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1. Introduction

In experimental physics, communication electronics and other technical
disciplines one is often faced with the challenge of detecting weak signals
s(t) which are buried under noise n(t). Assuming a linear superposition,
the total signal is

f(t) = s(t) + n(t), S/N = 10 log(
Ps

Pn
) dB. (1)

S/N denotes the signal to noise ratio and Ps, Pn, respectively, are the power
of the signal and noise in the bandwidth of the detector. Here, noise is short
for all types of broadband disturbances masking the information which is
contained in s(t).

Depending on the character of the signal the human ear is capable to
extract signals which are 6dB under the noise level. Good quality broadcast
requires at least S/N= +20dB whereas experiments often struggle with
S/N= −40dB or less.

In this article, signals are always understood as (multicomponent) func-
tions of time. Signal processing with respect to spatial variables is the field
of image–processing and pattern–recognition.

The plan of this contribution is twofold. In chapters 2-4, general con-
cepts of signal processing and statistical properties of noise are reviewed,
whereas chapt. 5 gives a selection of examples with sketchy solutions. Chap-
ter 6 contains some closing remarks on Quantum Noise. For general refer-
ences see Refs.[1](a-c). The only book which – to my knowledge – conforms
with the title of this report is an old book by Wainstein and Zubakov[2]
with emphasis on radar signals.

∗ http://www.tkm.uni-karlsruhe.de/personal/baltz/
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Figure 1. Huygens signal received at the Green Bank Telescope (GBT), USA[4](c).

2. Signals

A recent spectacular example of weak signal detection is the direct reception
of the Huygens signal by some very large radio telescopes[3](a,b). Due to an
error in the configuration of the receiver on the Cassini relay the complete
data of the Huygens Doppler wind–experiment during descend on Saturn’s
moon Titan would otherwise be lost[4](a,b). (For some technical details see
the JPL–report[5] and appendix A). Refs.[6](a,b) provide two additional
examples of weak–signal–detection with amateur equipment:
– radio communication via reflections from the moon (power < 1kW),
– detection of a Mars orbiter relay on 437MHz (1W, isotropic radiation).

The natural mathematical basis for the representation and processing
of signals is the complex Fourier–transformation (FT)[7](a),1

FT: f(t) =

∫ ∞

−∞
F (ω) e−iωt dω

2π
, F (ω) =

∫ ∞

−∞
f(t) eiωt dt. (2)

In practice, FT is always performed over finite time– and frequency–intervals.
To remove artefacts from the ends of the time–integration interval a window–
function w(t) is used which smoothly tends to zero near the endpoints. A
convenient window–function is the Hamming–window [7](b)

wH(t) =
1

2

(

1 + cos
πt

T

)

θ(T 2 − t2).

Moreover, a time and frequency dependent windowed-FT can be defined
from which – remarkably – the complete signal f(t) can be reconstructed

F (ω, τ) =

∫ ∞

−∞
f(t′)w(t′ − τ) eiωt′ dt′, (3)

1 Fourier–transformed functions are denoted by capitals, if suitable.
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Figure 2. Screen shot of slow speed telegraphy signals (60s per dot) on 137 kHz
received in north Germany by sliding FT. Upper trace: station WD2XNS (east coast
USA, radiated power ≈ 1 W) sending Morse–Code “xns”. Horizontal axis: time, vertical
axis: frequency (total span ≈ 2 Hz). From Ref.[8](a).
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Figure 3. Discrete Fourier–Transformation.

f(t) =
1

w(0)

∫ ∞

−∞
F (ω, t) e−iωt dω

2π
, (4)

F (ω) =
1

W

∫ ∞

−∞
F (ω, τ) dτ , W =

∫ ∞

−∞
w(τ)dτ. (5)

Fig. 2 diplays an example of a time dependent FT which is used in
amateur radio to detect very weak signals transmitted on 137 kHz across
the Atlantic[8](a-c).

Today, signal processing is mainly numerically done, first by
– Analogue–Digital Conversion (ADC): f(t) → fj = f(tj), tj = j∆t,

where ∆t is the sampling–time and j = 0, 1, . . . , (N − 1).
– Then, FT is performed in discretized form (DFT) for both f(t) and F (ω),

DFT: fj =
N−1
∑

k=0

Fk e−i 2π

N
jk, Fk =

1

N

N−1
∑

j=0

fj ei 2π

N
jk. (6)

Time span: T = N∆t. Frequency resolution: ∆ω = 2π/T , ωk = k∆ω.
– Technically, FT is performed using standard Fast–Fourier routines[9].
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Figure 4. Block diagram of a linear system transforming f(t) into x(t).

fj as well as Fk are periodic functions of j and k (mod N) which may
cause “aliasing problems”, see Fig. 3. Very often, a symmetric form of the
k–periodicity interval with respect to k = 0 is used (as in solid state theory):
|ω| < Ω = π/∆t (Nyquist–rate).

