this volume.6

∗Notation: Vectors and tensors in boldface, the magnitude of a vector v is denoted by the same
letter, e.g. v = |v|. Matrices and operators are set with a hat, e.g. â. Electromagnetic fields are set
in calligraphic style, e.g. E ,B.
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2. Conservation and Flow of Energy

Quoting Richard P. Feynman9

“If a cat were to disappear in Pasadena and at the same time appear in
Erice, that would be an example of the global conservation of cats. This is
not the way cats are conserved. Cats or charge or baryons are conserved in
a much more continuous way. If any of these quantities begin to disappear
in a region, they begin to appear in a neighbouring region. Consequently,
we can identify a flow of charge out of a region with disappearance of
charge inside a region. This identification of divergence of a flux with the
time rate of change of a charge density is called a local conservation law.
A local conservation law implies that the total charge is conserved globally,
but the reverse does not hold. However, relativistically it is clear that non-
local global conservation laws cannot exist, since to a moving observer the
cat will appear in Erice before it disappears in Pasadena.

Figure 1: Schematic of the flow of energy through the surface of a volume.

If there is a change of energy in a certain portion of space it may either flow
across the surface of V or it is exchanged with another system which is not explicitely
considered here, see Fig.1. Like cats the rate of change of an extensive variable G †

is governed by a relation of the form

dG

dt
= −JG + ΣG , (2)

where dG
dt

and ΣG (=production rate of G) depends on the volume V of the portion
of space and JG (=current) depends on the surface of V .

For a conserved quantity, such as electrical charge or energy ΣG = 0 whereas
for entropy ΣS ≥ 0. Sometimes, however, merely the energy balance of a subsystem
is considered, e.g. the electromagnetic field may gain or loose energy by interac-
tion with the mechanical system of the charges so that ΣE 6= 0 if ΣE refers to the
electromagnetic field alone.

As the size and shape of the volume V considered in Eq. (2) is arbitrary, a local
formulation of a conservation law can be derived by using Gauss’ law

ρG(r, t)

∂t
+ div jG(r, t) = σG(r, t) . (3)

†G denotes the name as well as the quantity.

3



ρG(r, t), jG(r, t) and σG(r, t) respectively denote the density, current density, and pro-
duction rate density of G. In addition, the relations of these quantities to the state
variables have to be specified.

It is an old question whether an energy current can be imagined as energy
moving with a well–defined velocity10 yet a solution has been worked out only recently
for some cases.11 In a kinematic interpretation, one assumes a decomposition of the
form jE = ρEvE, like it is known to hold for the particle current of a one–component
fluid, jN = ρNvN , where, ρN , vN are state variables of the fluid which can be measured
independently. In particular, vN is the velocity of a reference frame in which jN is
locally zero. For several components the current density consists of several terms

ρN =
∑

i

ρi, jN =
∑

i

ρivi , (4)

where i labels different particle numbers Ni. Note, jN = ρNvN may appear as self–
evident, –nevertheless, it does not define a particle transport velocity vN which, in
general, can be measured independently and, hence, such a velocity is of no physi-
cal relevance. This holds for the energy–current velocity, too. The situation is even
more queer for the momentum balance of the electromagnetic field. For a pure elec-
trostatic field the momentum density (=E × H/c) is zero everywhere, whereas, the
momentum–current denstity (= negative Maxwellian stress tensor) has nonzero (diag-
onal) components, see Landau–Lifshitz14 (Vols. 2,8). In some special cases, however,
vE = jE/ρE is identical with the group velocity of a wave puls. Furthermore, a decom-
position of the form of Eq.(4) may sometimes be appropriate in terms of plane-wave
modes of the system which play the part of particle numbers degree of freedom.

3. Density, Current, and Modes of Energy Transfer

In this chapter, we will construct and list of results for the energy density,
energy current density and (normal–) modes of basic systems and equations which are
frequently used to describe energy transfer processes. Normal modes of a system are
defined as particular solutions of the respective (homogeneous, linear) field equations
supplemented by appropriate boundary conditions. (In some cases, such modes could
even be chosen as complex functions even though the physical fields are real.) Their
importance and utility lies in the fact, that arbitrary field configurations can be
expanded in terms of these modes which themselves represent a type of stationary
states. In Quantum Mechanics these modes are the eigenstates of the Hamiltonian.
The following chapter gives some selected examples. For a discussion of nonlinear
waves see, e.g. the review article by Bishop et al.12
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3.1. Scalar Waves

Propagation of scalar (complex) waves are described by the wave–equation
(

1

c2
∂2

∂t2
−∆

)
Ψ(r, t) = s(r, t) , (5)

where s(r, t) describes an external source. The state of a wave-field is fixed by
Ψ(r, t0) = Φ(r) and Ψ̇(r, t0) = Θ(r), where Φ(r),Θ(r) are two arbitrary functions.
The homogeneous part of Eq. (5) is (form-) invariant under time reversal and, thus,
describes reversible processes. By standard manipulations the energy density, current-
and production rate densities can be found

ρE(r, t) =
1

2

ρm
c2

∣∣∣∣
∂Ψ(r, t)

∂t

∣∣∣∣
2

+
1

2
ρm |grad Ψ(r, t)|2 , (6)

jE(r, t) = −ρm<
(
∂Ψ∗(r, t)

∂t
grad Ψ(r, t)

)
, (7)

σE(r, t) = ρm<
(
∂Ψ∗(r, t)

∂t
s(r, t)

)
, (8)

where ρm denotes the mass-density (or another appropriate quantity) and < means
real part, see e.g. the textbook by Barton.13

Expressions of this form are relevant to all scalar waves, though the physical
significance of the individual terms may be different. For example, for an elastic
continuum Ψ denotes the displacement of a volume element, c =

√
E/ρm is the

velocity of sound, and E is the bulk modulus, see Landau-Lifshitz14 (Vol.7). For a
nonviscous compressible fluid, on the other hand, Ψ is the velocity potential, v =
−gradψ and Eqs.(6-7) can be rewritten as

ρE(r, t) =
1

2
ρmv

2 + ρmε , jE(r, t) =

(
1

2
ρmv

2 + ρmw

)
v . (9)

Here the energy density is just the sum of the kinetic and internal energy ε (per
unit mass), w = ε + p/ρm is the enthalpy (per unit mass), and p is the pressure,
see Landau-Lifshitz14 (Vol. 6). jE consists of two terms: the term ρEv represents
the energy which is “transmitted convectively” whereas the term pv is traditionally
described as “the work per sectional area” which is done by the fluid.11

Next we consider the modes of the (homogeneous) wave–equation Eq. (5) (s =
0) by separation of the variables r, t

Ψκ(r, t) = e−iωκtΨκ(r) . (10)

κ labels different mode functions which obey the (homogeneous) Helmholtz-equation
[
∆+

(ωκ
c

)2]
Ψκ(r) = 0 . (11)
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An arbitrary solution of the (homogeneous) wave–equation can be decomposed
in modes

Ψ(r, t) =
∑

κ

[
A(+)
κ e−iωκt + A(−)

κ e+iωκt
]
Ψκ(r) , (12)

where the two independent functions A
(±)
κ are fixed by the initial conditions. For real

fields, these functions are not independent.
The simplest modes are plane waves, Ψk(r) = exp(ikr), where κ = k is the

wave vector and ωk = ck. Remarkably, the energy current of such a mode is just
energy density ρE(r, t) = ρmk

2 times c, jE(r, t) = ρE(r, t)ck̂ (see end of Chapter 2.).
As an example, we consider the propagation of (longitudinal) waves in one-

dimension (no source term), where the general solution can be explicitely stated in
terms of two arbitrary functions f (±)(x), which are fixed by the initial conditions.

Ψ(x, t) = f (+)(x− ct) + f (−)(x− ct) . (13)

Individually, f (±)(x) describe wave–packets which are propagating in ±x directions.
Tab. 2. summarizes the results for two special cases.

Table 2. Solutions of the one–dimensional wave equation (D’Alembert–solution). Left: Displace-

ment–, right: momentum–excitation at t = 0.

Ψ(x, 0) = Φ(x), Ψ̇(x, 0) = 0 Ψ(x, 0) = 0, Ψ̇(x, 0) = Θ(x)

Ψ(x, t)
1

2
[Φ(x− ct) + Φ(x+ ct)]

1

2c

∫ x+ct

x−ct

Θ(x′)dx′

ρE(x, t)
ρm
4

[
Φ′

2
(x− ct) + Φ′

2
(x+ ct)

] ρm
4c2

[
Θ2(x− ct) + Θ2(x+ ct)

]

jE(x, t)
ρm
4

[
Φ′

2
(x− ct)− Φ′

2
(x+ ct)

]
c

ρm
4c2

[
Θ2(x− ct)−Θ2(x+ ct)

]
c

(14)

The prime denotes differentiation with respect to the argument. These solutions
explicitely show that the energy current can be decomposed into two parts of opposite
directions, each moving with velocity c,11 see Fig.2. The mean square displacement
with respect to ρE(x, t) is < x2 > (t) = (ct)2.

Finally, we notice a property of wave propagation in two dimensions which is in
strange contradiction with our daily experience. In three-dimensions, an initial pulse
of finite duration propagating off the source will always create a wave packet with a
leading as well as a trailing edge. In two dimensions, however, there is no trailing
edge and, hence, an observer will find an infinite afterglow, see Fig. 3. Remarkably,
this property holds in all space dimensions of even order d = 2, 4, 6 etc.

For spherical or cylindrical waves and solutions of the inhomogeneous wave
equation in terms of Green-functions, see e.g. Barton’s book.13
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Figure 2: Time evolution of an initial wave–packet and its energy–density. Initial conditions:
Ψ(x, 0) = Φ(x) (left) and Ψ(x, 0) = Θ(x) (right). Φ(x),Θ(x) are Gaussians centered at x = 0.
Note, the dotted curves in right upper graph display the velocity. (Dimensionless quantities.)

Figure 3: Pulse propagation in d=2 dimensions shows an infinite afterglow whereas pulses in d=3
dimensions display a leading as well as a trailing edge.
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3.2. Diffusion

Consider a conserved quantity with density ρ with a diffusive flow, j = −Dgradρ
(=Fick’s law) whereD is the diffusion constant. By construction, ρ obeys the diffusion
equation ∂ρ

∂t
= D∆ρ. For notational convenience, we shall write Ψ (which is assumed

to be real) instead of ρ, where Ψ may describe the density of particles, charge, energy,
etc., and allow for an external source term s(r, t).

∂Ψ(r, t)

∂t
−D∆Ψ(r, t) = s(r, t) . (15)

The state of this system is fixed by Ψ(r, 0) = Φ(r). In contrast to the wave–equation,
Eq. (15) is not symmetric with respect to time–reversal and, thus, describes irre-
versible processes.

