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1. Introduction

The majority of optical phenomena and even most of photonics can be well
understood on the basis of Classical Electrodynamics. The Maxwell–Theory
is perfectly adequate for understanding diffraction, interference, image for-
mation, photonic–band–gap and negative–index materials, and even most
nonlinear phenomena such as frequency doubling, mixing or short pulse
physics . . . However, spontaneous emission or intensity correlations are not
(or incorrectly) captured. For example, photons in a single–mode laser
well above the threshold are (counter–intuitively) completely uncorrelated
whereas thermal photons have a tendency to “come” in pairs (within the
coherence time).
This contribution addresses the following questions:
− Basic properties of photons.
− Quantum description of the Electromagnetic Field (EMF).
− Special photon states.
− Selected optical devices.
− Examples of photon correlations.

To “step into” the field the Paul’s easy readable introduction[1], Loudon’s
classic text[2] and Kidd’s [3] historical survey and critical discussion on
the evolution of the modern photon will be especially helpful. There are
many very good modern textbooks on Quantum Optics available now, e.g.
Gerry and Knight[4] or Scully and Zubairy [5]. Bachor[6] discusses basic
experiments in Quantum Optics and Haroche and Raimond[7] describe
fascinating thought experiments and new concepts of quantum mechanics
which now became feasable. In addition there are many proceedings of
summer schools and conferences, e.g. Refs.[8–11] which may serve as a
resource which almost never runs dry. Perhaps the article of this author
in a previous Erice School[12] may be useful, too.
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2. Basic Properties of Photons

2.1. PARTICLES AND CORPUSCLES

A particle is, by definition, a lossless transport of energy and momentum
through free space with a universal energy–momentum relation

E(p) =
√

(m0c2)2 + (cp)2 , v(p) =
∂E(p)

∂p
=
c2p

E
. (1)

m0 is the rest mass of the particle and v(p) defines the transport velocity
of energy and momentum. In addition, a particle may also have charge,
spin, angular momentum etc. Examples are electrons, protons or photons.
Bodies (Corpuscles) are distinguishable, localizable particles with energy–
momentum relation (1). In addition they behave as individuums and have
a size, shape, elasticity etc. Examples are bullets, golf balls or planets.

2.2. EXPERIMENTAL FACTS

Basic facts of photons are listed in Table I. Based on Lenard’s[13] obser-
vations on the photo–electric effect and guided by an ingenious thermody-
namic approach to describe the black body radiation, Einstein[14] got the
vision that the transport of energy of light occurs in form of light–quanta
“~ω” rather than in a continuous fashion. However, he formulated his idea
very reserved:

Mit den von Herrn Lenard beobachteten Eigenschaften der lichtelek-
trischen Wirkung steht unsere Auffassung, soweit ich sehe, nicht im
Widerspruch.

Literal translation:

Mr. Lenard’s observed characteristics of the photoelectric effect is, in
our opinion, not inconsistent to our interpretation.

In a series of intricate experiments, Millikan[15] provided the first ex-
perimental verification of the Einstein–hypothesis Ekin = ~ω − W and
photoelectric determination of the Planck–constant (as well as the contact
potential = difference of work–functions W of cathode and anode).
Further evidence for these ”light–quanta”, later termed photons, arose from
the Compton effect [16] and the absence of an energy–accumulation time
during photo–emission as discovered by Lawrence and Beams[17] and re-
fined later by Forrester et al.[18].
The concept of light–quanta as small corpuscles is in apparent contradiction
with typical wave properties like interference fringes and it was expected
that such fringes fade out if the intensity of the incident light becomes
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TABLE I. Basic properties of photons.

Property Phenomenon Quantity Discoverer (year)

Quantization of energy photo–electric effect E = ~ω Einstein (1905)

Millikan (1914)

Interference of a persistence of interf. Taylor (1909)

photon with itself patterns at low intens.

Particle–like transport Compton–effect E(p) = c|p| Compton (1923)

of energy + momentum

Quantum theory unification of wave & EMF Dirac (1927)

of light particle properties

Absence of a delay–time prompt photoelectrons τ < 3ns Lawrence (1928)

for photoelectrons τ < 0.1ns Forrester (1955)

Photon correlations Hanbury Brown & photon Hanbury Brown

(thermal light) Twiss effect coincidences & Twiss (1956)

smaller and smaller so that the probability of having more than a single
photon in the spectrometer becomes negligible. Interference experiments
at very low intensity were carried out in 1909 by Taylor[19] and later, by
Dempster and Batho[20] and Janossy et al.[21]. Yet the interference fringes
persisted – a photon interferes (only) with itself, as Dirac[23] said.
In contrast to widespread belief neither the photo–electric effect (cf. Clauser
[25]) nor the Compton–effect (cf. Dodd[26]) provide watertight proofs of
the photon, yet the wholeness of phenomena is only consistently described
within quantum theory. This holds, in particular, for the absence of an
energy–accumulation time and the angular dependence of the Compton
scattering cross section (“Klein–Nishina–formula”). For a discussion of al-
ternative theories see, e.g., the Rochester Proceedings from 1972[11].

2.3. WHAT IS A PHOTON NOT?

Many contradictory uses exist for the photon[3]. Elementary survey course
textbooks usually leave the impression that the photon is a small spherical
object which flies on a straight trajectory. A figure like Fig. 1 is dangerous as
it pretends that photons in a light beam are tiny corpuscles which have well
defined positions. However, as early as in 1909, Lorentz raised the objection
that, despite of some striking success of the corpuscular model, one cannot
speak of propagating light–quanta concentrated in small regions of space
that at the same time remain undivided. He pointed out that the coherence
length in interference experiments required a longitudinal extension up to
one meter for the photon, while ordinary optical properties demanded a
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Figure 1. Photoelectric detection. (a) Constant current, (b) fluctuating current. The
“combs” refer to the response of a photodetector with high time resolution rather than
to “incoming” photons. According to Pike[10].

lateral extension on the order of the diameter of the telescope for light
from distant stars. Moreover, a photon cannot be just a scalar “bundle of
energy” but has rather definite “vector properties”[22].
In 1921 Einstein complained to Ehrenfest that the problem of quanta was
enough to drive him to the madhouse.1 It was left to Dirac[23] to combine
the wave– and particle–like aspects of light so that this description is capa-
ble of explaining all interference and particle phenomena of the EMF. We
shall follow his traces in Chapt. 4. The answer to the question ”What is a
photon?” will be left for Sect. 4.1.

3. Basics of Quantum Theory

3.1. CANONICAL QUANTIZATION

Quantum theory provides a very general frame for the description of nature
on the microscopic as well as on the macroscopic level. In some cases the
extension of a classical theory such as Mechanics or Electrodynamics to a
quantum theory can be found along a correspondence principle.
First, from the classical theory we have to find (within the Lagrangian
formulation, see e.g. Landau and Lifshitz[27] (Vol. I)):
− Canonical variables pi, qk with Poisson–brackets {pi, qk} = δi,k, where

{F,G} =
∂F

∂p

∂G

∂q
− ∂G

∂p

∂F

∂q
,

dG

dt
=
∂G

∂t
+ {H,G}.

1 Nobel–prize 1921 for “his services to Theoretical Physics, and especially for his
discovery of the law of the photoelectric effect”!
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− Observables (=physical quantities) G = G(p, q, t), in particular the
Hamiltonian (=energy) H = H(p, q, t).

Then, the corresponding quantum theory is constructed:
− States are described by (normalized) ket–vectors |ψ〉 which are ele-

ments of a Hilbert space H with a scalar product 〈ψ1|ψ2〉 = (〈ψ2|ψ1〉)∗.
− Canonical (unconstrained) variables p → p̂ q → q̂ and observables

G→ Ĝ are represented by linear, hermitian operators in H

{F,G} → i

~

[

F̂ , Ĝ
]

, where
[

F̂ , Ĝ
]

= F̂ Ĝ− ĜF̂ , (2)

Ĝ → G(p→ p̂, q → q̂, t) , [p̂j , q̂k] = −i~δj,k . (3)

Commutators between the p’s or the q’s themselves vanish.
(Products of noncommuting operators may be ambiguous).