Remarkably, the analogue signal f(t) can be perfectly reconstructed
from the discretized signal fj provided f(t) is band–limited [10].

Bernstein–Theorem:

if: fj = f(j∆t), j = 0, 1, . . . N − 1, and

F (ω) ≡ 0 for |ω| > Ω, Ω = π/∆t,

then: f(t) =
N−1
∑

j=0

fjsinc(Ωt − jπ), sinc(x) =
sin(x)

x
. (∗)

Support of f(t): extends from −∞ to ∞,
derivatives: exist to all orders.

In principle, the Bernstein–result (∗) could be used for Digital–Analogue–

Conversion (DAC). In practice, however, DAC is performed holding f(t) =
fj =const in the time–interval tj ≤ t < tj+1 (”histogram”) with subsequent
smoothening by an analogue low pass filter (RC–circuit).

3. Linear Systems

A linear System (LS) – as sketched in Fig. 3 – is a device which linearly
transforms an input signal f(t) into an output x(t),

Linear System: x(t) =

∫ ∞

−∞
h(t, t′) f(t′) dt′. (7)

h(t, t′) is called the (impulse) Response Function, system–function or just
“filter”. 2

2 f(t), x(t), h(t, t′) may have several components or may be fields.
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Figure 5. Ideal low–pass filter (full lines) and relaxator (dashed/dotted lines).

Basic properties are[1]:

– time–invariance: h(t, t′) = h(t − t′),

– TI+causality: h(t − t′) ≡ 0, t′ > t,

– in ω–space: X(ω) = H(ω)F (ω),

– analyticity: H(ω) analytic function of complex ω for Imω > 0
(time–invariant causal systems).

Examples:

a) unit–system: h(t) = δ(t), H(ω) = 1,

b) delay–line: h(t) = δ(t − T ), H(ω) = eiωT,

c) relaxator: h(t) = e−γt Θ(t), H(ω) =
1

γ − iω
,

d) ideal low–pass: h(t) =
Ω

π
sinc(Ωt), H(ω) = Θ(Ω2 − ω2),

(a) (b) (c)

Figure 6. Mechanical filter Telefunken FE 21 [14 coupled, torsional steel resonators;
conversion of the electric signal into mechanical vibrations and back to an electrical
signal]. (a) H(ω), (b) phase Φ(ω) of H(ω), (c) pulse delay time τ = ∂Φ

∂ω
. From Ref[11].
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Fig. 5 displays the system functions for c) and d). A relaxator acts
as a Low–Pass–Filter (LPF) which can be realized as a RC–circuit (“in-
tegrator”). Example (d) refers to an ideal LPF. As h(t) 6= 0 for t < 0,
such a filter is acausal and can be only realized as a digital filter. Fig. 6
shows the characteristics of a mechanical filter which was used in high–end
commercial and military short–wave reveivers.

Clearly, extraction of weak, but spectrally narrow signals, can be suc-
cessfully done by reducing the bandwidth of the receiver (“filtering”), see
Figs. 1,2.

Today, signal processing is mainly numerically performed by first digi-
tizing the signal by an ADC, FT, filtering, inverse FT, and DAC to back to
the time–domain. Apparently, digital filters may (mathematically) violate
causality.3 Nevertheless, digital filters can be much more powerful than
analogue filters.

4. Noise

4.1. STOCHASTIC DESCRIPTION

There are signals which are so irregular (“erratic”) that only a probabilistic
description is possible. But noise is not always a hindrance of signal detec-
tion, in some cases, the noise itself is the signal, e.g., in the Hanbury–Brown

& Twiss effect [12] or studies on electron kinetics[13].

Basic rules are[14]:

– time average: x(t) = lim
T→∞

1

2T

∫ T

−T
x(t + t′) dt′,

3 Digitizing the analogue signal during time T , data–storage, FT, etc. needs a finite
time so that the analogue output can never appear before the input signal ended.
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Figure 8. a) Poissonian and b) Gaussian–distributions[14](a,b).