The modes of the (homogeneous) diffusion equation (s = 0) are defined as

Ψκ(r, t) = e−λκtΨκ(r) . (16)

κ labels different mode–functions which are again solutions of the (homogeneous)
Helmholtz-Eq. (11) where (ωκ/c)

2 has to be replaced by λκ/D. An arbitrary solution
of Eq.(15) (with s(r, t) = 0) can be decomposed as

Ψ(r, t) =
∑

κ

Aκe
−λκtΨκ(r) , (17)

where the real coefficients Aκ are determined by the initial condition.
A very useful solution of Eq.(15) is the “heat pole” which belongs to Ψ(r, 0) =

δ(r), see Fig.4.

Ψ(r, t) = (4πDt)−
d
2 e−

r2

4Dt , t > 0 , (18)

where d = 1, 2, 3 is the space dimension. The mean square displacement with respect
to Eq.(18) is < x2 > (t) = 2Dt. Remarkably, this result holds in any dimension if x
refers to one of the components of the d–dimensional position vector. The solution

Figure 4: Time evolution of the “heat pole”.
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Eq.(18) is also called the propagator and denoted by K(r, t) as it propagates the
initial state to finite times

Ψ(r, t) = ÛD(t)Ψ(r, 0) =

∫
K(r− r′, t)Ψ(r′, 0)ddr′ . (19)

3.3. Electromagnetic Field

The state of the electromagnetic field (EMF) in a vacuum is described by two
vector fields E ,B whose time-evolution is determined by the Maxwell-equations, see
Landau–Lifshitz14 (Vol. 8)

∂E
∂t
− c2curl B , = − 1

ε0
j(r, t), div E =

1

ε0
ρ(r, t),

∂B
∂t

+ curl E = 0 , div B = 0 .
(20)

The two equations containing the divergences represent “auxilary conditions” (as
ρ(r, t) is assumed to be prescribed) rather than dynamic equations. c = 1/

√
ε0µ0 is

the speed of light and ρ, j denote the electrical charge density and current density,
respectively. The Maxwell–equations are (form-) invariant under time reversal t →
−t, j→ −j, ρ→ ρ, E → E , B → −B and, therefore, describe reversible processes.

By standard manipulations of Eqs. (20) a conservation law is derived

∂

∂t

(
ε0
2
E2 + 1

2µ0
B2
)
+ div

(
E × B

µ0

)
= −jE , (21)

which describes the energy–balance of the EMF. Thus, by comparison with Eq.(3)

ρE(r, t) =
ε0
2
E2 + 1

2µ0
B2 , jE(r, t) = E ×

B
µ0
, σE(r, t) = −j E . (22)

Traditionally, jE(r, t) is called the Poynting-vector and σE(r, t) is interpreted as the
work done by the EMF on the charges.

A variety of different modes of the EMF is known which are used for the de-
scription of fields in free space and for microwave– or laser–resonators. In infinite
space the simplest modes are transverse, linear polarized, travelling plane–waves

E(r, t) = E0 cos(kr− ωt), B(r, t) = 1

c
k̂× E(r, t) , (23)

where k̂ is a unit vector along the wave vector k, k · E0 = 0, and ω = ck. The energy
density and energy current density of this mode are

ρE(r, t) = ε0E20 cos2(kr− ωt), jE(r, t) = ρE(r, t) c k̂ . (24)
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Note, for this mode the energy current density is particularily simple: it is just energy
density times the velocity of light.

In many cases the flow of energy occurs along rather unexpected paths so that
the Poynting-form of the energy current density has been frequently questioned. In
particular, the nonzero energy flow in (crossed) static and magnetic fields appears
to be “unphysical” and other forms of jE (which still are in accordance with Eq.
(21)) have been proposed.15 Nevertheless, there are convincing arguments that the
Poynting form of the energy current (which is also the momentum density times c) is
correct, see Vol. II, 17-5, 27-4, and 27-11 of the Feynman–lectures.16

3.4. Electromagnetic Field in Matter

According to the atomic structure of matter the microscopic fields are spatially
strongly fluctuating on an atomic scale. Instead of the true microscopic fields, aver-
aged (macroscopic) fields are used, which are likewise denoted by E ,B, see Landau–
Lifshitz14 (Vol. 8).

∂D(r, t)
∂t

− curl H(r, t) = −j(r, t), div D(r, t) = ρ(r, t),

∂B(r, t)
∂t

+ curl E(r, t) = 0 , div B(r, t) = 0 .
(25)

The averaged total charge– and current– densities in matter are separated in three
groups:

• those who are counted explicitely as ρ, j,

• “displacement charges/currents” ρd = −div P , jd = Ṗ , and

• “magnetization currents” jm = curlM, (ρm = 0 as div jm = 0).

The polarization P and magnitizationM fields combine with E , B to two new fields
D = ε0E + P and H = B/µ0 −M. For a tutorial on the dielectric descriptions of
semiconductors see, e.g., Ref.27

By standard manipulations of Eqs.(25) a conservation law is derived

∂

∂t

(ε0
2
E2 + µ0

2
H2
)
+ div (E ×H) = −jE − E ∂P

∂t
− µ0H

∂M
∂t

, (26)

which is identified with the conservation of energy. Note, the appearance of H,
whereas the averaged microscopic magnetic field is B! Note also, that the rhs of Eq.
(26) may contain dissipative as well as non-dissipative parts. Some parts of the latter
can be combined with E×H to form an energy–current vector of the combined system
EMF + matter.17
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For nondispersive, nonconducting matter, P = ε0(ε−1)E ,M = (µ−1)H, j = 0,
where ε, µ are assumed to be constant. In this case, we may define an energy balance
of the combined system EMF + Matter (denoted by a tilde) by

ρ̃E =
1

2
ED +

1

2
BH , j̃E = E ×H , σ̃E = 0 , (27)

where D = ε0εE and B = µ0µH. For example, for a plane monochromatic wave,
Eq.(23),

ρ̃E(r, t) = ε0εE2(r, t) , jE(r, t) = ρ̃E(r, t)
c

n
k̂ , (28)

where n =
√
ε is the refractive index.

If dispersion is present, the situation is different. As an example, we consider
uncoupled isotropically and harmonically bound charges −e with density n and dis-
placement s.18 Omitting spatial dispersion, the polarization P = −nes obeys

(
∂2

∂t2
+ γ

∂

∂t
+ ω2

0

)
P(r, t) = ne2

m
E(r, t) . (29)

When multiplying Eq.(29) by P we recover Eq. (26) which may be rewritten in the
form of Eq.(3) with

ρ̃E =
ε0
2
E2 + µ0

2
H2 +

m

ne2

[
1

2

(
∂P
∂t

)2

+
ω2
0

2
P2

]
, (30)

j̃E = E ×H , (31)

σ̃E = −γ m
ne2

(
∂P
∂t

)2

. (32)

H = B/µ0. For a harmonic field as given by Eq.(23) the polarization is

P(t) = <
[
ε0χ(ω)E0e−iωt

]
, (33)

where χ(ω) = ε(ω)− 1 denotes the electrical susceptibility

χ(ω) =
ω2
p

ω2
0 − ω2 − iγω , (34)

and ω2
p = (ne2/mε0) is the square of the plasma frequency, see Fig.5.
The time averaged energy– and current density of the combined EMF and

matter are

ρ̄E =
ε0
4
E20
[
1 + |ε(ω)|+ ω2

0 + ω2

ω2
p

|χ(ω)|2
]
, j̄E =

ε0
2
E20 n(ω)c . (35)
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Figure 5: Dielectric function for harmonically bound charges.

n = <√ε is the real part of the refractive index. Outside the stop–band where
n(ω) 6= 0, and in the limit of zero damping, Eq.(35) can be rewritten as

ρ̄E =
ε0
2
E20n(ω)

d[n(ω)ω]

dω
. (36)

Note, Eq.(36) is not a general result, in particular, it does not hold for finite damping,
or in the region of anomalous dispersion.

3.5. Energy Transport Velocity and “Superluminal” Pulses

Presently there is a remarkable interest concerning the velocity of energy trans-
port and the interpretation of “superluminal” pulses in dispersive media and wave
guides, see e.g. a special issue of the “Annalen der Physik”.20 Although such phe-
nomena are not new a great fuss arose. In particular, it was well known that the
propagation of a puls with a Gaussian envelop23–25 is essentially different compared
to a semi–infinite envelop, which was initially studied by Sommerfeld and Brillouin.21

Pulse propagation experiments usually measure the cross-correlation function
between the pulse travelled through matter along distance L and a reference pulse,
see Fig.6. From that a delay/advance distance ∆s = c∆t a pulse velocity in matter
vp = c/(1 + ∆s/L) is deduced. It is well known that the group velocity

vgr(k) =
dω(k)

dk
= c

[
d[n(ω)ω]

dω

]−1
=

c

n(ω) + ωn′(ω)
, (37)

describes the propagation in a linear dispersive, nonabsorbing medium outside the
stop band, where ω(k) = ck/n. (If the refractive index is complex, one extrapolates
Eq.(37) replacing n(ω) by its real part.) In the region of normal dispersion (n′(ω) > 0)
the group velocity is always smaller than c. However, in regions of strong anomalous
dispersion (n′(ω) < 0), vgr can exceed c or even become negative. The common belief
is that the meaning of Eq.(37) breaks down and the behaviour of the pulse becomes
much more complicated. This is indeed true for the semi-infinite sinussoidal puls,22 for
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Figure 6: Left: Schematic of a Gaussian pulse propagating in a dispersive medium and of the
experimental arrangement to measure the cross–correlation function. Right: a sample of the cross–
correlation data as the laser is tuned through the exciton line of the GaAs : N sample, N =
1.5× 1017cm−3. According to Chu and Wong.23

a Gaussian shaped pulse, however, the situation is different. As discussed by Garrett
and McCumber,24 and in more detail by Oughstun and Balictsis,25 the leading edge
of the pulse is less attenuated than the trailing edge so that the pulse maximum
speeds-up at the expense of the pulse height, see Fig.6. For a Fourier transform
limited puls whose spectral width is much less than the width of the absorption
line, the pulse propagates with the group velocity as given by Eq.(37) and even
the shape and width of the pulse can remain almost intact after it emerges from
the sample. Moreover, for undamped, harmonically bound electrons with a single
resonance frequency the group velocity is identical with jE/ρE; compare Eq.(36) with
Eq.(37). The physics of puls propagation in wave guides below the cut–off frequency
is similar, yet the pulse reshaping and attenuation is due to reflection rather than by
absorption.19 The propagation of an electron wave-packet through a potential barrier
was studied by Krenzlin et al., see Ref.20 (p. 732). Note, there is no indication of
advance propagation of the leading pulse wing which, trivially, can never be surpassed.
In addition, the time separation of two pulses is not affected so that there is no
superluminal transmission of information, even if vgr > c.