− The (expectation) value of an observable Ĝ in state |ψ〉 is obtained by

〈G〉 = 〈ψ|Ĝ|ψ〉 := 〈ψ|
(

Ĝ|ψ〉
)

. (4)

〈ψ|Ĝ|ψ〉 can be cast in the form of an expectation value

〈ψ|Ĝ|ψ〉 =
∑

g

gP (g) , P (g) = |〈g|ψ〉|2 . (5)

|g〉 denotes an eigenstate of Ĝ with eigenvalue g: Ĝ|g〉 = g|g〉 and
P (g) > 0,

∑

g P (g) = 1 is the probability to find g in a measurement.

− Dynamics: Initially, the system is supposed to be in state |ψ0〉 =
|ψ(t0)〉. Then, the sequence of states |Ψ(t)〉 which the system runs
through as a function of time is governed by the

Schrödinger–Equation i~
∂|Ψ(t)〉
∂t

= Ĥ|Ψ(t)〉. (6)

Ĥ denotes the Hamiltonian (=energy) of the system2.
− Steady states: In a steady state values of all observables (which don’t

explicitely depend on time) are time–independent. Such states exist if

Ĥ is time–independent

|Ψ(t)〉 = e−iEt/~|ψ〉 , Ĥ|ψ〉 = E|ψ〉 . (7)

Different stationary states will be labelled by n, i.e. E = En, ψ = ψn.

2 Eq. (6) holds not only for non–relativistic particles but also for photons.
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Pure and mixed states:
Ket–vectors |ψ〉 describe so–called pure states which have zero entropy.
They are – loosely speaking – analoga of the mechanical states with fixed
q, p or the states of the classical EMF with fixed electrical and magnetic
fields (“signals”).
Classical statistical states, e.g. particles in thermal equilibrium or thermal
radiation (“noise”), are described by a probability distribution P (p, q). Such
states have nonzero entropy and are called mixed states. In quantum the-
ory they are described by a state–operator (density operator) ρ̂ and (4) is
replaced by

〈G〉 = trace (ρ̂ Ĝ). (8)

For a pure state ρ̂ = |ψ〉〈ψ| is a projector onto |ψ〉.

3.2. HARMONIC OSCILLATOR

As a “warm–up” we consider the (one–dimensional) harmonic oscillator.
Classical Oscillator:
− States are descibed by x, v (or x, p. v = ẋ, p = mv).
− The Newtonian equation of motion reads

mẍ+Dx = Fext(t), (9)

where m,D,Fext denote the mass, spring constant and external force
on the particle. The frequency of free oscillations is ω0 =

√

D/m.
− Lagrangian: L = 1

2mẋ
2 − 1

2Dx
2 + xFext,

− canonical momentum: p = ∂L/∂ẋ = mẋ, {p, x} = 1.

− Hamiltonian: H = pẋ− L =
p2

2m
+
D

2
x2 − xFext(t).

Instead of using real p, x we may also use a complex (dimensionless) am-
plitude a which turns out to be very useful for quantum mechanics.

a =
1√
2

(x

ℓ
+ i

p

mω0ℓ

)

, {a, a∗} =
i

mω0ℓ2
→ i/~ , (10)

H =
1

2
mω0ℓ

2
(

a∗a+ aa∗
)

− (a+ a∗)f(t) , (11)

→ ~ω0
1

2

(

a∗a+ aa∗
)

− (a+ a∗)f(t) , f(t) =
ℓ√
2
Fext(t) . (12)

With respect to quantum theory the “natural unit of length” ℓ =
√

~/(mω0)
has been used. In contrast to (9) a(t) fulfills a first order differential equation

d

dt
a(t) + iω0a(t) = if(t)/~ . (13)
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Figure 2. Classical harmonic oscillator. (a) Trajectory in phase space, (b) thermal
probability distribution. (Fext = 0).

For a free oscillator in thermal contact with a heat bath at temperature T ,
x and p fluctuate with a Gaussian probability distribution, see Fig. 2b,

Pth(a) =
1

Z
e−H(p,q)/kBT =

1

πIav
e−|a|2/Iav . (14)

Z is the statistical sum (normalization factor), Iav =< |a|2 >= ~ω0/kBT .
Quantum oscillator:

With canonical operators p→ p̂, x→ x̂, [p̂, x̂] = −i~ and a→ â, [â, â†] = 1,
we have

Ĥ =
p̂2

2m
+
mω2

0

2
x̂2 − x̂Fext(t) , (15)

→ ~ω0

(

N̂ +
1

2

)

− (â+ â†)f(t) , (16)

N̂ = â†â , N̂ |n〉 = n|n〉 , n = 0, 1, 2, . . . (17)

N̂ denotes the number–operator. The action of â, â† on the number–states
is

â|n〉 =
√
n |n− 1〉, â†|n〉 =

√
n+ 1 |n+ 1〉. (18)

These operators are called ladder operators because repeated operation
with â, â† on |n〉 creates the “ladder” of all other states: â† “climbs–up”,
whereas â “steps down”, see Fig. 3.

â|0〉 = 0 , |n〉 = 1√
n!
(â†)n |0〉. (19)
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Figure 3. Harmonic oscillator. (a) Energies and (b) stationary wave functions.

Stationary states:
Stationary states are identical with the number–eigenstates |n〉 and belong
to energies En = ~ω0(n+1/2). In position representation x̂ = x, p̂ = −i~ ∂

∂x ,
ψ(x) = 〈x|ψ〉 where |x〉 is an eigenstate of the position operator x̂,

ψn(x) =
1

√√
π2nn!

e−x2/2Hn(x) , En = ~ω0

(

n+
1

2

)

. (20)

Hn(x) denote Hermite–polynomials, H0(x) = 1, H1(x) = 2x, H2(x) =
4x2 − 2,. . . and n = 0, 1, 2, . . . (x in units of ℓ =

√

~/(mω0)).
Note: The classical oscillator has only a single steady state, x0 = 0, p0 = 0,
whereas a quantum oscillator has infinitely many steady states labelled by
n = 0, 1, 2, . . .. In contrast to widespread belief, a single steady quantum
state does not correspond to classical motion.
Almost classical states (α–states):
We are looking for states where the expectation values of x̂ and p̂ vary
sinusoidally in time. In addition we require both ∆x, ∆p to be time–
independent and as small as possible. These states were already found by
Schrödinger and correspond to a displaced Gaussian ground state wavefunc-
tion multiplied by a momentum eigenfunction, see Fig 4. In dimensionless
quantities, we have

ψα(x, t) =
1
4
√
π

exp

[

− [x− xc(t)]
2

2

]

eixpc(t) eiϕ(t). (21)

xc(t) and pc(t) are the solutions of the classical equations of motion of the
oscillator (9,13) (even for f(t) 6= 0). ϕ(t) is a (irrelevant) time–dependent
phase which, however, is needed to solve (6).
In number–representation, these states are given by (ϕ(t) omitted)

|α〉 = e−
1
2
|α|2

∞
∑

n=0

αn

√
n!
|n〉, α = α(t) → a(t) = [xc(t) + ipc(t)]/

√
2. (22)
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Figure 4. Time development of the coherent state wave function (ω0T = 2π).

Nowaday, these states are called coherent states, Glauber states, or just α–
states. Roy J. Glauber[28] was the first who recognized their fundamental
role for the description of optical coherence and laser radiation.3 Some
further details will be discussed in Sect. 5.3.
We shall show in the next section that the EMF is dynamically equivalent
to a system of harmonic oscillators, yet for photons wave functions like
(20,21) are neither needed nor useful. Instead, only the algebraic properties
of â, â† will be used.