– ensemble average: 〈x(t)〉 = lim
N→∞

1

N

N
∑

k=1

xk(t),

– ergodicity (+stat.): 〈x(t)〉 = x(t) (= 0),

– probability dist.: P (x, t) > 0,
∫

P (x, t) dx = 1,

〈xk(t)〉 =

∫

P (x, t)xk dx, k = 0, 1, 2, . . .

– deterministic signal: P (x, t) = δ(x − ξ(t)), ξ(t) prescribed function.

A complete description of a random process x(t) requires the knowledge of
the probability of the whole process, i.e. P [x(t)]. This is equivalent to the
knowledge of P (x; t), joint probability P (x1, x2; t1, t2), etc.

Central limit theorem:
If x is the sum of many independent, random variables then P (x) becomes
a Gaussian (irrespective of the statistics of the individual variables)

PG(x) =
1√
2πσ

e−
(x−x̄)2

2σ , σ = (∆x)2.

Poissonian distribution:
The Poissonian PP(n) is the limiting case (p ¿ 1, n ¿ N) of a Binomial

distribution. The probability that an event characterized by probability p
occurs n times in N trials reads

PB(n) =

(

N

n

)

pn (1 − p)N−n → PP(n) = e−n̄ n̄n

n!
, n̄ = pN.
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4.2. CORRELATION FUNCTIONS

In addition to the probability distribution functions a second set, named
correlation functions will be useful[14](a,b)

Cff(t1, t2) = f(t + t1) f(t + t2) =

∫ ∫

P (f1, f2; t1, t2) f1 f2 df1 df2. (8)

Basic properties are[14]:

– steady state: Cff(t1, t2) = Cff(|t1 − t2|) =

∫

Cff(ω) e−iω(t1−t2) dω

2π
,

– inequality: |Cff(t)| < Cff(t = 0), t = t1 − t2,

– quadratic average: 〈[f(t)]2〉 =
∫

Cff(ω) dω
2π ,

– power spectrum: Cff(ω) = 1
2T |F (ω)|2 > 0,

– white noise: Cff(ω) =const, Cff(t) ∝ δ(t).

Wiener–Khinchine–Th: Cff(ω) =
1

2T
|F (ω)|2 > 0. (9)

F (ω) of a stationary, random process f(t) may not exist. This is circum-
vented by using a time cut–off, i.e. setting f(t) ≡ 0 for |t| > T and
performing the limit T → ∞ at the end.4

Filtering of a random signal:
Filtering f(t) with correlation function Cff(ω) leads to an output signal
with changed correlations

Filtered Noise: Cxx(ω) = |H(ω)|2 Cff(ω). (10)

In particular, filtering of white noise creates correlations of finite duration.
Numerous examples of student experiments on noise and correlation can
be found in the American Journal of Physics, e.g. Refs.[15](a-c).

An example of an apparatus to measure correlations of the electromag-
netic field in the optical region is the Michelson interferometer, see Fig. 9.
For a box–shaped intensity profile of total width ∆ω centered at ω0 > 0,
the complex optical coherence function becomes

G(t2 − t1) = 〈E(−)(t2)E(+)(t1)〉 = I0
∆ω

2
e−iω0(t2−t1) sinc

(

∆ω(t2 − t1)

2

)

.

4 F (ω) implicitely depends on T but |F |2/T is well–defined for T → ∞.
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Figure 9. (a) Principle of a Michelson interferometer to measure the correlations in the
optical electrical field, (b) filtered white noise, (c) coherence function.

E(±)(t) denote the positive/negative frequency components of the optical
electrical field E(t) = E(+)(t) + E(−)(t), see any book on quantum optics or
Ref.[12].

4.3. SHOT NOISE

The thermionic current in a vacuum tube is not a smooth flow of electricity,
but is subject to rapid and irregular fluctuations. These fluctuations, dis-
covered by Schottky[16](a) (1918) and called by him “Schrot–Effekt” (small
shot–effect) are caused by the random emission of (single) electrons from
the cathode and are made manifest by voltage or current fluctuations in
any circuit to which the tube is connected. If each emitted electron reaches
the anode (saturation) within a neglectable transit time, the current will
show–up as delta–spikes with Poissonian statistics (during fixed time), see
Fig. 10(c).