If a physically motivated definition of an energy transport velocity is desired,
it ought to be based on a (local) Lorentz-transformation to a moving frame (denoted
by a prime) of vanishing energy current

E → E ′ = γ (E + V × B) , (38)

B → B′ = γ

(
B − V

c2
× E

)
, (39)

13



where γ−2 = 1− (V/c)2. Equating E ′ × B′ = 0, we obtain in the limit V ¿ c

V =
1

2

jE
ρE

=
E × B

ε0µ0E2 + B2
. (40)

Remarkably, this velocity is numerically only, but one half of the “self evident” form.

3.6. Quantum Mechanics

In quantum physics, expressions for particle probability density and its current–
density are well known from text books, yet expressions for energy–density and
energy–current–density are less familiar. To construct these quantities, we first con-
sider a single particle in one dimension in a time–dependent potential V (x, t). The
wave function ψ(x, t) obeys the Schrödinger–equation

ih̄
∂ψ(x, t)

∂t
= Ĥψ(x, t) , Ĥ = − h̄2

2m

∂2

∂x2
+ V (x, t). (41)

Under a time–reversal operation T̂ψ = ψ∗, so that all expectation values remain
unchanged. Hence, Eq. (41) describes reversible processes, see Landau–Lifshitz14

(Vol.3, §7).
First, we find the energy–density starting from the expectation value of the

Hamiltonian Ĥ

< Ĥ >=

∫
ψ∗(x, t)Ĥψ(x, t) dx =

∫
ρE(x, t) dx . (42)

By partial integration we rewrite the integrand such that it is intrinsically positive,
hence

ρE(x, t) =
h̄2

2m

∣∣∣∣
∂ψ(x, t)

∂x

∣∣∣∣
2

+ V (x, t) |ψ(x, t)|2 . (43)

Next, we study the variation of < Ĥ > with respect to time. Elimination of ψ̇ by
Eq.(41) and performing a partial integration we obtain for the integrand of d

dt
< Ĥ >

I = i
h̄3

4m2

{
∂ψ∗

∂x

∂3ψ

∂x3
− cc

}
− i h̄

2m

{
∂ψ∗

∂x

∂

∂x
[V (x, t)ψ(x, t)]− cc

}

+i
h̄

2m
V (x, t)

{
ψ∗
∂2t

∂x2
− cc

}
+
∂V (x, t)

∂ψ(x, t)
|ψ(x, t)|2 . (44)

Now, the task is to rewrite the integral over I to extract the current–density via
− ∂
∂x
jE(x) + σE(x, t). For the first term of Eq.(44) we get

−i h̄
3

4m2

∂

∂x

{
∂ψ∗

∂x

∂2ψ

∂x2
− cc

}
. (45)
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By partial integration, we find that the second term compensates the third one. Fi-
nally, the desired results for the energy–current and energy–production rate densities
are

jE(x, t) = =
{
h̄3

2m

∂ψ∗

∂x

∂2ψ

∂x2

}
,

= − h̄
2

m
<
{
∂ψ∗

∂x

∂ψ

∂t

}
+
h̄

m
V (x, t)=

{
∂ψ∗

∂x
ψ(x, t)

}
, (46)

σE(x, t) =
∂V (x, t)

∂t
|ψ(x, t)|2 . (47)

For time–independent potentials, σE(x, t) = 0, as the energy is conserved. The gen-
eralization to three–dimensions is obvious by replacing ∂

∂x
by grad .

As an example, we consider a free particle in a plane wave state ψ(x, t) =
1
V0

exp(ikr), where V0 is the normalization volume.

ρE(r, t) =
E(k)

V0
, jE(r, t) = ρE(r, t)

h̄k

m
, (48)

where E(k) = h̄2k2/2m is the energy of the particle.
The Schrödinger–equation of a free particle bears some analogy to the (homo-

geneous) diffusion–equation in “imaginary time”, tD → itS. Eq.(17) can be viewed as

the result of the application of the time–evolution operator ÛD(t) on the initial state

Ψ(r, t) = ÛD(t)Ψ(r, 0) , ÛD(t) = e−Ĥt , (49)

where Ĥ = −D∆ is the “Hamiltonian”. However, there is a profound difference
between the diffusion equation and the Schrödinger–equation. Eq.(41) describes re-
versible processes and the solution can also be propagated backwards in time whereas
it cannot for the (irreversible) diffusion–equation, because there are arbitrary large
positive eigenvalues λk. In mathematical terms, the Schrödinger time evolution op-
erator, ÛS(t) = exp(−itĤ/h̄), generates a group of unitary transformations, whereas

ÛD(t), Eq.(19) is not unitary and generates only a semigroup which has no inverse
element.

3.7. Collective Excitations in Solids

Condensed matter is a strongly interacting many body system which, in chem-
ical terms, forms macromolecules with unsaturated bonds which allows for unlimited
aggregation of particles. Due to the strong interaction between the (bare) particles
(electrons, nuclei) no exact treatment is possible. However, in many cases a number
of relevant features of the ground state as well as for the low–lying excitations have
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been recognized. For a review on basic notions in solid state physics see Anderson’s
book.29 For our purposes, the most important properties are:

Ground state properties:

• broken symmetry: crystal, ferromagnet, superconductor. . .

• rigidity: mechanical, magnetic, gauge . . .

Low energy excitations:

• behave like a gas of weakly interacting (quasi-) particles,

• single particle excitations resemble the bare particles, at least at not too strong
interactions (=adiabaticity),

• collective excitations are dynamically equivalent to the creation/absorption of
bosons.

Broken symmetry means that the ground state of the system has a lower sym-
metry than the Hamiltonian. For example, the Hamilton of a solid is invariant under
translations and rotations whereas the crystal state is not. (This is different for few–
body systems, e.g. the hydrogen atom where the ground state has the full symmetry
of the Hamiltonian.)

Rigidity refers to external perturbations. For example, condensed matter (flu-
ids, solids) is almost incompressible, in addition, solids are rigid with respect to shear
deformations. As an example of gauge-rigidity we consider the London-equations of
a (type I) superconductor

∂

∂t
j(r, t) =

ne2

m
E(r, t) , curl j(r, t) = −ne

2

m
B(r, t) , (50)

where n is the density, m the mass, and −e the charge of the electrons. Remarkably,
these equations remain unchanged when replacing the electrons by Cooper–pairs with
density n/2, charge −2e, and mass 2m. We compare Eqs. (50) with the quantum
mechanical result for the particle current of an electron in a magnetic field of vector
potential A, B = curl A:

jN(r, t) =
h̄

2mi

(
Ψ†grad Ψ− cc

)
− −e

m
|Ψ(r, t)|2A(r, t) . (51)

For N particles, Ψ = Ψ(r1, r2, . . . rN) summation and integration of Eq.(51)on N − 1
coordinates has to be included. If the many electron wave function is not affected by
the magnetic field Eq.(51) (times −e) reduces to just the second London–equation
(in the Coulomb–gauge, div A = 0).
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The concept of quasi–particles was originally developed by Landau who realized
that there is a continuous mapping of the low energy excitation spectrum with the
strength of the interparticle interactions, see Landau-Lifshitz,14 (Vol. 5). Amazingly,
this description holds even in relatively strong interacting systems like in metals or in
liquid helium 3He, 4He. As an example of single–particle excitations we consider the
transformation of free electrons to Bloch electrons in crystals, see Fig.7. In terms of
quasi–particles, the excited states are described by occupation numbers nα = 0, 1, 2...,
where α labels the one–particle states (or “modes”) with energy εα. Hence, the
excitation energy of the total system becomes

E({nα})− E0 =
∑

α

εαnα + Eint . (52)

E0 is the ground state energy and Eint({nα}) contains nonlinear terms in nα which
describe interactions between quasi–particles. For a translationally invariant system
or a crystal, α is identical with the wave number k, in addition, there may be several
branches of wave-like excitations which will be labelled by an additional index (= ν).

Collective modes are equivalent to a set of (uncoupled) harmonic oscillators with
frequencies ωα. Quantization of these oscillators directly leads to Eq.(52) which is
dynamically equivalent to a system of bosons with energies h̄ωα, see Fig.8. In contrast
to massive bosons, however, (e.g. He–atoms in liquid Helium) these quasi–particles
can be easily created and destructed. An appropriate description of such processes is
not possible within the “ordinary” wave–function formulation of quantum mechanics,
and “second quantization”‡ is needed.30

In the extended zone scheme quasi–momentum h̄k plays almost the same role as
real momentum. The two most important properties of particles and quasi–particles
are

• The transport velocity of energy and momentum is given by

vT =
∂ε(p)

∂p
. (53)

• The overall (quasi–) momentum and energy of particles and quasi–particles is
conserved, see Fig.9.

Unfortunately, there is no general rule under which conditions such a scenario exists,
and how to find the collective variables. Some examples will be given in the next
sections. A survey on the dynamics and spectroscopy of collective excitations in
solids,32 and a collection of common and different properties of particles and quasi–
particles28 can be found in the Proceedings of two previous Erice–Schools.

‡The name “second quantization” is misleading. Besides h̄ no second quantum constant arises.
A better name is “occupation number representation”, yet it is used in a different sense as position
or momentum representation.
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Figure 7: Left: Energy (quasi–)momentum relation of free electrons in an empty lattice (thin line)
and in a weak periodic potential (solid line), where K = 2πn/a, n = 0,±1,±2 . . . are reciprocal
lattice vectors. Right: Energy bandstructure of GaAs (in the reduced zone scheme). According to
Cohen and Chelikowski.31

Figure 8: Equivalence of a system of N (noninteracting) bosons with single–particle energies εα
and occupation numbers nα and an infinite (uncoupled) set of harmonic oscillators with frequencies
ωα = εα/h̄. Note that the zero–point energies of the oscillators are omitted. Dots symbolize particles,
crosses excited states, respectively. N = 6. According to Ref.28

Figure 9: Examples of interactions between particles and quasi–particles. (a) Excitation of a phonon
by neutron scattering, (b) scattering of a phonon by impurities, and (b) decay of a phonon due
to anharmonic interactions. Energy and momentum are conserved at each particle/quasi–particle
vertex whereas the impurity takes momentum but no energy.
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Figure 10: (a) Linear monoatomic chain with equal masses m and nearest neighbour springs D
and periodic boundary conditions, (b) frequency spectrum for N = 10 “atoms”. Note, there is no
vibrational q = 0 mode (at ω = 0); this degree of freedom is taken over by the common translational
motion. According to Ref.28

A. Phonons

Phonons are quantized vibrations of a crystal–lattice. For notational simplicity,
we consider first a linear chain of equal masses m and nearest neighbour springs,
see Fig.10. Starting from the Hamiltonian in terms of canonical momenta pj and
displacements uj of the masses at sites j = 1, . . . N , {pj, uj′} = δjj′

H =
N∑

j=1

1

2m
p2j +

1

2
D(uj+1 − uj)2 , (54)

we first find the collective momenta Pk and coordinates Qk

uj =
∑

k

ηj(k)Qk , pj =
∑

k

η∗j (k)Pk , ηj(k) = N−1/2eikja . (55)

{a, b} denotes the Poisson–bracket symbol, k = 2π
Na
κ, κ = 0,±1,±2... ± N/2 is the

wave–vector which is restricted to the first Brillouin–zone, and a is the lattice con-
stant. Eq. (55) is canonical, {Pk, Qk′} = δkk′ and transforms Eq. (54) to a set of
uncoupled oscillators with frequencies ωk

H(P,Q) =
∑

k

1

2
PkP

∗
k +

ω2
k

2
QkQ

∗
k , ωk =

√
4D

m
sin

∣∣∣∣
ka

2

∣∣∣∣ . (56)

In d dimensions, a vibrating lattice has d acoustic (ωk = cs|k| for k → 0) and d(s−1)
optical branches (ωk 6= 0, k → 0), where s denotes the number of (inequivalent) atoms
in the (primitive) unit cell, ν = 1, 2...d · s, see Fig.11.