4. Quantum Theory of Light

4.1. MAXWELL–EQUATIONS

The state of the EMF is described by two (mathematical) vector fields E ,B
which are coupled to the charge and current density of matter ρ, j by the
Maxwell–Equations4

∂E

∂t
− c2curlB = − 1

ǫ0
j(r, t), (a) divE = 1

ǫ0
ρ(r, t), (c)

∂B

∂t
+ curlE = 0, (b) divB = 0. (d)

(23)

For our purposes a detailed knowledge how to calculate field configurations
for specific systems is not required. However, we have to know the rele-
vant dynamical variables of the EMF. Analogous to the interpretation of
Classical Mechanics one may view the two differential equations (a,b) with

3 Nobel prize (1/2) 2005 for “his contribution to the quantum theory of optical
coherence”, other half of the prize was given to J. L. Hall and Th. W. Hänsch.

4 Vectors are set in boldface, electromagnetic fields in calligraphic style.
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respect to time as equations of motion of the Maxwell field, whereas (c,d)
represent “constraints”. Hence, from the 6 components of E ,B at most
6 – 2=4 components are independent dynamical variables at each space
point. Therefore, potentials Φ,A are more appropriate than E ,B,

E = − ∂

∂t
A(r, t)− gradΦ(r, t), B = curlA(r, t). (24)

However, A, Φ are not uniquely determined, rather A → A′ = A +
gradΛ(r, t),Φ → Φ′ = Φ − Λ̇(r, t) lead to the same E ,B–fields and, hence,
contain the “same physics”. Λ(r, t) is an arbitrary gauge function. This
property is called gauge invariance and it is considered as a fundamental
principle of nature.
In Quantum Optics (and in solid state physics as well), the Coulomb gauge,
divA = 0, is particularily convenient where

∆Φ(r, t) = − 1

ǫ0
ρ(r, t),

∆A(r, t)− 1

c2
∂2A(r, t)

∂t2
= −µ0jtr(r, t). (25)

jtr denotes the ”transverse” component of the current,

jtr(r, t) = j(r, t)− ǫ0
∂

∂t
gradΦ(r, t) , divjtr = 0 . (26)

Some advantages of the Coulomb gauge are:

− The equations for Φ and A decouple.
− Φ is not a dynamical system, i.e. Φ is not governed by a differential

equation with respect to time, i.e. Φ will not be quantized and there
are no “scalar photons”.

− As divA = 0 only 2 of the 3 components ofA are independent variables
of the EMF (i.e. there are no “longitudinal photons”).

Hence, the EMF has two independent “internal” degrees of freedom at each
space point corresponding to two polarization states.

4.2. MODES AND DYNAMICAL VARIABLES

In order to extract the dynamical variables of the EMF from Eq. (25) we
decompose the vector potential in terms of modes uℓ(r)

A(r, t) =
∑

ℓ

Aℓ(t)uℓ(r), (27)

∆uℓ(r) + (
ωℓ

c
)2 uℓ(r) = 0, divuℓ(r) = 0, (28)

∫

u∗
ℓ (r)uℓ′(r) d

3r = δℓ,ℓ′ . (29)
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In addition, there will be boundary conditions for E ,B which fix the eigen-
frequencies ωℓ of the modes labelled by ℓ. (To lighten the notation we omit
the index “tr” from now on). The set of Aℓ(t) can be obtained by using the
orthogonality relations (29) of the mode–functions and they represent the
generalized coordinates or dynamical variables of the EMF which obey the
equation of motion

Äℓ(t) + ω2
ℓ Aℓ(t) =

1

ǫ0
jℓ(t). (30)

jℓ(t) is defined in the same way as Aℓ(t).
From (30) we guess the Lagrangian

L =
∑

ℓ

1

2
Ȧ2

ℓ −
ω2
ℓ

2
A2

ℓ +
1

ǫ0
jℓ(t)Aℓ , (31)

=

∫
(

ǫ0
2
E
2
tr(r, t)−

1

2µ0
B

2(r, t) + jtr(r, t) A(r, t)

)

d3r.

The canonical variables are, obviously, Qℓ = Aℓ, Pℓ = Ȧℓ and the Hamilto-
nian becomes

H = PQ̇− L,

=

∫
(

ǫ0
2
E
2
tr(r, t) +

1

2µ0
B

2(r, t)− jtr(r, t) A(r, t)

)

d3r. (32)

In conclusion, each mode of the EMF is equivalent to a driven harmonic
oscillator. The state of the EMF is, thus, specified by the set of mode
amplitudes Aℓ and their velocities Ȧℓ at a given instant of time.
A(r, t) is a real field so that uℓ(r) as well as Aℓ(t) ought to be real as well.
Nevertheless, the choice of complex modes may be convenient. In particular,
in free space we will use “running plane waves” (wave vector k)

uk,σ(r) =
1√
V

ǫk,σ e
ikr, ǫ

∗
k,σ′ · ǫk,σ = δσ,σ′ . (33)

ǫk,σ denotes the polarization vector which, by divu = ik · ǫk,σ = 0, is
orthogonal to the wave vector k (here the notation “transversal” becomes
manifest). The two independent polarization vectors will be labelled by σ =
1, 2. V denotes the normalization volume and, as usual, periodic boundary
conditions are implied.
To follow the scheme outlined in the previous section we have to bring
the Maxwell–Theory into Hamiltonian form. This is, however, almost triv-
ial because the EMF is dynamically equivalent to a system of uncoupled
harmonic oscillators with generalized “coordinates” Aℓ, see (30).
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A(r, t) =
∑

k,σ

√

~

2ǫ0ωk V

(

ak,σ(t) ǫk,σ e
ikr + a∗

k,σ(t) ǫ
∗
k,σ e

−ikr
)

, (34)

E(r, t) = −∂A(r, t)

∂t

=
∑

k,σ

√

~

2ǫ0ωk V

(

iωk ak,σ(t) ǫk,σ e
ikr + cc

)

, (35)

B(r, t) = curlA(r, t)

=
∑

k,σ

√

~

2ǫ0ωk V

(

i(k× ǫk,σ) ak,σ(t) e
ikr + cc

)

, (36)

H =
∑

k,σ

~ωk a
∗
k,σak,σ −

√

~

2ǫ0ωk

(

j∗
k,σ(t) ak,σ + cc

)

, (37)

P =

∫

( 1

µ0
E tr(r, t)×B(r, t)

)

d3r =
∑

k,σ

~ka∗
k,σak,σ. (38)

P denotes the momentum of the EMF. The complex amplitudes obey the
Poisson bracket relations and equation of motion analogous to (10,13)

{ak,σ , a∗k′,σ′} =
i

~
δk,k′ δσ,σ′ , (39)

dak,σ(t)

dt
+ iωk ak,σ(t) = i

√

1

2ǫ0~ωk

jk,σ(t). (40)

Eq. (40) has been already used performing the time–derivative of A(r, t)
in (35).5

The complex amplitudes ak,σ represent the dynamical variables of the EMF.
Its real and imaginary parts are called quadrature amplitudes which (apart
from numerical factors) are the analogues of position and momentum of a
mechanical oscillator, see Sect. 3.2.

5 The contribution from jtr drops out in the final result; beware of a∗
k,σ 6= a−k,σ

although j∗k,σ = j−k,σ! In contrast to most treatments of the subject no efforts have
been made to preserve the “natural sequence” of the amplitudes ak,σ, a

∗
k,σ. Potential

energy/momentum contributions from the scalar potential to Eqs. (37-38) have been
omitted. For technical details see Kroll’s article in Ref. [8].
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4.3. QUANTUM OPTICS

The quantum version of the EMF together with a (nonrelativistic) theory
of matter is called Quantum Optics. As the EMF is dynamically equivalent
to a system of uncoupled harmonic oscillators this task is almost trivial
when using ladder operators ak,σ → âk,σ. In the following we shall use the
Schrödinger picture, where operators are time–independent.