– fluctuating current: I(t) =
∑

k

eδ(t − tk) = Idc + In, Idc = en̄,

– current corr. function: CII(t) = e2(∆n)2 δ(t), (∆n)2 = n̄,

– power spectrum: CII(ω) = n̄e2 = eIdc, (white noise).

A bandwidth of ∆ω contributes to the noise current (a factor 2 arises from
the contributions at ±ω0)

Schottky–Formula: I2
rms = 2eIdc ∆ν, ∆ν = ∆ω/(2π). (11)
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Figure 10. (a) Vacuum tube, (b) vacuum photo–cell, (c) shot noise current.

Example:
Idc = 1mA, ∆ν = 5kHz, ; Irms = 1.3nA, Urms = 13µV (at R = 10kΩ).
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Figure 11. (a) Experimental set–up and (b) measured shot–noise power spectrum. Z(ω)
is the impediance of the RCL circuit. The amplifier consisted of 5 tubes Western Electric
101/102D, RC–coupled with Uout = 3 × 105Uin. Redrawn from Ref.[16](b)

Fig. 11(a) sketches Johnson’s experimental set–up[16](b) to measure
the spectral dependence of the shot–noise from a vacuum tube by using a
LC–resonance circuit, where ω0 = 1/

√
LC and

U2
rms =

∫ ∞

−∞
|Z(ω)|2CII(ω)

dω

2π
=

eIdc

2C2

(

L

R
+ RC

)

.

Note, Urms depends on the loss–resistance R, which had to be determined
from the resonance curve of each LC circuit.

Thermionic emission from oxidized cathodes is more efficient than from
pure metallic cathodes but it is more noisy (“1/f” noise), see Fig.11(b).
In Quantum optics, shot noise is caused by fluctuations of the detected
photons, e.g. in a vacuum photo–cell.
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Figure 12. (a) Brownian motion of a particle in a fluid, (b) L–R circuit.

4.4. THERMAL NOISE (JOHNSON, NYQUIST, 1926)

The mechanism of noise–generation by a resistor at finite temperature T0 is
analogue to the Brownian motion of a heavy particle of mass M immersed
in a fluid. The force of the molecules “pinging” on the Brownian particle
consists of two parts: a frictional force −γ′v and a stochastic force fst

which will be modelled by white noise. Remarkably, both parts are not
independent but related by the dissipation–fluctuation theorem[17](b).

– Brownian motion: Mv̇ = ftotal = −γ′v + fst(t),

– velocity: V (ω) = 1
M

1
γ−iω Fst(ω), γ = γ′/M ,

– correlation function: Cvv(ω) = 1
2T |V (ω)|2 = |H(ω)|2 Cff(ω),

– white noise: Cff(ω) = 1
2T |F (ω)|2 = κ =const,

– equipartion theorem:
M

2
v2(t) =

M

2

∫

Cvv(ω)
dω

2π
=

1

2
kBT0,

– diss.–fluct. theorem: κ = 2kBT0Mγ.

The corresponding result for the LR–circuit is obtained by translating v →
I, M → L, γ → R/L, thus CUU(ω) = 2kBT0R. This leads to the famous

Nyquist–Formula: U2
rms = 4kBT0R ∆ν. (12)

This result can be generalized to an arbitrary impediance by R → Re Z(ω).
Note, the equivalent circuit diagram of a real resistor consists of an ideal
(noise–free) resistor with resistance R and a noise source with correla-
tion function CUU(ω) = 2kBT0R, see Fig. 12(b). Fig. 13 displays Johnsons
original result.
Example:
R = 1MΩ, T0 = 300K, ∆ν = 5kHz, ; Urms ≈ 2.5µV.
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Figure 13. Noise power U2
rms/R generated by a resistor at temperature T0[17](a).

5. Examples of Signal Extraction from Noise

5.1. BOX–CAR INTEGRATOR

The Box–Car Integrator (BCI) improves the S/N ratio by

– gating the detection (time window ∆t),

– averaging over multiple pulses, S/N∼
√

N ,
e.g. N = 104 improves S/N by 20dB.

Beginning with t0 = 0, the “box–car” is shifted gradually to higher
values so that the full signal dependence of the signal is covered, see Fig. 14.
Today, BCI’s are a standard tool in most physics laboratories.

Typical properties of commercially available instruments are

– integration time: ∆t = 2 . . . 15µs,

– number of samplings: N = 1 . . . 10000,

– trigger rate: dc. . . 20kHz.