The quantization of uncoupled oscillators, Eq. (56), is almost trivial. The state
of each oscillator (labelled by k) is fixed by quantum numbers nk = 0, 1, 2..., hence

E({nk}) =
∑

k

h̄ωk

(
nk +

1

2

)
. (57)
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Figure 11: Structure and Brillouin–zone (a), and phonon dispersion curves (b) for potassium (bcc,
one atom per primitive unit cell). Along the horizontal axis we plot q, q/

√
2, and q/

√
3 for the

(1, 0, 0), (1, 1, 0), and (1, 1, 1) directions, respectively. According to Cowley et al.33

This is already of the form of Eq. (52), and we may identify ε(k) = h̄ωk with the
energy of the quasiparticles which are called phonons.

To describe arbitrary phonon states or interaction processes between phonons
it is convenient to use creation and anihilation operators âk, â

†
k rather than P̂k, Q̂k.

âk =
mωkQ̂k + iP̂k√

2mh̄ωk
,
[
âk, â

†
k′

]
= δkk′ . (58)

These are also called ladder operators as their repeated application on |n > creates
the “ladder” of stationary states n = 0, 1, . . . , where a+ | n >=

√
n+ 1 | n + 1 >,

a | n >= √n | n− 1 > “climb” up/down the ladder by one “rung”.

ûj =
∑

k

√
h̄

2Nmωk
eikja(â†−k + âk) , (59)

Ĥ =
∑

k

h̄ωkâ
†
kâk . (60)

The zero point energy of the oscillators has been omitted as it is not relevant for the
dynamics of the system.
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Note, there are three different types of particles in the game:

• N coupled “bare” particles of mass m described by p̂j, ûj,

• N uncoupled harmonically bound particles of unit mass described by P̂k, Q̂k,

• phonons of unlimited number described by âk, â
†
k. In addition, we can consider

phonon states which are not even eigenstates of the phonon number operator
(see example below).

N̂ =
∑

k

â†kâk . (61)

For example, we consider two particular phonon states:

One–phonon state: | φ(k) >=
∑

k

φ(k)|1k > =
∑

k

φ(k)â†k|0 >.

For notational simplicity, |0 >= |{nk} > with nk = 0 for all k. â†k|0 >= |1k >
represents a steady state of the oscillator #k in excited state nk = 1, all other oscilla-
tors being in the ground state. By construction, |φ(k) > is an eigenstate of the phonon

number operator with eigenvalue 1: N̂ |φ(k) >= 1|φ(k) >. The time-evolution of this
state is e−iωkt|1k >, hence φ(k) → φ(k, t) = φ(k)e−iωkt which may be interpreted as
wave function of a phonon (-wave packet) in momentum space.§ For such a state, the
expectation value of the position operator of mass #j is < φ|ûj|φ >= 0 for all times
so that it cannot be the quantum analog of a classical wave, it is “quantum noise”.

α–state: |α >=
∞∑

n=0

e−
1
2
|α|2 α

n

√
n!
|n >.

Here k is fixed, n ≡ nk, and will be suppressed for notational simplicity, and
α = |α|eiϕ denotes a complex number. Again, the time evolution of | α > is easy to
find just by replacing α by α(t) = α · e−iωt. Remarkably, these states describe almost
classical (wave-like) motion of the masses in the chain

< α(t)|uj|α(t) >∝ |α| cos(kja− ωkt− ϕ) . (62)

Hence, |α| and ϕ fix the amplitude and phase of the wave. α–states are not eigenstates
of the phonon number operator and the expectation value and uncertainty are

< α|N̂ |α >= |α|2 , ∆N = |α| . (63)

For large amplitudes ∆N/ < N̂ >→ 0. In addition, ∆uj∆pj = h̄
2
, withy time–

independent uncertainties. Thus, in real space, |α > describes a Gaussian wave–
packet. Although these states have been already introduced by Schrödinger they

§In contrast to massive quantum particles it is not possible, however, to define a wave function
in position space. The reason is that for phonons (or photons) ω ∝ |k|, which does not permit a
Fouriertransformation from k to r space, see Landau–Lifshitz14 (Vol. 4).
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are nowadays called “coherent” states, Glauber–states, or just α–states. In quantum
optics they play a fundamental role for the description of laser radiation and coherence
phenomena.34

Figure 12: Interacting two–level systems (a) and their pseudo–spin analogon (b). Left: ground state,
right: a localized excited state.

B. Excitons

Excitons are propagating electronic exitations in matter. Traditionally, one
considers two limiting cases:

• Frenkel–excitons are almost localized atomic or molecular excitations in molec-
ular crystals with little coupling to neighbouring units.

• Wannier–excitons, on the other hand, are loosely bound hydrogen-like electron-
hole pairs in semiconductors. These pairs are delocalized over many lattice sites
so that a continuum description is possible.

For simplicity, we consider only Frenkel–excitons and approximate the spectrum of
molecular excitations by two–level systems, see Fig.12a.

As the Coulomb interaction between the molecules is isotropic, the coupled
molecules are described by a Heisenberg model for (pseudo-) spin 1

2

Ĥ =
∑

j

1

2
ε0σ̂jz −

∑

ij

Jijσ̂iσ̂j , (64)

where σ̂iσ̂j denotes the scalar product of the spin vector operator with Pauli–matrices
(σ̂x, σ̂y, σ̂z) at site j. The broken symmetry of the ground states is evident from
Fig.12b.

Due to the interaction, the excitation of an isolated molecule (as described
by a spin flip at site j) may spread off to neighbouring sites. To bring Eq.(64) to
the quasiparticle form Eq. (52), we first transform to exciton creation/annihilation

operators b̂†j, b̂j by the Holstein–Primakoff transformation30 (omitting the site index
for notational simplicity)

σ̂(±) = σ̂x ± iσ̂y , σ̂(+) = (1− b̂†b̂)1/2b̂, σ̂(−) =
(
σ̂(+)

)†
. (65)
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Figure 13: Energy (quasi–)momentum relation of Frenkel–excitons. (Dimensionless quantities, ε0 =
1, h1 = 0.25.)

Operators at different sites commute. From [σ̂
(+)
j , σ̂

(−)
j′ ] = 4σ̂zjδjj′ we obtain [̂bj, b̂

†
j′ ] =

δjj′ , hence b̂j, b̂
†
j′ describe bosonic excitations.

Ĥ (̂b†, b̂) =
N∑

j=1

ε0 b̂
†
j b̂j +

∑

jj′

hjj′ b̂
†
j b̂j′ . . . (66)

Higher order terms in b̂j, b̂
†
j describe interactions between excitons which can be

omitted at low exciton densities. Due to the long–range structure of the Coulomb–
interaction many contributions to the coupling elements hjj′ have to be taken into
account in a realistic description.35

In crystals hij′ = hj−j′ discrete Fourier–transformation (i.e. transformation to
Bloch states)

b̂j =
∑

k

1√
N
eikja âk ,

[
âk, â

†
k′

]
= δkk′ (67)

diagonalizes the exciton Hamiltonian, Eq. (66)

Ĥ(â†, â) =
∑

k

ε(k) â†k âk + . . . , ε(k) = ε0 +
∑

j

hje
ikja . (68)

In particular, for nearest neighbour interactions, j = ±1,

ε(k) = ε0 − 2|h1| cos ka , (69)

where, as usual, h1 < 0 is assumed. Eq.(69) is the standard tight–binding result of
the linear chain with nearest neighbour couplings, see Fig.13. For a discussion of
Wannier–excitons, see e.g. the contributions by Klingshirn.36,37
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4. Description of Energy Transfer Processes

4.1. States, Processes, and Reversible Dynamics

Processes are described as transitions between states (labelled by ψ). In a state
all physical quantities (= observables) have a definite (expectation) value which will
be denoted by < G >ψ. Note, this definition does not necessarily imply that < G >ψ

is “sharp”, i.e. has vanishing uncertainty ∆G = 0, where ∆G =
√
< G2 > − < G >2.

There are two distinct classes of states:

• pure (or ideal) states which have zero entropy

• mixed (or statistical) states of nonzero entropy.

Irreversibility and loss of coherence are intimately connected with increase of entropy.
Hence, the transformation of pure states into mixed states plays a fundamental role
in the description of energy transfer processes in macroscopic systems.

According to the dogma of classical physics there are (infinitely many pure)
states in which all observables have a sharp value. Hence, ∆G 6= 0 is always caused
by errors, either in the state preparation or in the measurement of G. In quantum
physics the situation is different. There are particular states in which a specified

observable G has sharp values, ∆G = 0. These states are the eigenstates of Ĝ:
Ĝ|ψ >= g|ψ >. But there are no states in which ∆Gn = 0 for all Ĝn. Therefore,
∆Gn 6= 0 is not necessarily caused by errors!