[

âk,σ, â
†
k′,σ′

]

= δk,k′ δσ,σ′ . (41)

The (infinite) zero point energy which arises from the noncommutativity of

the âk,σ, â
†
k,σ operators has been omitted in the Hamiltonian as this has no

influence on the dynamics of the EMF. The zero point fluctuations of the
EMF, however, are still present in the fields, as we shall see later.
The steady states of the infinite set of mode oscillators of the EMF is, thus,
labelled by the (infinite set of) quantum numbers {nk,σ}, which individ-
ually can take on different nonnegative integers. In free space, the time
dependence of |{nk,σ}〉 is, as usual, determined by an exponential factor
exp(−inωk,σt) for each mode. Arbitrary states can be represented as a
superposition of these number–states, which, therefore, represent a natural
basis for the description of the quantum states of the EMF. – But, where
are the photons?

4.4. OSCILLATORS AND BOSONS

Dirac[23] has made the important discovery that

. . . a system of noninteracting bosons with single particle energies ǫℓ is
dynamically equivalent to a system of uncoupled oscillators with frequen-
cies ωℓ and vice versa. The two systems are just the same looked at from
two different points of view. . .

Here, dynamic equivalence means that all states of an N–boson system
which are conventionally described by a symmetric wave function are equally
well described in the “oscillator picture”, where each single particle state
with energy ǫℓ correponds to an oscillator with frequency ωℓ = ǫℓ/~. Re-

markably, the commutation relations [âℓ, â
†
ℓ′ ] = δℓ,ℓ′ between the ladder

operators are fully equivalent to the permutation symmetry of the boson
wavefunction, and, fortunately, a great deal of notational redundancy in
the description of a many–body system is removed. All operators in the
“particle picture” (lhs of Fig. 5) can be translated into operators acting on
the oscillator states. These operators are conveniently expressed in terms of
ladder operators which are now named creation and destruction operators
for particles because they change the particle number by one. Particle
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Figure 5. Equivalence of a system of N (noninteracting) bosons with single–particle
energies ǫℓ and occupation numbers nℓ and an infinite (uncoupled) set of harmonic
oscillators with frequencies ωℓ = ǫℓ/~. Note that the zero–point energies of the oscillators
are omitted. Dots symbolize particles, crosses excited states, respectively. (N = 6).

conservation implies that all observables contain products of operators

with an equal number of âk,σ and â†
k′,σ′ . In contrast to massive particles

(in nonrelativistic quantum theory) detection of photons mostly enforces
annihilation of them.
The union of all sets of N = 1, 2 . . . particle subspaces plus the N = 0 “no
particle” state (vacuum)

|0〉 = |0, 0, 0, . . .〉

is called Fock space. The number states |{nℓ}〉 are the eigenstates of the
particle number operator

N̂ =
∑

ℓ

â†ℓ âℓ. (42)

Now, the particle number itself becomes a dynamical variable and we
can even describe states which are not particle number eigenstates of the
system. The Fock representation is also called occupation number represen-
tation or “second quantization”. It is much more flexible than the original
formulation with a fixed particle number.

4.5. WHAT IS A PHOTON?

The bosons corresponding to the quantized oscillators of the EMF are called
photons.
− Photons are the eigenstates of the number operator N̂ . In particular,

there are photon number–eigenstates belonging to each mode, |{nk,σ}〉
with integer nk,σ = 0, 1, 2 . . .
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− A single photon belonging to a fixed mode (k, σ) is also eigenstate of
the Hamiltonian with energy E = ~ωk,σ and momentum p = ~k with
E(p) = c|p|.

− Photons have two polarization degrees of freedom, e.g. there are two or-
thogonal linear polarizations σ = 1, 2 or left/right circular polarization
base states

|1±〉 =
1√
2

(

|1k,1〉 ± i|1k,2〉
)

.

According to the prevailing belief, the spin of the photon6 or some
other particle is a mysterious internal angular momentum for which
no concrete physical picture is available, and for which there is no
classical analog. However, it can be shown that the spin of the photon
may be regarded as an angular momentum generated by a circulating
flow of energy in the wave field, see the nice article by Ohanian[29].

− All types of classical interference phenomena are automatically cap-
tured by the mode structure of (34).

− Localization of energy arises as the outcome of a measurement which
causes the state of the EMF to “collapse” into an eigenstate of the mea-
suring device as a result of a position measurement, e.g. the absorption
of a photon by an atom or in a pixel of a CCD–camera.

Today our interpretation of photons differs substantially from the origi-
nal idea of small energy “bullets” or “darts”[22]. Although photons (in
free space) have a definite energy–momentum relation, photons are not
“objects” in the sense of individual, localizable classical corpuscles. By
contrast, they are nonlocalizable, indistinguishable, obey Bose–statistics,
and they can be created and annihilated easily. Moreover, in most cases
the relevant photon states are not states with a fixed photon number. This
will become obvious when discussing various examples in the next sections.

5. Special Photon States

In the following we shall discuss some special states of the EMF and their
expectation values of the E , B, energy, and momentum. The physically
relevant states cannot be eigenstates of the electrical field operator Ê as
these have infinite energy. (Ê corresponds to the position or momentum of
a mechanical oscillator).
The “quantum unit” of the electrical field strength is E0 =

√

~ω/2ǫ0V .
For green light, λ = 500nm, and a quantization volume of V = 1cm3,

6 Although photons are spin–1 particles there are only but two spin projections (paral-
lel and antiparallel to momentum), i.e. photons are characterized by helicity. For massless
particles there is no rest frame.
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E0 ≈ 0.075V/m, whereas, in a microresonator of linear dimension 1µm,
E0 ≈ 7.5× 104V/m!

5.1. N-PHOTONS IN A SINGLE MODE

We consider n photons in a single mode with k = (k, 0, 0) and linear
polarization along y–direction ǫk,σ = (0, 1, 0). |n〉 is, of course, an eigenstate
of the photon number operator (42). (Mode indices k, σ are omitted, for
brevity).
Without a driving current source this state is an eigenstate of the Hamil-
tonian with energy n~ω and it evolves in time according to

|n; t〉 = |n〉 e−inωt. (43)

In addition, this state is also a momentum eigenstate with eigenvalue n~k,
see (38). However, |n〉 is not an eigenstate of the electrical field opera-

tor, Eq. (35), because âk,σ, â
†
k,σ changes the number of photons by ±1. In

particular, we have

〈n; t|Ê(r)|n; t〉 = 0, (44)

〈n; t|Ê2(r)|n; t〉 = E2
0 (2n+ 1). (45)

Certainly, such a state does not correspond to a classical sinusoidal wave,
instead it is pure “quantum noise”. Note, even in the vacuum state |0〉, zero
point fluctuations of E ,B are present.

5.2. SINGLE PHOTON WAVE PACKET

We consider a superposition of one–photon states with are composed of
different modes (but with the same polarization).

|φσ(k); t〉 =
∑

k

φσ(k) e
−iωkt |1k,σ〉. (46)

φσ(k) is an arbitrary, normalized function which, with some care, may be
interpreted as a wave function of a photon (–wave packet) in momentum
space. However, there is no well defined photon position representation, see,
e.g. Landau–Lifshitz[27] (Vol. 4a). The question of localization of photons
is discussed, e.g., by Clauser in Ref.[11].
Grangier et al.[30] reported an interesting phenomenon where two Ca atoms
shared a single photon similar to a two–slit diffraction experiment. Pho-
todissociation of a diatomic homonuclear molecule A2 (Ca2) yielding two
atoms recoiling in opposite directions, one in excited state (A∗) and the
other in the ground state (A). Either atom can actually be excited, and
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Figure 6. Two Ca–atoms radiate a single photon. Number of detected fluorescent
photons (same polarization as the laser light) as function of time delay τ (50ps per
channel). According to Grangier et al.[30].

subsequently reemit a photon at the atomic frequency ω0 , so one must
consider two undishinguishable paths for the whole process

~ωL +A2 →
{

A +A∗

A∗ +A

}

→ 2A+ ~ω0 .

~ωL refers to the photodissociating light. Interference oscillations in Fig. 6
originate from two recoiling atomic dipoles at distance d = 2vτ , where v ≈
1100m/s is the velocity and τ time of observation. By using a tunable laser,
one could thus obtain interesting information about the “energy–landscape”
of the dissociating molecular state.