5.2. LOCK–IN AMPLIFIER

In its most basic form a Lock–In Amplifier (LIA) is an instrument with dual
capability. It can recover signals in the presence of an overwhelming noise
background or, alternatively, it can provide high resolution measurements
of relatively clean signals over several orders of magnitude and frequency.
(Modern instruments even offer more than these two basic functions).
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Figure 15. Principle of a Lock–In amplifier. (BPF/LPF: band–pass/low–pass filter).

The LIA (in common with most ac indicating instruments) provides a dc
output proportional to the ac input signal. In this method, one modulates
(or chops) the input signal at a frequency appreciably above the information
carrying frequency of the signal, amplifies at the modulation–frequency, and
then synchronously demodulates this amplified output in order to recover
the original signal information. The output of this phase sensitive detection

is proportional to

LIA: C(ϕ, T ) =
1

T

∫ T

0
f(t) sin(ωt + ϕ) dt. (13)

T denotes the integration time and ϕ is the relative phase between the
(sinusoidally) modulated signal and the reference. Thus, the LIA operates
as an effective LPF with a bandwidth ≈ 1/T .

Introductory articles about the lock–in technique may be downloaded
from the web–pages of several companies, e.g. Refs. [18](a). In addition,
there are numerous articles published in the American Journal of Physics
about the physics and technique of lock–in laboratory experiments, e.g.
Refs.[18](b-d).
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signal and noise spectra.

Commercially available instruments cover

– frequency range: 1mHz . . . 2MHz . . . ,

– voltage range: 2nV . . . 1V,

– dynamics: 100dB.

An interesting “nostalgic” application can be found in the paper by
Forrester et al.[19] about the detection of beats between two (incoher-
ent) hyperfine transitions from Hg202 with an estimated S/N∼ 3 × 10−5.
The crucial requirement was to maintain the total light intensity on the
photocathode constant within 1 × 10−5 while modulating the beat–signal.
This experiment also demonstrated that any time–delay between photon
absorption and electron release must be significant less than 10−10s.

5.3. WIENER–FILTER

We search for the optimum response function H(ω) of a linear filter which
reproduces the useful (or expected) signal with greatest accuracy for given
statistical properties of the signal and the noise, i.e. optimize H(ω) to
minimize the error between the

– noisy signal f(t) = s(t) + n(t) and the

– expected signal g(t) [=s(t), s(t − T ),. . . ].

If causality restrictions are ignored, minimalization of the quadratic–
error between the filter output x(t) and g(t) in terms of h(t) leads to the
Wiener–Equation[2]

∫ ∞

−∞
h(t − t′)Cff(t

′) dt′ = Cfg(t). (14)

Cff(t) and Cnn(t), respectively, denote the auto–correlation functions of the
signal output and the noise whereas Cfg(t) is the cross–correlation between
signal–output and noise. Eq. 14 is of convolution–type and, thus, can be
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Figure 17. Sketch of an adaptive filter. x0(t) is a “training–signal” to adjust parameters.

solved by FT

H(ω) =
Cfg(ω)

Cff(ω)
−→ Css(ω)

Css(ω) + Cnn(ω)
. (15)

In the final result we assumed that signal and noise are uncorrelated. Fig. 16
sketches two examples.

5.4. ADAPTIVE FILTER

An adaptive filter – as sketched in Fig. 17 – is a filter which self–adjusts
one or several parameters (“λ”) of its response function according to an
optimizing algorithm. (By contrast, the Wiener–filter is a static filter.)

In its simplest form, an adaptive filter is just a switch to select one
of two possibilities. Teletype communication[20] provides a nostalgic ex-
ample: Coding of “start” and “stop” of the 5-bit Baudot–coded letters is
not uniquely determined (which matters when receiving secret, ciphered
messages!). Therefore, a senseless training message was sent first which
contained all letters: “The quick brown fox jumps over the lazy dog”. From
that, the operator found the correct position of the switch.

Some adaptive filters contain servo–motors as for the autofocus of a
photo–camera. Because of the complexity of the problem, most adaptive
filters are digital filters.

5.5. KALMAN–FILTER

The Kalman–Filter (KF) was invented in 1960 by Bucy and Kalman[21](a).

– First used in NASA’s moon–landing navigation systems,

– now: integral part of autopilots, GPS–navigation, weather forecast[21](g). . .