In classical mechanics pure states are specified by the values of coordinates
and velocities (or momenta) of all particles which defines a point in phase space:
ψ = (p, q) = (p1, q1; p2, q2; . . .). G is a function of (p, q), and < G >ψ is just the
functional value of G. The dynamics of these states is governed by the Hamilton-
equations of motion

ṗ(t) = {H, p} = −∂H(p, q)

∂q
, q̇(t) = {H, q} = ∂H(p, q)

∂p
(70)

which underline the central role of the Hamiltonian (= energy) as the generator
of time-evolution. Mixed states, on the other hand, are a statistical mixture of
pure states and are described by a positive definite, normalized phase space density
ρ(p, q) ≥ 0

< G >=

∫ ∫
G(p, q)ρ(p, q) dp dq,

∫ ∫
ρ(p, q) dp dq = 1 . (71)

The dynamics of mixed states, ρ(p, q) → ρ(p, q, t) is governed by the Liouville–
equation

∂ρ(p, q, t)

∂t
+ {H, ρ} = 0 , (72)
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Figure 14: Time evolution in classical mechanics: (a) pure state, (b) mixed state which represents
a bundle of trajectories.

which follows from Eq.(70) as each phase space point initiates an individual trajectory,
see Fig.14. In particular, for a single particle in one–dimension we have

∂ρ(p, x, t)

∂t
+ v

∂ρ

∂x
+ F

∂ρ

∂p
= 0 , (73)

where v is the velocity and F = −V ′(x) the force acting on the particle.
In quantum mechanics pure states are specified by state-vectors | ψ > [or wave

functions ψ(x, t)], observables are described by hermitian operators Ĝ, and the (ex-

pectation) value of Ĝ is defined by

< G >ψ=< ψ|Ĝ|ψ >=
∫
ψ∗(x, t) Ĝ ψ(x, t)dx . (74)

The dynamics of pure states is determined by and the Schrödinger equation

ih̄
∂

∂t
|ψ(t) >= Ĥ|ψ(t) > . (75)

A mixed state, as in classical physics, is a statistical mixture of pure states, where
the phase space density is replaced by a density operator

ρ̂(t) =
∑

ρn|n >< n| ,
∑

ρn = 1 , ρn ≥ 0 . (76)

| n > denote an arbitrary set of state–vectors (which might not even be orthogonal!)
with (real) positive weights ρn, and the expectation value Eq.(74) is replaced by

< G >= tr
(
ρ̂Ĝ
)
=
∑

α

< α|ρ̂ Ĝ|α > =
∑

n

ρn < n|Ĝ|n > , (77)

where α labels an arbitrary base. The last part of Eq. (77) can be interpreted as the

“usual” quantum average of Ĝ with respect to the pure states |n > with a classical
average with weights ρn put on top. Eventually, we mention that the density operator
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Figure 15: Schematic of the Michelson interferometer (a) and visibility curve of the red Cadmium
line (b). ∆l is the difference in path length of mirrors 1,2. ∆t = ∆l/c is the coherence time.
According to Born and Wolf.44

of a pure state |ψ > is the projector ρ̂ = |ψ >< ψ|. The dynamics of a quantum
mixture follows the v. Neumann–equation¶

∂ρ̂(t)

∂t
+
i

h̄
[Ĥ, ρ̂] = 0 . (78)

Mixed states have nonzero entropy

S = −kBtr (ρ̂ `nρ̂) . (79)

In the classical case the trace is replaced by phase–space integration. Noticeable, both
the Liouville– and the v. Neumann equations describe reversible processes, ∂S(t)

dt
= 0!

We are able to describe states of nonzero entropy, but not irreversibility!

4.2. Coherence and Correlation

The notion of coherence originates from optics where it describes space-time
correlations of the electromagnetic field. Familiar consequences are the appear-
ance of interference fringes in a double–slit experiment or other oscillatory phe-
nomena. A prominent instrument to study coherence phenomena is the Michelson-
interferrometer, see Fig.15.

Field on screen Σ: E = E1 + E2 = C [Ein(r0, t0 + τ1) + Ein(r0, t0 + τ2)]

Intensity: I = ¯|E|2 = C2 [G(1, 1) +G(2, 2) + 2<G(1, 2)]

Correlator: G(r2, t2; r1, t1) =
〈
E (−)(r2, t2)E (+)(r1, t1)

〉
(80)

¶At first sight Eq.(78) looks like a Heisenberg equation of motion of ρ̂(t). However, the sign
is different and ρ̂(t) is in the Schrödinger-picture! In fact, Eq. (78) expresses the conservation of

probability dρ̂(t)
dt

= 0.
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C is a suitable constant and E (±) contains the positive/negative frequency components
of the electrical field (∝ exp(∓iωkt). In a mode-expansion (e.g. free propagation of
the EMF from a star to the earth) we have

E(r, t) =
∑

k

Ake
i(kr−ωkt) + cc = E (+)(r, t) + E (−)(r, t) (81)

so that the correlator at equal space points, r2 = r1, can be written as

G(t2, t1) =
∑

k

|Ak|2 e−iωk(t2−t1) . (82)

For example, for a Gaussian line of width ∆ω centered at ω0 the normalized correlation
function becomes (G(t, t) = 1):

A(ω) = exp

[
−(ω − ω0)

2

2∆ω2

]
, (83)

G(t2, t1) = e−iω0(t2−t1) exp

[
−1

2
[∆ω(t2 − t1)]2

]
. (84)

For such a line the fringe–contrast (“visibility”) in the Michelson interferometer (see
Fig.15) is defined by

V =
Imax − Imin
Imax + Imin

= exp

[
−1

2
[∆ω(t2 − t1)]2

]
, (85)

where the explicit result refers to the Gaussian line. Eqs.(83,84) explicitely show an
example of the famous Wiener-Khinchine theorem: Filtering in k-space (=restriction
of frequencies and/or k-directions) increases the coherence–time or coherence–area
(perpendicular to k). This is just a property of the Fourier–transformation, ∆t ∝
1/∆ω, etc.

Analogous to optics, coherence can be defined for any quantity which is additive
and displays a phase or has a vector character, e.g. electrical and acoustic “signals”,
electromagnetic fields, wave–functions, etc. Coherence is intimately connected with
reversibility, yet the opposite is not always true. At first sight, a process might appear
as fully incoherent or random, nevertheless it may represent a highly correlated pure
state. A beautiful example is the spin– (or photon–) echo27,41 which is related to a su-
perposition of many sinusoidal field components with fixed (but random) frequencies.
At t = 0 these components have zero phase difference and combine constructively to a
nonzero total amplitude. Later, however, they develop large random phase differences
and add up more or less to zero so that the signal resembles “noise”. Nevertheless,
there are fixed phase relations between the components at every time. By certain
manipulations at time T a time–reversal operation can be realized which induces
an echo at time t = 2T , which uncovers the hidden coherent nature of the state.
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Figure 16: Resistance of a metallic magnesium film as a function of magnetic field. For elastic
electron–impurity scattering there are two equivalent time-reversed paths which lead to an increase
of the resistance by coherent backscattering (“weak localization”). A magnetic field leads to a phase
shift between both paths which uncovers the finite phase–coherence time of the electrons originating
from the (temperature dependent) inelastic electron–phonon scattering. According to Bergmann.45

Another nice example in this respect, is the phenomenon of “weak localization” of
conduction electrons in disordered materials, see Fig.16. Echo phenomena are always
strong indications of hidden reversibility and coherence!

Problem:
Consider a sum of many (co–)sinusoidal functions with fixed (but randomly chosen)
frequencies ωn

f(t) =
∑

n

cosωnt , ωn = (1 + rn)2π . (86)

The distribution of rn is assumed to have a zero mean with probability P (r).
(a) Study f(t) numerically for a box distribution P (r) = Θ(σ2−r2)/2σ and a Gaussian
distribution.
(b) Compare with the analytical result

f(t) = 〈cos(1 + r)2πt〉 = <
{
e2πit

∫
P (r)e2πirtdr

}
. (87)

[Hint: A Gaussian distributed random variable can be generated numerically by sum-
ming many random numbers of any distribution (Central Limit theorem)].
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4.3. Irreversible Dynamics

The phenomena of irreversibility is ubiquitous in all macroscopic systems. Nev-
ertheless, the old question how to describe irrevesibility and decoherence on a micro-
scopic (reversible) basis has no simple answer and, possibly the final answer has still
not been found.38,39

Irreversibility, i.e. the increase of entropy with time intimately connected with
the transformation of pure states into mixed states. In addition, it is not possible to
include dissipative forces in the Hamiltonian itself. Presently, the dogma of theoret-
ical physics is that irreversibility arises from the coupling of a system to its infinite
environment (“heat bath”) or by the boundary conditions which, in an infinite sys-
tem, can also spoil time–reversal symmetry. ‖ A real expert in the field of traditional
thermodynamics, however, will consider such a “trick” as mean deception!

The dynamics of the total system with Hamiltonian

Ĥtot = Ĥsys + Ĥbath + Ĥint (88)

obeys the reversible Liouville/v. Neumann equation, where Ĥint describes the inter-
action between the system and the bath. For electrons in a solid the bath may be
realized by the phonon system which is held by a constant temperature T . The task is
to eliminate the bath variables from the equations of motion of the total system, and
to construct equations for the system of interest. Note, although the basic equations
are reversible the dynamics of the system will be not. For finite systems, however,
there is always a finite Poincaré recurrence time. Nakajima and Zwanzig40 have de-
rived a general procedure to eliminate the bath variables, at least in principle, but
it is very difficult to do it in practice. The resulting equations are irreversible, non–
Markovian, and have a memory behaviour. Some simple examples will be given in
Chapter 5. In many cases, however, various approximate treatments are used, some
of which will be discussed in more detail in the next sections.

a. Relaxation time approximation.
Phenomenologically, a relaxation term is added to the Liouville/v. Neumann
equations which mimics the system-bath interaction:

∂ρ̂(t)

∂t
+
i

h̄
[Ĥ, ρ̂] = −1

τ
(ρ̂(t)− ρ̂eq) , (89)

where τ is an appropriate relaxation–time and ρ̂eq describes the equilibrium
state. Obviously, this equation is no longer symmetric with respect to time–
reversal and, thus, describes irreversible processes. Note, Eq. (89) conserves

‖An example is a lossless coaxial cable with (real) impediance Z and infinite length. At one of
its ports, this cable is indistinguishable from an ohmic resistor with resistance Z, although there is
no dissipation involved.
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the normalization trρ̂(t) = 1. In general, ρ̂eq refers to a local rather than to
global equilibrium in order not to violate particle number conservation. The
relaxation time approximation is expected to be good for weak coupling and
not too small times. A nice application of this approximation has been given
by Mermin43 who included damping in the Lindhard dielectric function ε(q, ω).

b. Master equation (incoherent limit).
This description considers only the diagonal elements of the statistical operator
(with respect to the eigenstates of the isolated system) Pn(t) =< n|ρ̂|n >;
nondiagonal elements are considered to be zero.

d

dt
Pm(t) =

∑

n

[ΓmnPn(t)− ΓnmPm(t)] (90)

The transition rates Γmn can be obtained from the “Golden Rule” and obey the
symmetry relation Γmn exp(−Em/kBT ) = Γnm exp(−En/kBT ), where T is the
temperature of the bath.57

c. Stochastic Liouville/v. Neumann equations.
The interaction of an electronic system (like excitons) and the phonons in a
crystal is approximately treated as a heat bath pushing the electrons or excitons
in a stochastic manner. This description is justified if the temperature is not
too low, otherwise polaron states are formed. However, it is not possible to take
the reaction of the electron or exciton on the phonons into account. There is
action but not reaction! For example, for Frenkel–excitons the interaction part
of the Hamiltonian Eq.(66) is replaced by

Hint =
∑

mn

fmn(t)̂b
†
mb̂n , (91)

where fmn(t) is assumed to descibe a Gaussian stochastic process with zero mean
value. The diagonal element fnn(t) describes fluctuation of the exciton energy
ε at lattice site n, whereas the non-diagonal elements represent the stochastic
variations of the (coherent) interaction matrix element hjj′ in Eq.(66). For
details we refer to the book by Kenkre and Reineker7 (see p. 120 ff).

d. Kinetic (Boltzmann) equation
We consider a gas of (quasi–) particles with weak short range interactions.
Instead of the (classical) phase space distribution function ρ(r1,p1 . . . rN ,pN )
the one–particle distribution function

f(r,p, t) =

∫ ∫
ρ(r,p; r2,p2; . . . rN ,pN ; t) dr2 dp2 . . . drN dpN (92)

is used which obeys the kinetic equation

∂f(r,p, t)

∂t
+ v(p)

∂f(r,p, t)

∂r
+ F(p, r)

∂f(r,p, t)

∂p
= C , (93)
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where v is the velocity, Eq.(53), and F an (external) force acting on the particles.
Boltzmann had the ingenious idea to approximate the interactions between
the particles, as summarized by C, by the concept of collisions, i.e. short
range, instantaneous gain–loss processes with no memory to previous states
(=Markov–process).