5.3. COHERENT STATES (IDEAL SINGLE MODE LASER)

We are looking for a state, in which the E ,B fields vary sinusoidally in space
and time with E–uncertaincy as small as possible, i.e., have time indepen-
dent uncertaincies in the quadrature amplitudes with ∆X1 = ∆X2 = 1/2
and ∆X1∆X2 = 1/4. We have already discussed these states in Sect. 3.2

|α〉 = e−
1
2
|α|2

∞
∑

n=0

αn

√
n!

|n〉. (47)

α–states, also termed Glauber states or coherent states have a number of
interesting properties[5]:
− |α〉 is an eigenstate of the destruction operator

â|α〉 = α|α〉, (48)
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where α is an arbitrary complex number.
− α–states can be generated by the unitary “displacement” operator D̂

|α〉 = D̂(α)|0〉, (49)

D̂(α) = eαâ
†−α∗â = e−

1
2
|α2|eαâ

†

e−α∗â, (50)

D̂† â D̂ = â+ α. (51)

− The time dependence of an α–state (even with a classical external
current source) is obtained just by replacing α→ α(t),

|α, t〉 = eiφ(t) |α(t)〉, (52)

where α(t) → a(t) = [xc(t)+ipc(t)]/
√
2 correspond to the position and

momentum of a classical oscillator. For a free oscillator α(t) = α e−iωt.
− Although the α–eigenvalues form a continuous spectrum, they are

normalizable and (over—) complete but not orthogonal. These states
form a convenient basis for the description of “almost classical states”
of the EMF for which the state–operator can be solely represented by
its diagonal elements

ρ̂ =

∫

P (α)|α〉〈α| d2α. (53)

For example, for thermal states the Glauber P–function is P (α) =
1
πn̄ exp(−|α|2/n̄), where n̄ is the mean photon number in the mode,
see also (14) and Fig. 2b.

Expectation values and uncertainties of the electrical field and photon
number and the probability to measure n photons are [α = |α| exp(iφ),
polarization index omitted]:

E(r, t) = 〈α(t)|Ê(r)|α(t)〉 = −2E0|α| sin(kr− ωkt+ φ), (54)

(∆E)2 = E2
0 , (55)

〈N̂〉 = | α |2= n̄, (∆N̂)2 = 〈N̂〉, (56)

pn = |〈n|α〉|2 = e−n̄ n̄
n

n!
. (57)

− α is not an eigenstate of the photon number operator.
− The photon distribution function pn is a Poissonian with mean photon

number n̄ = |α|2 and uncertainty (∆N)2 = n̄.
− The relative amount of fluctuations in the electrical field decreases with

increasing amplitude, ∆N/〈N〉 = 1/
√

〈n̄〉.
− Thus, in a coherent state photons behave like uncorrelated classical ob-

jects! In contrast to naive expectations, the photons in a (single mode)
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Figure 7. Photon count distribution for a single mode laser, thermal light, and mixing
of both. According to Arecchi, in Ref.[9].

laser (and well above the threshold) “arrive” in a random fashion, in
particular they do not “ride” on the electrical field maxima. See also
Fig. 1.

How to generate α–states? As α–states are eigenstates of the (nonhermi-
tian) destruction operator â, there is no observable with a corresponding
“apparatus” to create these states just by doing a measurement! However,
α–states can be simply generated from the vacuum by a classical current
source (e.g. antenna of a radio transmitter)

Ĥ = ~ω0â
†â−

[

f(t)â† + f∗(t)â
]

, (58)

where f(t) ∝ j(t). Nevertheless, it was a great surprise that the light–
matter interaction in a laser (well above the threshold) could be modelled
in such a simple way.
The amplitude of the electrical field of a laser may be well stabilized by
saturation effects, but there is no possibility to control the phase, i.e., a
more realistic laser state would be described by the density operator

ρ̂ =

∫

dφ

2π
| α〉〈α |=

∑

n

pn |n〉〈n|. (59)

This state is made up of a mixture (incoherent superposition) of n–photon
states with a Poissonian distribution. [A simple model to describe laser
light with a finite linewidth which is caused by phase diffusion has been
given by Jacobs[31].]
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Figure 8. Principle of a photodetector. Absorption of a photon induces a transition from
a bound electron state to an excited “free” state which leads to a current (–impulse).

5.4. THERMAL (CHAOTIC) PHOTON STATES

A single mode of thermal (black body) radiation is described by the statis-
tical operator

ρ̂ =
1

Z
e−βĤ =

∞
∑

n=0

bn |n〉〈n|, (60)

bn =
n̄n

(n̄+ 1)n+1
=

1

1 + n̄

(

1 +
1

n̄

)−n

=
1

Z
e−β~ωn , (61)

〈N̂〉 = tr(ρ̂ N̂) =
1

eβ~ω − 1
= n̄, (∆N̂)2 = n̄(n̄+ 1). (62)

β = 1/(kBT ), Z = 1/(1 − exp(−β~ω)) is the partition function, bn is
the Bose–Einstein photon distribution (geometric sequence), and n̄ is the
mean photon number in the mode, see Fig. 7. In contrast to coherent states,
∆N̂/n̄→ 1 for n̄→ ∞.

Problem P1: A provoking question:
“Are there photons in static electric and magnetic fields?”
(The answer will be given at the end of the article.)

6. Detectors and Optical Devices

Passive optical components like phase shifters, lenses, mirrors, polarizers
etc., are used in Quantum Optics to change modes (base transformation)
whereas a photodetector gives a “click” by absorbing a photon.

6.1. PHOTODETECTORS

In a classical description the electrical current of a photodetector is pro-
portional to the light intensity (energy density) averaged over a cycle of
oscillation[2]

JPD ∝ 〈E(t)2〉cycl ∝ E(−)(t) E(+)(t). (63)

E(±) denote the positive(negative) frequency parts of the electric field, e.g.

E
(+) ∝ exp(−iωt) (polarization properties and space variables have been
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Figure 9. Sketch of a beam splitter. Modes (1,2) are transformed into (3, 4).

omitted for simplicity). For a stochastic field, the product E(−)E(+) has to
be additionally averaged on the different realizations of the ensemble.
In a quantum treatment E(+) becomes a destruction operator (in the Heisen-
berg picture) and the response of the detector arises from transitions from
the ground state of the atoms |g〉 in the photocathode to highly excited
quasi–free states |e〉 by absorption of photons, see Fig. 8. Initially, we have
for the combined system “atom plus EMF” |i〉 = |g, {n}〉. The electri-

cal dipole interaction Ĥdip = −eÊratom induces transitions to final states
|f〉 = |e, {n′}〉. With the golden rule and summing over all possible final
states, we have for the total transition rate (for single photon absorption),
see Refs. [8–10],

Γ(t) =
2π

~2

∑

f

∣

∣

∣
〈f |Ĥdip|i〉

∣

∣

∣

2
δ(Ee + n′~ω − Eg − n~ω) ,

= ζ〈Ê(−)(r, t)Ê(+)(r, t)〉 . (64)

Implicitly, we shall assume a perfect photocathode (ζ =const.) with unit
quantum efficiency so that each absorbed photon causes an atom in the
phototube to emit an electron and register a single count during times
t, t + dt. In first order dipol approximation absorption of more than one
photon (per transition) does not occur. The number of photons which a
counter records in a finite interval of time is described by a photon count
distribution function Pm(T ), where m is the number of recorded photons.
For details see, e.g. Loudon[2], Ref. [12] (Ch. 5.4) gives a short version.

6.2. BEAM SPLITTERS

A beam–splitter (BS) is an optical device that splits a beam of light into
two. It is the key element of most optical interferometers. In a quantum
mechanical description one has to take into account two incoming “wave
beams” with fields E1, E2 even if one of them is the vacuum[32, 33]. These
beams are transformed into a transmitted and a reflected output beam
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with fields E3, E4, respectively. For a symmetric dielectric beam splitter
(and equal polarizations) the complex amplitudes transform according to

(

a3
a4

)

=

( √
1−R i

√
R

i
√
R

√
1−R

)(

a1
a2

)

. (65)

R is the (intensity) reflection coefficent.
In Quantum Optics amplitudes aj become operators âj and (65) represents
a unitary base transformation. The counterpart of “no incident wave” refers
to the vacuum state of that mode rather than to “nothing”. A beam splitter
does not “split” photons, rather it conserves the number of photons and
acts as a random selector which divides the incident flow of photons in a
reflected and a transmitted one. As a consequence, the photon statistics
of the reflected/transmitted beams correspond to that of the input beam
after a random selection process has taken place.
In particular, we discuss the case of a dielectric 50:50 beam splitter[4]

â3 =
1√
2

(

â1 + iâ2

)

, â4 =
1√
2

(

â2 + iâ1

)

. (66)

6.2.1. Single photon input in port 2, (vacuum in 1)

|01, 12〉 = â†2|0〉 −→
1√
2

(

|03, 14〉+ i|13, 04〉
)

.

Indices label different modes. Note, the output state is entangled, although
the input was not.

6.2.2. N photons in port 2, (vacuum in 1)

|01, N2〉 =
1√
N !

(â†2)
N |0〉 −→

N
∑

k=0

ik

√

1

2N

(

N

k

)

|k〉3 |(N − n)〉4.

The photon statistics in ports 3,4 is binominal.
Special case N = 2:

|01, 12〉 −→
1

2
|03, 24〉+

1√
2
|13, 14〉 −

1

2
|23, 04〉.

The probabilty that both photons “go together” after passing the beam-
splitter is (1/2)2 + (1/2)2 = 1/2.

6.2.3. Single photons in ports 1 and 2

|11, 12〉 = â†1â
†
2|0〉 −→

i√
2

(

|03, 24〉+ |23, 04〉
)

.
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Figure 10. The four amplitudes of reflection and transmission of two photons at a 50:50
beam–splitter. Note the destructive interference of b) and c).

The output state is entangled and both photons “go together”, see also
Fig. 10. [N.B.: Entanglement is not a base invariant property.]

6.2.4. α–state in port 2 ( vacuum in 1)

|0〉1|α〉2 −→
∣

∣

∣

iα√
2

〉

3

∣

∣

∣

α√
2

〉

4
.

As expected from classical electrodynamics the incident beam is splitted in
two beams of half of the input intensity and there is a phase shift of π/2.
[Hint: use (49)].
For a coherent state (with a Poissonian photon distribution), a random se-
lection yields again a Poissonian, hence, a coherent state remains a coherent
state after reflection or transmission by a beam splitter, yet with a reduced
value of α. Moreover, the output state is not entangled (product of states
in ports 3 and 4), i.e. the outputs are statistically independent.

6.2.5. Thermal state in port 2 (vacuum in 1)
A thermal state transforms under a beam splitter also in thermal states at
the output ports. This nontrivial result may be conveniently obtained from
the Glauber P–representation (53) and the result of Sect. 6.2.4.

ρ̂in =
(

|0〉〈0|
)

1
⊗ 1

πn̄

∫

e−|α|2/n̄
(

|α〉〈α|
)

2
d2α −→ ρ̂out.

n̄ denotes the mean input photon number. The reduced density operator
for port 4

ρ̂4 = tr3ρ̂out =
∑

n

3〈n|ρ̂out|n〉3

is also a thermal state (60), but with half of the mean photon number
n̄4 = n̄/2. The same holds for ρ̂3. Although the output state of the whole
system is entangled, ρ̂out 6= ρ̂3 ρ̂4, the (intensity) correlations between the
photons in ports 3,4 are not affected. We leave this as problem P2.
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Figure 11. Sketch of the Michelson interferometer (left) and Michelson stellar interfer-
ometer (right). With these instruments the temporal and spatial correlation of the EMF
can be measured independently. According to Bachor[6].

6.3. INTERFEROMETERS

Interferometers are devices to measure the correlation of the EMF between
different space–time points (r1, t1) and (r2, t2) by superposition of the (elec-
trical) fields “on a screen” (rs, ts) by using pinholes/slits, mirrors, beam
splitters and delay lines.

Eint(rs, ts) ∝ E(r1, t1) + E(r2, t2).

The Michelson interferometers – as depicted in Fig. 11 – are particular-
ily well suited to investigate coherence properties as these instruments
separately measure the temporal and spatial dependencies of G1(2, 1).
The (cycle averaged) intensity of light at position of the interferometer
screen can be expressed in terms of the (first order) correlation function
G1(r2, t2; r1, t1)

I(t) ∝ G1(1, 1) +G1(2, 2) + 2ReG1(2, 1), (67)

G1(r2, t2; r1, t1) = 〈Ê(−)
(r2, t2)Ê

(+)
(r1, t1)〉, (68)

where G1(2, 1) is short for G1(r2, t2; r1, t1) etc. It is seen from (67) that the
intensity on the screen consists of three contributions: The first two terms
represent the intensities caused by each of the two path (or “slits”) in the
absence of the other, whereas the third term gives rise to interference effects.
For a symmetric configuration (equal slit width, homogeneous illumination,
G1(1, 1) = G1(2, 2))) the visibility of the fringes is given by the magnitude
of the normalized correlation function g1(1, 2)

V =
Imax − Imin

Imax + Imin
= |g(2, 1)|, (69)

g1(r2, t2; r1, t1) =
G1(r2, t2; r1, t1)

√

G1(1, 1)G1(2, 2)
. (70)
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Figure 12. Real part of the coherence functions G1 as a function of time delay. Left:
two modes with ωj = (1 ± 0.05)ω0 (“Na–D doublet”), right: many uncorrelated modes
with a Gaussian spectrum.

Hence, coherence, i.e. the possibility of interference, of light is a measure
of correlations in the EMF.

6.3.1. Examples for G1

We study two examples for the (first order) classical coherence functions.

a) Single mode (deterministic/stochastic) field.

G1(r2, t2; r1, t1) = |E(0)
k

|2〈|ak,σ|2〉 exp (−i [k(r2 − r1)− ωk(t2 − t1)]) . (71)

Obviously, this correlation function is (apart from the numerical value of
〈|ak,σ|2〉) the same for a deterministic and a stochastic single mode field and
displays maximum contrast for arbitrary space–time separations (unlimited
spatial and temporal coherence).

b) Many statistically independent modes (of equal polarization) and inten-
sity profile I(ω): |E(0)(ωk)|2〈â∗k′,σ′ ak,σ〉 = I(ωk)δk,k′δσ,σ′ .

E(+)(r, t) =
∑

k

E(0)
k
ak,σ e

i(kr−ωkt), (72)

G1(r2, t2; r1, t1) =
∑

k

I(ωk) e
−i[k(r2−r1)−ωk(t2−t1)]. (73)

In particular, we have at the same space point, r2 = r1 = r, (as measured
by a Michelson interferometer)

G1(t2 − t1) = G1(r, t2; r, t1) =

∫ ∞

0
I(ω) eiω(t2−t1)dω

2π
(74)

For examples see Fig. 12.
For Gaussian and Lorentzian line–sources centered at ω0(> 0), we have

I(ω) =











I0 e
−

(ω−ω0)
2

2(∆ω)2 ,

I0
(∆ω)2

(ω−ω0)2+(∆ω)2
,

g1(t) =







e−
(∆ωt)2

2 eiω0t, (a)

e−∆ω|t| eiω0t. (b)
(75)
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Figure 13. (1) Triggered photon cascade experiment to produce single photon states. (2)
Mach–Zehnder Interferometer. (3) Number counts in the outputs of the photodetector
MZ1 and MZ2 as a function of the path difference between the arms of the interferometer.
(One channel corresponds to a variation of δ = λ/50). According to Grangier et al.[34].