Collision term: C = Nin(r,p, t)−Nout(r,p, t).

Nin/out count the number of particles scattered in/out dp at p. It is almost
a miracle how this equation has withstood all criticsms and how it could be
adapted to quantum mechanics, [ f(r,p,t) becomes the Wigner–function, in
thermal equilibrium, f is the Fermi/Bose function.] In contrast to the Liouville
equation, Eq.(93) is no longer symmetric under time–reversal: the lhs changes
sign whereas the rhs does not. Therefore the Boltzmann equation describes
irreversible processes. Cohen and Thirring52 give a historical survey and dis-
cussions of the celebrated Boltzmann equation, whereas Landau-Lifshitz14 (Vol.
10) deal with physical kinetics in the wide sense of the microscopic theory of
nonequilibrium processes.

For example, for elastic scattering of electrons by impurities in a metal or semi-
conductor the collision term becomes∗∗

C(f) =

∫
[w(p′ → p)f(r,p, t)− w(p→ p′)f(r,p, t)] dp′ (94)

with the intrinsic scattering rate (in Born approximation)

w(p→ p′) = Nimp
2π

h̄
|< p′|Vimp|p >|2 δ(εp − εp′) . (95)

For electron–phonon interaction Nin, Nout each contain two terms describing
the absorption and emission of a phonon,58 see Fig.9a.

∗∗Note that Eq.(94) contains no “blocking” factors (1−f) for final scattering states, in accordance
with Kohn and Luttinger,47 but contrary to naive thinking and many textbooks. The (1− f) cancel
if Wk,k′) = W (k′,k) is symmetric but would lead to erroneous results for skew–scattering.48 In
an independent particle description no products fpfp′ can occur as these describe particle–particle
interactions. The situation is different for (inelastic) electron–phonon interaction where the blocking
factors are necessary.
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Figure 17: Spatio–temporal evolution of the energy per site, hm(t). Local momentum excitation at
m = 0. According to Vasquez-Marquez et al.49

4.4. Examples

A. Linear chain

Energy transport in a classical monoatomic chain, see Fig.10, has been consid-
ered already by Hamilton and Schrödinger46 and more recently by Vasquez-Marquez
et al.,49 who derived analytical results for the energy transport. In particular, for
momentum excitation at t = 0 and site m = 0 the local energy [hm(t) = ρE(ma, t)]

hm(t) =
P 2
0

2M

{
J2
2m(τ) +

1

2
J2
2m−1(τ) +

1

2
J2
2m+1(τ)

}
(96)

shows an oscillating, nonexponential decay in time to neighbouring sites. Jm(τ)

denotes a Bessel–function,51 τ = ωLt is the dimensionless time, ωL =
√

4 D
M

is the

largest phonon frequency, and M is the mass of the particles.
Note, the main peaks in hm(τ) resemble those of the string, see Fig.2, yet there

is no trailing edge and the energy between the peaks propagates off rather slowly.
From the mean square displacement < m2 >→ (c̄τ)2 we deduce a (dimensionless)
mean propagation velocity c̄ = 1/

√
2, where c̄2 is just the mean square of the group

velocity.

B. Two–level–system

We study a system with two base states represented by

|1 >=
(

1
0

)
, |2 >=

(
0
1

)
, (97)

and a coupling parameterized by a real, positive constant ε. The Hamiltonian of this
system and its eigenstates |I >, |II > and energies EI = −ε, EII = ε are given by

H =

(
0 −ε
−ε 0

)
, |I >= 1√

2

(
1
1

)
, |II >= 1√

2

(
1
−1

)
. (98)
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A realization of such a system is a spin 1/2 in a magnetic field in x-direction, Ĥ =
−µBB · σ̂ ( σ̂ = (σ̂x, σ̂y, σ̂z) denote the Pauli-matrices) or a particle in a double-well
potential. Further examples can be found in the Feynman–Lectures16 (Vol. III).

(a) Schrödinger dynamics
The Schrödinger equation for |ψ(t) >

|ψ(t) >= c1(t)|1 > +c2(t)|2 > (99)

yields two coupled differential equations for the amplitudes

ih̄ċ1(t) = −εc2(t) , ih̄ċ2(t) = −εc1(t) (100)

which can be easily solved by insertion. For |ψ(0) >= |1 > we obtain

c1(t) = cos(
ω0

2
t) , c2(t) = i sin(

ω0

2
t) , (101)

where ω0 = 2ε/h̄ is the transition frequency between levels I,II. As a result, the
probability finding the system in (base) states |1 >, |2 > and expectation values of
the spin vector are

P1(t) = |c1(t)|2 = cos2(
ω0

2
t) , (102)

P2(t) = |c2(t)|2 = sin2(
ω0

2
t) , (103)

< σ̂x > = 2<c∗1(t)c2(t) = 0 , (104)

< σ̂y > = 2=c∗1(t)c2(t) = sin(ω0t) , (105)

< σ̂z > = |c1(t)|2 − |c2(t)|2 = cos(ω0t) . (106)

Note, that< σx > is time independent as σ̂x commutes with Ĥ and, thus, is conserved.

(b) Relaxation dynamics
It is convenient to expand the density operator with respect to the eigenstates |I >,
|II > of Ĥ because ρ̂eq is diagonal in this representation

H =

(
−ε 0
0 ε

)
, ρ̂eq = 1

Z

(
eβε 0
0 e−βε

)
, (107)

Z = exp(βε) + exp(−βε) is the partition function and β = 1/(kBT ) is the inverse
temperature.

The general form of the density operator is

ρ̂(t) =

(
A B
B∗ 1− A

)
. (108)
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A is real, 0 ≤ A ≤ 1, whereas B may be complex. Initially, ρ̂(0) = |1 >< 1|, hence
A(0) = B(0) = 1/2. Writing Eq. (89) in a matrix form, we obtain for the (1, 1) and
(1, 2) components of ρ̂

Ȧ(t) + γA(t) =
γ

Z
eβε , (109)

Ḃ(t) + (γ − iω0)B(t) = 0 , (110)

where γ = 1/τ . As a result,

A(t) =
1

2
e−γt +

1

Z
eβε
[
1− e−γt

]
, (111)

B(t) =
1

2
e−γteiω0t . (112)

In order to compare with the previous example we have to transform vectors ψ
and matrices M (base |1 >, |2 >) to ψ̄, M̄ (base |I >, |II >):

ψ = Û ψ̄ , M = ÛM̄Û † , Û =

√
1

2

(
1 1
1 −1

)
. (113)

For example, σ̄x = σz, σ̄y = −σy, σ̄z = σx, hence

< σ̂x > =
[
1− e−γt

]
tanh(βε) , (114)

< σ̂y > = e−γt sin(ω0t) , (115)

< σ̂z > = e−γt cos(ω0t) , (116)

P1(t) =
1

2

[
1 + e−γt cos(ω0t)

]
, (117)

P2(t) =
1

2

[
1− e−γt cos(ω0t)

]
, (118)

< Ĥ > = −ε < σ̂x > . (119)

(c) Master equation
As states |1 >, |2 > have equal energy the transition rates must be equal, Γ12 = Γ21 =
Γ and so that the master equations Eqs.(90) become

Ṗ1(t) = Γ(P2 − P1) , Ṗ2(t) = Γ(P1 − P2) . (120)

By conservation of probability, P1+P2 = 1 these equations can be easily solved, thus

P1(t) =
1

2

[
1 + e−2Γt

]
, P2(t) =

1

2

[
1− e−2Γt

]
. (121)

Results of coherent, fully incoherent, and relaxation dynamics are displayed in Fig.18.
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Figure 18: Dynamics of the two–level–system. Coherent (solid line), relaxing (dashed line), and
fully incoherent motion (dashed–dotted line).

C. Exciton chain

(a) Schrödinger dynamics
Instead of expanding the wave function into the stationary states of Eq.(68), we try
to solve the (time–dependent) Schrödinger equation for a single exciton directly. In
site representation, the amplitudes cm(t) of the state vector

|ψ(t) >=
∑

m

cm(t)|1m > , cm(0) = δm,0 (122)

obey the coupled set of differential equations

ih̄ċm(t) = ε0cm(t)− h1 [cm+1(t) + cm−1(t)] . (123)

Using an “innocent looking” Ansatz

cm(t) = ime−iε0t/h̄Cm(τ) , τ = ω0t , ω0 = |h1|/h̄ (124)

Eq.(123) reveals a well known recursion relation of Bessel–functions51

C ′m(τ) =
1

2
[Cm−1 − Cm+1(τ)] , (125)

Cm(τ) = αJm(τ + τ0) + βYm(τ + τ0) , (126)

α, β, τ0 being constants, but β = 0 as Cm(τ) must be finite. Imposing cm(0) = δm,0
as an initial condition, we obtain

Cm(t) = ime−iε0t/h̄Jm(ω0t) , Pm(t) = |Cm(t)|2 (127)

For large times τ À 1, Pm(t)→ 2 cos(ω0t−mπ/2− π/4)/(πω0t) displays a damped,
oscillatory behaviour, see Fig.19. In contrast to the two–level–system there is no
Poincaré recurrence time because of the infinite system size. Note also, the decay of
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the oscillations is not due to dissipation. The mean square displacement is wave–like,
< (ma)2 > (t) = (c̄t)2, where the square of the propagation velocity c̄ = aω0/

√
2 is

identical with the mean square of the exciton group velocity.

(b) Master equation
Motivated by the previous success we intend to solve the set of Master–equations

dPm(t)

dt
= Γ [(Pm+1 − Pm−1) + (Pm+1 − Pm−1)] (128)

by an appropriate Ansatz

Pm(t) = e−τZm(τ) , τ = 2Γt . (129)

Indeed, this reveals a recursion relation for (modified) Bessel–functions51

Z ′m(τ) =
1

2
[Zm+1(τ) + Zm−1(τ)] , (130)

Zm(τ) = αIm(τ + τ0) + βKm(τ + τ0) . (131)

Again, β = 0 as Pm must be finite. Imposing Pm(0) = δm,0 the solution is

Pm(t) = e−2ΓtIm(2Γt) . (132)

For large times τ À 1, Pm(t)→ 1/(
√
4πΓ t), which resolves the diffusive character of

the process, < (ma)2 >= 2Dt, D = Γa2 is the diffusion constant.

Problems:
1.) Calculate the entropy, Eq.(79), of the damped two–level system as a function of
time. [Hint: Evaluate the trace in eigenbasis of ρ̂(t)].

2.) Show that the coherent and fully incoherent dynamics of a two–level system can
be described in terms of a generalized master equation with a memory kernel Γ(t− t′)

dP1(t)

dt
=

∫
Γ(t− t′) [P2(t

′)− P1(t
′)] dt′ . (133)

Which Γ(t− t′) corresponds to the relaxing system?

3.) An interesting, yet pathological case (of Ca,b), is a cluster of molecules with equal
coupling strength between all N sites. [Hint: use

∑
n cn =const,

∑
n Pn = 1].
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Figure 19: Spatio–temporal evolution of the energy per site in the excitonic chain Pm(τ) (=
probability finding an exciton at m). (Top) coherent, (bottom) incoherent motion, according to
Eqs.(127,132).

D. Gas of (quasi–) particles

(a) Approach to equilibrium
We consider a homogeneous, dilute gas of hard disks in two–dimensions. At t = 0 all
particles are located on a square grid and have the same magnitude but random direc-
tions of momentum (velocity). By numerical integration of the Newton–equations,53

f dp is obtained by counting the number of particles in dp. As time proceeds, the
particle collisions tend to realize a Maxwellian distribution

f0(p) = f0 exp

[
− p2

2mkBT

]
(134)

which is accompanied by a monotonous increase of entropy. The time interval for
reaching equilibrium roughly corresponds to 200 collisions. However, this state is
highly correlated and apparently only describes “molecular chaos”: Reversing all
particle velocities after 50 or 100 collisions reproduces the initial state, see Fig. 20.
Therefore,

S = −kB
∫ ∫

f(p, r, t) `n f(p, r, t) drdp (135)

obviously does not give the correct (change) of entropy. (Note the difference between
Eq.(79) and Eq.(135).) For longer times, however, numerical errors come into play
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Figure 20: Eta-function H = −S/kB) of a system of 100 hard disks in a square with periodic
boundary conditions showing kinetic (open circles) and antikinetic (full circles) evolutions for velocity
inversions taking place at 50 and 100 collisions. According to Orban and Bellemans.53

and destroy reversibility.
An analytical solution of the Boltzmann equation is very difficult as the collision

integral C(f) is nonlinear in f . In the vicinity of thermal equilibrium, however, a
linearized description by a relaxation time approximation is possible (homogeneous
conditions, no external forces)

∂f(p, t)

∂t
= −f − f0

τ
(136)

so that the distribution approaches equilibrium in an exponential manner.

(b) Noninteracting particles
We consider (quasi–) classical point–like particles without mutual interaction moving
in a random array of stationary scatterers (“pinball machine”). Realizations of such
a model are

• slow neutrons in a heavy medium,

• gas mixture with large mass ratio (=Lorentz gas),

• electrons in “anti-dot” semiconductor systems,

• elastic electron impurity scattering in a metal.

We study the case of electrons in a metal or doped semiconductor. In thermal
equilibrium, C(f0) = 0, where f0 is the Fermi–function

f0(p) =
1

1 + exp
[
εp−µ

kBT

] , (137)

and µ is the chemical potential (Fermi–energy). An applied electrical field (parallel to
the z-axis) Ez(t) = E0< exp(−iωt) drives the system out of equilibrium. For isotropic,

38



elastic scattering of electrons by impurities the scattering kernel is independent of the
scattering angle Ω so that the kinetic equation becomes

∂f(p, t)

∂t
+ (−e)E0e−iωt

∂f(p)

∂p
=

1

τ

∫
1

4π
[f(Ω′, t)− f(Ω, t)] dΩ′ . (138)

In linear order with respect to E0, f = f0(p) + f1(p) exp(−iωt), we obtain for the
first order correction.

f1(p) =
evz

γ − iω
∂f0(p)

∂p
E0 +

< f1(p) >

γ − iω . (139)

< f1(p) > denotes the angular average of f1(p) which can be calculated selfconsis-
tently from the above equation. γ = 1/τ . (The current induced by the external field,
however, does not depend on < f1(p) >). As a result, we have

jz(ω)e
−iωt =

−e
V

∑

p

vz f1(p)e
−iωt = σD(ω)E0 e−iωt , (140)

σD(ω) =
ne2

m

1

γ − iω . (141)

σD(ω) is the Drude–conductivity. For a detailed study of the Lorentz–model see
Hauge’s article.54

(c) Plasma oscillations
A one-component plasma consists of one type of mobile particles (electrons) which
are imbedded in an homogeneous positive neutralizing background (density ρ+). As
the Coulomb interaction between the particles is long–range it cannot be treated by
the concept of collisions. A reasonable approximation, however, can be formulated
within the concept of a mean field Emf , which describes the coherent motion of the
particles. Emf is treated on equal footing with an applied electrical field (if any),

∂f(r,p, t)

∂t
+ v

∂f(r,p, t)

∂r
+ (−e)Emf (r, t)

∂f(r,p, t)

∂p
= 0 , (142)

div Emf (r, t) =
1

ε0
[ρ+(r, t) + ρ−] , curl Emf (r, t) ≈ 0 . (143)

These are the Landau–Vlassov equations. We are looking for a self–sustained plane
wave solution of the linearized equations of the form

f(r,p, t) = f0(p) + f1(p)e
i(qr−ωqt) . (144)

(Note the difference between wave vector q and electron momentum p.) For small
wave vectors q, the dispersion of the plasma wave becomes

ωp(q) = ωp +
β

2ωp
q2 . . . , (145)
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where ω2
p = ne2/(mε0) is the square of the plasma frequency, β = 3v2F/5, and vF is the

Fermi velocity of the electrons. For q → 0, there is no damping of the plasma wave
in the Landau–Vlassov approximation. For wave vectors q ≈ kF , however, plasmons
can decay into electron–hole pairs (Landau–damping), although Eq.(142) is invariant
under time–reversal! For a survey on plasmons, see, e.g., Ref.55

5. Memory Functions and non–Markovian Behaviour

5.1. Memory function concept

The dynamics of closed systems as studied in the previous sections is determined
by a set of first order differential equations with respect to time. Given the state at
time t0 these equations determine the state at all later times, see e.g. the Hamilto-
nian equations Eq.(70). In addition, in classical mechanics damping may often be
phenomenologically included by introducing a friction-force −γ0ẋ. For instance, for
a particle with mass M in a potential V (x) the Newton–equation reads

Mẍ(t) = −Mγ0ẋ−
∂V (x)

∂x
+ f(t) , (146)

where f(t) is an external force. Actually, the friction–force has to be supplemented
by an additional fluctuating force ξ(t), (with zero mean) which represents e.g. the
collisions of molecules impinging on the (heavy) particle. This is the Langevin formu-
lation which not only describes the damped average motion but also the fluctuations
around it, see van Kampen.57

In a more detailed description of open systems the heat bath is often modelled
by a system of harmonic oscillators and the bath degrees of motion are eliminated to
construct an equation of motion for the system (particle) alone. This will be illus-
trated by two examples in the following sections. In such a description the reaction of
the bath on the system particle is also taken into account which leads to an equation
of the form

Mẍ+

∫ t

−∞

Mγ(t− t′) ẋ(t′) dt′ + ∂V (x)

∂x
= f(t) . (147)

This equation is nonlocal in time and the memory function γ(t− t′) determines how
far the “history”of x(t′) (t′ < t according to causality) influences the present x(t).
With γ(t − t′) = γ0δ(t − t′) we are back at Eq.(146). Note, x(t0) and ẋ(t0) do no
longer determine the state of the particle, at least not in the same sense as it has been
used in Chapters 3. and 4. Additional assumptions for t→ −∞ are needed. Equation
(147) describes a non-Markovian process which will be discussed in the next section.

As an example, we consider a harmonic oscillator with frequency ω0 under the
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action of a monochromatic force, f(t) = f0 cos(ωt). As a result, the solution is

x(t) = <
[
x(ω)f0e

−iωt
]
, (148)

x(ω) =
1

M

1

ω2
0 − ω2 − iΓ(ω)ω , (149)

Γ(ω) =

∫ ∞

0

γ(t)eiωtdt = Γ1(ω) + iΓ2(ω) . (150)

Note, memory effects do not only lead to a frequency dependent scattering rate (= Γ1)
but to a shift in the resonance frequency (= Γ2), too.

Memory effects have an interesting consequence on the frequency dependence
of conduction electrons (mass m, density n, ω0 = 0). Expressing the electron current
as j(t) = −enẋ(t), f(t) = −eE(t), we obtain for the conductivity

σ(ω) =
ne2

m

1

Γ(ω)− iω , (151)

which is a generalization of the Drude result Eq.(141), see Fig.22. Deviations the
measured conductivity of conduction electrons from the Drude result are always in-
dications of memory effects. For experimental evidence, see, e.g., measurements by
Dressel et al.56 on some organic conductors.

In quantum physics, the inclusion of dissipation requires more care because
quantum systems are described by a Hamiltonian which, in the absence of time de-
pendent external potentials, ensure the conservation of energy. On the other hand,
dissipative forces cannot be included in the Hamilton itself. A successful and rather
general approach is by the concept of an (infinite) reservoir and elimination of the
reservoir degrees of freedom. For details and applications we recommend the book by
Dittrich et al.50 which gives an excellent introduction and overview on the relation of
quantum transport and dissipation. Master and Boltzmann equations with memory
kernels have been respectively studied by Kenkre5,42 and Hauge.54

A. Caldeira–Leggett model

As an example how to eliminate the bath variables we consider a classical par-
ticle of mass M and coordinate q, which is bilinearly coupled to a set of harmonic
oscillators (“bath”), see Ingold’s article in Ref.50 (p. 213).