Wiener–Khinchine theorem:

− G1(r, t) is the Fourier–transform of the intensity spectrum I(ω).

− Concerning temporal coherence, the filtered many mode field is vir-
tually indistinguishable from the single mode field provided the time
difference is less than the coherence time, t < tcoh ∼ 1/∆ω. The same
reasoning holds for filtering within various directions in k–space by
apertures (spatial coherence).

6.3.2. Historical Remarks
Prior to the invention of the laser, coherent light was made out of “chaotic”
radiation by (wave length) filters and apertures. Here, the visibility in
the Michelson interferometers vanishes (and remains zero!) if the distance
between the arms becomes larger than the (longitudinal) coherence length
lcoh = ctcoh (point like source of spectral width ∆λ) or larger than the
(transversal) coherence diameter dcoh (monochromatic source of angular
diameter ∆θ)

Coherence time: tcoh = 2π
∆ω =

λ2
0

c∆λ

Coherence diameter: dcoh = 2π
∆k = 1.22 λ

∆θ

The numerical factor of 1.22 holds for a circular light source. Note, the
vanishing of the interference pattern is not the result of interference but of
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the shift of individual patterns which are produced independently by each
frequency component or each volume element of an extended source.
Examples:
red Cd–line: λ0 = 643.8nm, ∆λ = 0.0013nm, lcoh = 32cm.
sun: λ0 ∼ 500nm, ∆θ = 32′, dcoh= 66µm.

Since 1985, coherence experiments with genuine single photon states are
possible, see Fig. 13. A single (!) Ca–atom is excited by a two–photon tran-
sition which, subsequently, decays by emitting two photons consecutively
in opposite directions. One photon is used as a trigger, the second photon
enters the Mach–Zehnder interferometer (MZI). Although beam splitters
may change the photon correlations, first order coherence properties are
not affected.

7. Photon Correlations

7.1. THE HANBURY BROWN & TWISS EFFECT

The idea to use intensity correlations (in thermal radiation) instead of field
correlations [e.g. using a Michelson interferometer] dates back to 1949 where
Hanbury Brown and Twiss, two radio astronomers at Jodrell Bank (Great
Britain), were trying to design a radio interferometer which would solve
the intriguing problem of measuring the angular size of the most prominent
radio sources at this time: Cygnus A and Cassiopeia A. If, as some people
thought their angular size is as small as the largest visible stars, then a
global base line would be needed and a coherent superposition of the radio
signals have been impossible in praxis those days.
First, a pilot model was built in 1950 and was tested by measuring the
angular diameter of the sun at 2.4m wavelength, and, subsequently, the
radio sources Cygnus A and Cassiopeia A. The intermediate–frequency
outputs of the two independent superheterodyne receivers were rectified
in square law detectors and bandpass filtered (1 . . . 2.5KHz). Then, the
low frequency (LF) outputs were brought together (by cable, radio link or
telephone) and after analogue multiplication and integration the correlator
output

Gcl
2 (r2, t2; r1, t1) = 〈I(r2, t2) I(r1, t1)〉 (76)

was investigated as a function of antenna separation |r2 − r1|.
For many independent modes, Eq. (76) can be evaluated in the same way

as for G1. As a result, we have (omitting E(0)
k

)

Gcl
2 (r2, t2; r1, t1) =

∑

k

|E(0)
k

|4
(

〈|ak|4〉 − 2〈|ak|2〉
2
)

+

+ |G1(0, 0; 0, 0)|2 + |G1(r2, t2; r1, t1)|2. (77)
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Figure 14. Optical intensity interferometer proposed and built in Australia by Han-
bury Brown[35] to measure the angular diameter of stars. (Today there are much better
methods/instruments available).

Moreover, for thermal radiation (Gaussian statistics) 〈|ak|4〉 = 2〈|ak|2〉2, so
that the first term of Eq. (77) drops out. In all other cases this contribution
is negative so that the “contrast” in G2(2, 1) between adjacent (r2, t2),
(r1, t1) is reduced. For thermal radiation, intensity correlation measure-
ments yield the same information as conventional first order coherence
experiments, e.g. using the Michelson interferometers. This was directly
confirmed by experiment[35].
The optical analogue of the intensity interferometer seemed to be straight-
forward. Instead of two RF receivers, one uses two photodetectors and
a correlator (or coincidence counter) measures the combined absorption of
photons at different space time points (r2, t2) and (r1, t1), see Fig. 14. If one
thinks in terms of photons one must accept that thermal photons at two well
separated detectors are correlated – they tend to “arrive” in pairs (“photon
bunching”). But how, if the photons are emitted at random in a thermal
source, can they appear in pairs at two well separated detectors? First,
there was a strong opposition from theory but eventually, this problem was
settled by experiment which clearly showed photon bunching in thermal
radiation[24, 36]. However, due to the low bandwidth of the electronics and
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Figure 15. Measured photon coincidences in thermal and laser light. Upper panel: (a)
mercury arc (Hg-198) and (b) tungsten lamp[37]. Lower panel: single mode laser light
and chaotic light with ajustable coherence time[39].

low efficiency of the photocathodes the magnitude of the effect was only
about 2% of the theoretical limit.

7.2. QUANTUM THEORY & EXPERIMENTS OF THE HBT EFFECT

In quantum theory, the classical result (77) is replaced by

G2(r2, t2; r1, t1) = 〈Ê(−)(r2, t2)Ê(−)(r1, t1)Ê(+)(r2, t2)Ê(+)(r1, t1)〉. (78)

Here, operators are in the Heisenberg–picture and Ê(+)(r, t) ∝ â exp(−iωt)
denotes the positive frequency part of the electrical field. In contrast to
the classical formulation, the sequence of operators is different from (77),

where I ∝ Ê(−)Ê(+) – creation and destruction operators are in “normal
order” (creation operators left to the destruction operators). Nevertheless,
for thermal radiation, the classical result (77) remains valid.
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Today, the photon bunching effect can be simply demonstrated with an
artificial “chaotic” source which synthesizes pseudothermal light by passing
laser radiation through a rotating ground glass disk (speed v) with long
adjustable coherence times (“Martienssen lamp”)[38], see Fig. 15.
It is instructive to define a coincidence ratio

R =
C − Crand

Crand
=

(∆N)2− < N̂ >

(< N̂ >)2
,

where C = G2(1, 1) =< N̂(N̂ − 1) >. The number of random coincidences

is proportional to Crand = G2(2, 1) =< N̂ >2 when the separation of r2, t2,
r1, t1 is much larger than the coherence area/time.

α–states: (∆N)2 = n̄, R = 0,
thermal states: (∆N)2 = n̄(n̄+ 1), R = 1,
number states: (∆N)2 = 0. R = − 1

n .

Classical states have photon number distributions which are always broader
than a Poissonian, i.e., (∆N)2 ≥ n̄, hence, the correlation ratio is always
positive, R ≥ 0, (“photon bunching”). α states (as generated by an am-
plitude stabilized laser) represent the optimum with respect to low photon
fluctuations.
On the other hand, states which have less photon number fluctuations than
a Poissonian, e.g., the number states, show “antibunching”, i.e., the photons
prefer to “come not too close”. In particular, the single photon state |n = 1〉
is the most nonclassical state one can think of! Obviously, photon bunching
is not “a typical Bose property”.
The generation of nonclassical light (which still showed “photon bunching”)
was first demonstrated in 1977 by Mandel’s group[40] whereas the first clear
evidence for anti–bunching was presented by Diedrich and Walther[41] in
1987, using a single Mg–Ion in a Paul–trap.
As an application of photon correlations we mention the determination
of the diffusion coefficient of protein molecules in aqueous solution, see
Fig. 16. The diffusion constant D controls the Brownian motion which is
characterized by the density–fluctuation autocorrelation function

C(r, t) = 〈δC(r2, t2) δC(r1, t1)〉 = 〈C〉 1

(4πDt)3/2
exp

(

− r2

4Dt

)

.

〈C〉 is the mean concentration and r = |r2 − r1|, t = |t2 − t1|. The light
scattered in a fixed direction picks out the Fourier component q = kin−kout

so that the first and second order coherence functions are

g1(r, t) = C(q, t) e−i(koutr−ωt), C(q, t) = e−Dq2t

g2(r, t) = 1 + f |g1(r, t)|2 = 1 + f e−2Dq2t.
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Figure 16. Left: Second order correlation function of laser light scattered from the
protein bovine serum albumin. Right: effect of changing ph on the diffusion constant
(and hence size of the protein). According to Pike, in Ref.[10].

C(q, t) is the Fourier–transform of C(r, t) and f (0 < f ≤ 1) is a “fudge
factor” which depends on the finite area of the photocathode, finite counting
time – see problem P3.
Today, photon correlation spectroscopy has become a versatile tool for in-
vestigating the spectral dynamics of single molecules which will be treated
in more detail in lectures by Profs. Schwille and Webb during this school.
Ultraweak correlated photon emission phenomena originating from biolog-
ical organisms have been reported from time to time, e.g. see the recent
article by Kobayashi and Inaba[42]. However, these phenomena resemble
the pathological “mitogenic rays” reported by Gurwitsch[43] in 1923 . . .

7.3. TWO PHOTON INTERFERENCE

How to measure the time interval between two photons? Do two differ-
ent photons interfere? For intense laser pulses containing many photons
this problem can be experimentally investigated using nonlinear optics.
For single photons, this question was raised and answered by Mandel and
coworkers more than 20 years ago[44, 45]. An outline of their experiment
is shown in Fig. 17. A coherent beam of UV light with frequency ω0 is
parametrically down converted in a KDP crystal to a “signal” and an
“idler” photon with ω1 + ω2 = ω0. Then, the two photons are directed
by mirrors M1, M2 to pass a beam splitter BS, and the supposed beams
interfere and are directed to detectors D1, D2. Neglecting the band–width
of filters IF1 and IF2, the fields at detectors D1, D1 are (in the notation of
Sect. 6.2.3 1′ = 3, 2′ = 4)
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Figure 17. Interference of two photons as a function beam splitter displacement (time
delay). Upper panel: Sketch of experimental set up; Lower panel: (left) both photons have
the same frequency; (right): different frequencies. According to Mandel et al.[44, 45].

Ê(+)
1′ (t) =

1√
2
â1 e

−iω1(t−τ1) +
i√
2
â2 e

−iω1(t−τ1+δτ),

Ê(+)
2′ (t) =

1√
2
â2 e

−iω2(t−τ1) +
i√
2
â1 e

−iω2(t−τ1+δτ).

τ1 is the propagation time between mirror M1 and detector D1 (or M2, D2).
According to (78) the joint probability of photodetection by D1 at time t
and D2 at t+ τ is

P
(0)
12 (τ) ∝ 〈Ê(−)

1′ (t)Ê(−)
2′ (t+ τ)Ê(+)

2′ (t+ τ)Ê(+)
1′ (t)〉,

∝ 1− cos[(ω2 − ω1)δτ ] ∝ sin2
[

(ω2 − ω1)δτ

2

]

.

(Beware of τ 6= τ1). The rate at which photons are detected in coincidence,
when BS is displaced from its symmetry position by±cδτ displayes a typical
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interference pattern, see Fig. 17. Nevertheless, signal and idler photons have
no definite phase, and are therefore mutually incoherent, in the sense that
the individual signals from D1 and D2 exhibit no oscillatory structure. In
praxis, the spectral distributions of signal and idler photons, band–widths
of filters IF1 and IF2 as well as the resolving time of the detectors (i.e.
integration on τ) must be taken into account which can be lumped into a
coherence factor fc.

P12 ∝ 1− fc cos[(ω1 − ω2)δτ ] , fc = e−(σδτ)2/2.

Parameters:
a) ω1 = ω2 = 2.77× 1015s−1: λ = 680nm, ∆ω = 3× 1013s−1, σ =

√
2∆ω.

b) ω1 6= ω2: mean wave length length λ̄ = 680nm, (ω̄ = 2.77× 1015s−1).
ω1 − ω2 = 1.70 × 1014s−1, σ = 1.85 × 1013s−1. (No spectral overlap of

IF1 and IF2. Coherence time ≈ 100fs.)
It is noteworthy that this interference technique, in principle, allows beating
at optical frequencies |ω2 − ω1| to be detected with photodetectors whose
response times are thousands of times slower. In addition, both photons
may even originate from different sources[46].

Problem P4:
Finally, one may ask the question: is the Hong–Ou–Mandel–effect a quan-
tum effect or can it be understood classically?, i.e. will a “classical” state
|in〉 = |α〉1|α〉2 lead to the same result as for two single photons, |in〉 =
|1〉1|1〉2?

8. Outlook

Probably many of you are disappointed with the rather formal definition of
photons given in Sect. 4.5. However, even Haroche and Raimond’s superb
book[7] Exploring the Quantum is less definitive. Therefore, let the master
himself have the last words:

Die ganzen Jahre bewusster Grübelei haben mich der Antwort der Frage
“Was sind Lichtquanten” nicht näher gebracht. Heute glaubt zwar jeder
Lump, er wisse es, aber er täuscht sich. . .

Literal translation:

All the years of willful pondering have not brought me any closer to the
answer to the question “what are light–quanta”. Today every good–for–
nothing believes he should know it, but he is mistaken. . .

Albert Einstein
In a letter to M. Besso, 1951.
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Solutions to problems

1a) In Coulomb–gauge E = −gradΦ, A = 0. The scalar potential is not quantized,
hence, there are no photons in a static electric field.
1b) A static B field originates from a time independent current source, i.e. f(t) =
f =const in (37) for a single mode (k, σ). Eigenstates of (58) can be found by the
canonical transformation

â = b̂+ f/~ω0 , [b̂, b̂†] = 1 ,

Ĥ = ~ω0â
†â−

(

f â† + f∗ â
)

= ~ω0b̂
†b̂+

|f |2
~ω0

,

N̂ = â†â = b̂†b̂+
( f∗

~ω0
b̂+ hc

)

+

∣

∣

∣

∣

f

~ω0

∣

∣

∣

∣

2

.

The expectation value of N̂ in the ground state, b̂|g〉 = 0, is nonzero:

< N̂ >=

∣

∣

∣

∣

f

~ω0

∣

∣

∣

∣

2

> 0.

Hence, there are photons in a static magnetic field – but they are “virtual” and
cannot “fly away”! [Result should be summed over all contributing modes].

2) Use the number representation of |α〉 and polar “coordinates”, d2α = |α| d|α| dφ.
3) In a quasi–monochromatic approximation the scattered field is

E(+)(r, t) = F (q, t) exp(i[koutr− ωt]),

where F is the scattering amplitude. In Born–approximation

F (q, t) ∼
∫

δC(r′, t) exp(iqr′) d3r′.

G1 follows from (68), C(q, t) is the (spatial) Fourier–transform of C(r, t),

G1(r, t) ∼ C(q, t) exp[−i(koutr− ωt)].

As C(r, t) is a solution of the diffusion equation, C(q, t) = exp(−Dq2t),

∂

∂t
C(r, t) = D∆C(r, t),→ d

dt
C(q, t) = −Dq2C(q, t).

Moreover, diffusion is a gaussian process, hence G2 is obtained from (77). Within
the coherence area, G2 is independent of r.

4) Ê(+)
2′ (t+τ)Ê(+)

1′ (t) leads to operator products â1â2, â
2
1, â

2
2 which, upon operation

on |α〉, can be replaced by α2, see (48). Analogous for 〈α|E(−)
1′ Ê(−)

2′ . Fast oscillating
terms, e.g. cos2[(ω1 + ω2)δτ ], can be replaced by their averages. This leads to an

additional contribution of 1/2 to P
(0)
12 (τ). Hence, the visibility contrast (69) is

reduced to V = 1/2, whereas V = 1 for two single photons in ports 1,2.

Update: Feb. 2012