H = Hs +Hbath +Hint , (152)

Hs =
p2

2M
+ V (q) , (153)

Hbath =
∑

i

p2i
2mi

+
1

2
miω

2
i x

2
i , (154)

Hint = −q
∑

i

cixi + q2
∑

i

c2i
2miω2

i

, (155)
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with suitable constants for ci, ωi,mi. This model has been used by several authors
and is nowadays known as the Caldeira–Leggett model. The equations of motion of
the coupled system are:

Mq̈ + V ′(q) + q
∑

i

c2i
miω2

i

=
∑

i

cixi , (156)

ẍi + ω2
i xi =

ci
mi

q(t) . (157)

As the bath represents a system of uncoupled oscillators their equation of motion can
be easily solved in terms of the (unknown) driving term ∼ q(t).

xi(t) = xi(0) cos(ωit) +
pi(0)

mi

sin(ωit) +

∫ t

0

ci
miωi

sin[ωi(t− t′)]q(t′)dt′ . (158)

Inserting this solution into the Newton-equation of the particle, we obtain

Mq̈(t) +

∫ t

0

Mγ(t− t′)q̇(t′) dt′ + V ′(q) = ξ(t) , (159)

where γ(t−t′) is the damping kernel (memory function) and ξ(t) is a fluctuating force
(which depends on the initial conditions of the bath variables and is not stated here)

γ(t) =
2

π

∫ ∞

0

J(ω)

ω
cos(ωt)dω , (160)

J(ω) = π
∑

i

c2i
2Mmiωi

δ(ω − ωi) . (161)

For a finite number of bath oscillators the total system will always return to its initial
state after a finite (Poincaré) recurrence time or may come arbitrarily close to it. For
N →∞, however, the Poincaré time becomes infinite simulating dissipative behavior
(see also Chapter 4.3.). We therefore first take the limit N → ∞ and consider
the spectral density of bath modes as a continous function. Frictional damping,
γ(t) ∼ γ0δ(t), is obtained for J(ω) ∼ γ0ω. A more realistic behavior would be the
“Drude” form

J(ω) = γ0ω
γ2D

ω2 + γ2D
, γ(t) = γ0γDe

−γDt , (162)

which behaves as in the friction case for small frequencies but goes smoothly to zero
for ω > γD, see Fig.21.

B. Rubin model

A rather nontrivial yet exactly solvable model is obtained by a linear chain (see
Chapters 3.7.A and 4.4.A), with one mass replaced by a particle of (arbitrary) mass
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Figure 21: Spectral density of the bath oscillators (left) and memory functions (right). Solid lines:
Caldeira–Leggett model with a Drude form, dashed dotted lines: Rubin model. (Dimensionless
quantities, M0/M = 1).

Figure 22: Real and imaginary parts of the electrical conductivity for the Caldeira–Leggett and
Rubin models. Dashed lines: Drude model, other notations as in Fig.21.

M0, see Fig.10. The left and right semi–infinite wings of the chain serve as a bath to
which the central particle is coupled. As a result the damping kernels are

γ(t) =
M0

M
ωL
J1(ωLt)

t
, (163)

Γ(ω) =
M0

M

{ √
ω2
L − ω2 + iω , |ω| < ωL ,

i
ω2
Lsgn(ω)

ωL+
√
ω2−ω2

L

, |ω| > ωL ,
(164)

J(ω) = <Γ(ω) = M0

M

√
ω2
L − ω2 Θ(ω2

L − ω2) , (165)

where J1(x) is a Bessel–function. In contrast to the Drude case the memory function
shows oscillations and decays merely algebraically for large times, see Fig. 21.

γ(t)→ M0

M

√
2ωL
π

sin[ωLt− π/4]
t3/2

. (166)

The oscillations in γ(t) are connected with the upper cut–off in J(ω) at the maximum
phonon frequency ωL. For details, see Fick and Sauermann40 (p. 255).
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5.2. Stochastic Processes and Non-Markovian Behavior

Many phenomena depend on time in an extremely complicated way which is
far beyond the possibility of observation and calculation. A possibility to circumvent
this dilemma in theoretical physics is to replace the system by a suitable chosen
ensemble of systems all having the same equations but different initial microstates.
Therefore, state variables are turned into stochastic variables. By additional drastic
assumptions about the nature of the stochastic processes this does simplify matters
enormously. In many cases, these processes are modelled by Markovian–processes,
which (in appropriate variables), lead to equations of motion which are local in time.
Examples are the derivation of the master and Boltzmann equations. In many cases,
however, memory effects show up which indicate non–Markovian behaviour, see e.g.
Wegener’s article8 in this volume. To elucidate the physics of these phenomena and
their description we follow van Kampen57 who gives an excellent introduction and
overview on stochastic processes in physics and chemistry.

The definition of a stochastic variable X consists of specifying

• the set of all possible values (“sample space”) and

• the probability distribution P (X) over this set

P (x) ≥ 0 ,

∫
P (x) dx = 1 . (167)

The average of f(X) is defined as

< f(X) >=

∫
f(x)P (x) dx . (168)

(For discrete X, the integral is understood as a sum). A prominent example is the
Gauss-distribution

P (X) =

√
1

2πσ
e−

1
2σ
x2

, < x2 >= σ . (169)

A stochastic process is defined as a function of X by some mapping X → Y
which is a function of time

YX(t) = f(X, t) . (170)

Such a quantity is also called a random function. On inserting forX one of its possible
values x, an ordinary function of time results, which is called a sample function or a
realization of the process, see Fig. 23. Averages are defined by

< YX(t) > =

∫
YX(x, t)PX(x) dx , (171)

< YX(t1)YX(t2) > =

∫
YX(x, t1)YX(x, t2)PX(x) dx . (172)
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Figure 23: Schematic of sample functions.

The latter is [apart from a redefinition of YX(t)→ YX(t)− < YX(t) >] the autocorre-
lation function of YX(t).

A stochastic process can also be specified by a hierarchy of distribution functions
Pn(y1, t1; y2, t2; . . . ; yn, tn), n = 1, 2, . . . . P1(y, t) is the probability density for YX(t)
to take the value y at time t, P2 is the joint probability that YX(t) has the value y1
at t1 and y2 at t2, etc. Functions Pn are symmetric in all arguments yi, ti but ti 6= tk
is implied.

The conditional probability P1|1(y2, t2|y1, t1) is the probability density for YX(t)
to take the value y2 at t2, given that its value at t1 is y1. More generally one may fix
the values at k different previous times t1, t2, . . . tk and ask for the joint probability
of YX at ` other later times tk+1, . . . tk+`. This leads to the general definition of the
conditional probability

P`|k(k + 1; . . . k + `|1, 2, . . . k) = Pk+`(1, 2, . . . k + `|1, 2, . . . k)
Pk(1, 2 . . . k)

, (173)

where “i” is a shorthand for yi, ti. Like P1, Pn, P`|k is non–negative and normalized.
(Notice the difference in sequence of the arguments in joint and conditional probabil-
ities). A process is called a Gaussian process if all its Pn are (multivariate) Gaussian
distributions. For a stationary process all Pn depend on time–differences alone and
P1(y, t) is time–independent.

A Markov–process is defined as a stochastic process for any set of successive
times t1 < t2 < . . . tn has the property

P1|n−1(yn, tn|y1, t1; . . . yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1) . (174)

In short: Markov processes don’t have a memory.
A Markov process is fully determined by P1(y, t) and P1|1(y2, t2|y1, t1) (t2 > t1)
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Figure 24: Schematic of sample functions contributing to the conditional probability.

as the whole hierarchy of joint probabilities Pn can be reconstructed from them, e.g.

P1(y2, t2) =

∫
P1|1(y2, t2|y1, t1)P (y1, t1) dy1 , (175)

P2(y1, t1; y2, t2) = P1|1(y2, t2|y1, t1)P1(y1, t1) , (176)

P3(y1, t1; y2, t2; y3, t3) = P2(y1, t1; y2, t2)P1|2(y3, t3|y1, t1; y2, t2) , (177)

= P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2) . (178)

Continuing this algorithm one finds successively all Pn. This property makes Markov
processes so managable and, fortunately, Markov processes are by far the most im-
portant stochastic processes in physics and chemistry.

One of the best known Markov processes is the Wiener–process which describes
the diffusive behavior of the position of a Brownian particle

P1(y1, 0) = δ(y1) , (179)

P1|1(y2, t2|y1, t1) =
1√

4πD(t2 − t1)
exp

[
− (y2 − y1)2
4D(t2 − t1)

]
. (180)

In particular, we have for the time–dependent (i.e. non–stationary) probability, find-
ing the particle at y at time t

P1(y, t) =
1√
4πDt

e−
y2

4Dt . (181)

An example of a stationary Markov–process is the Ornstein–Uhlenbeck process which
describes the velocity of the Brownian particle, see van Kampen.57

The concept of a Markov process is not restricted to one–component processes
but applies to processes with r components as well. However, if one ignores s > 0
components of an r component Markovian process, the resulting r − s component
stochastic process will – in general – not be Markovian! The art of the physicist
is to find such variables that are needed to make the description (approximately)
Markovian.

In physics “non–Markovian” is used almost synonymously for“memory be-
haviour”, yet the reader should beware of several pitfalls. Quoting van Kampen57
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When a physicist talks about a process he/she normally refers to a cer-
tain phenomenon involving time. Concerning a process in this way it is
meaningless to ask whether or not the process is Markovian, unless one
specifies the variables to be used for its description . . .
The criterion Eq.(174) is a condition on all distributions Pn of the hier-
archy. It is impossible to aver that a process is Markovian if only infor-
mation about the first few Pn is available. . .
Surprisingly, any deterministic process, like the Hamiltonian dynamics in
phase space, Eq.(70), or the v.Neumann dynamics, Eqs.(78,89), is Marko-
vian. . .
Sometimes “non–Markovian” equations of the form

∂P (t)

∂t
=

∫ t

0

G(t, t′)P (t′) dt′ (182)

are produced, yet one cannot be sure that the earlier values of P (t) are
indispensable for knowing its future. . .

Problem:
Consider the non–Markovian Eq.(147) with an exponential memory function γ(t) =
γ0γD exp(−γDt)Θ(t). Show by differentiation that this equation can be transformed
to a system of three first order differential equations with no memory for the composite
variable ξ = (x, ẋ, ẍ).

6. Final Remarks

In this article the standard equations and their typical solutions and prop-
erties for (energy) transport in condensed matter were provided. We found that
reversibility and coherence are often – yet not always – accompanied by oscillations
in the physical quantities of interest. A large number of important questions and
techniques, however, have only been touched and perhaps not even mentioned. For
example, for semiconductors the standard theory to describe coherent phenomena
are the Semiconductor–Bloch equations which describe the coherent motion of the
interband amplitude as well as the electron/hole kinetics, see Haug and Koch.58 A
short survey about such problems has been given previousely27 and is not repeated
here. The interplay between transport and coherence is most pronounced in systems
where extremly short length scales (∼ 1nm) or ultra fast time scales (∼ 1fs) play
a crucial role. It turns out to be very difficult to make significant generalizations
of the Boltzmann equation to go beyond the limits set by the “old master” himself.
To properly describe phenomena of this kind, a quantum theory of nonequilibrium
processes is needed which has only recently been developed. For details, we refer to
Fick and Sauermann,40 Dittrich et al.,50 and Haug and Jauho.59
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