The hart of the KF is a set of recursive equations for the system variables
x(t) which provide a statistical estimate of the state from

– incomplete, noisy measurements (denoted by the M–comp. vector z),

– incomplete knowledge of a modelled system (“system noise”).
[u is the “control”, previously denoted by f ].
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Figure 18. The Kalman–Equations. From Welch & Bishop[21](b).

There are thousands of articles and dozends of books on the KF. From
my point of view, the introductions given in Refs. [21](b-d) are of particular
value to step into the field. We follow Welch and Bishop[21](b).

Process to be estimated:

system: xk = Axk−1 + Buk−1 + wk−1, (k: discrete time),

measurement: zk = Hxk + vk,

noise: w, v denote the system and measurement noise, usually

white Gaussian noise with covariances R(v), Q(w).

Estimates of system variables:

– a priori: x̂−
k , given xk,

– a posteriori: x̂k, given zk.

The Kalman–equation result from the minimalization of the error–squares
of ε−k = xk − x̂−

k and εk = xk − x̂k, see Fig. 18.

Example [Levy[21](e)]: determine the resistance of a given

– resistor: 100Ω, 2% acuracy,

– accuracy of Ohm–meter: ±1Ω.

– System: xk = xk−1, Q = 0, (A = 1),

– measurement: zk = xk + vk, R = (1Ω)2, (H = 1),

– best estimate: x0 = 100Ω, σR = P−
0 = (2Ω)2 (without measurement).

Fig. 19 diplays a simulation of the measurement and its prediction of the
correct value. Although the assumption of a Gaussian resistance–distribution
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Figure 19. Series of measurements of the resistance of a resistor. From Levy[21](e).

is not very realistic, the results indicate that an analysis using statistical
prediction algorithms is much better than simply taking the average of a
series of measurements. Further examples can be found in Refs.[21](d,f,g).

5.6. SPEECH EXTRACTION FROM NOISE

Fig. 20 shows a typical speech signal. A characteristic feature is that the
spectrum of its envelope function lays in the range 0.8 . . . 7Hz. This distin-
guishes speech from many disturbing signals which may have overlapping
power spectra and, therefore, cannot be de–entangled by a Wiener–filter.
Nevertheless, extraction of the speech–component is possible, see Fig. 21
and audio–examples from the web-pages of the manufacturer[22](b).

Applications:
– long distance communication on short wave

[atmospheric noise, crackling . . . ]
– communication between a Formula 1 pilot and his pitch box,

[uproar of engine, other cars,. . . ].
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Figure 20. A typical speech signal. Left: Time dependence, right: power spectrum[22](a).

Figure 21. Extraction of speech (right) from a noisy signal (left). From Ref.[22](b).

5.7. COCKTAIL PARTY PROBLEM

Consider a situation where there are N different signals sj(t) (within the
same bandwidth) which are recorded as linear superpositions xi(t) (yet
with unknown mixing ratios) by M different detectors. How to extract
the sj(t)? This is the field of Independent Component Analysis (ICA) also
termed Blind Source Separation (BSS)[23](a,b).

Typical examples involving many sources and detectors are

– Cocktail–Party-Problem[23](a-c), see Fig. 22,
– separation of radar signals by an array of antennas[23](d),

– analysis of seismic signals[23](e),

– separation of biomagnetic sources, like electro–encephalograms (EEG)[23](f).

A simple situation occurs for two signals s1(t) and s2(t) (i.e. two “speak-
ers”). The mixture of both signals reaches two microphones (i.e. two “ears”
of another person) one wants to separate both sources

xi(t) =
N=2
∑

j=1

Aijsj(t), i = 1 . . .M(= 2).

Humans tackle the problem using the directivity of their ears, the known
character of the voice in question, and their own “built–in personal com-
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Figure 22. The Cocktail–Party problem: What did she say??

Figure 23. Blind source separation of two signals[23](c).

puter”. In contrast to the previous problem of chapts.5.6, several signals of
the same type must be de–entangled.5

A surprising simple and powerful method to the problem can be found
by claiming the statistical independence of the signals[23](a,c), i.e. mini-
mizing the cross correlation between u1(t) and u2(t) in terms of Wij

ui(t) =
N

∑

j=1

Wij xj(t).

The ui(t) represent a statistical estimate of sj(t), see Fig. 23.

5 The mixing matrix A is unknown and possibly singular.
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Figure 24. (a) Particle in a parabolic potential, (b) LC–circuit.

6. Outlook: Quantum Noise

So far, noise was considered as a classical phenomenon. Shot noise from a
vacuum tube (or vacuum photo–cell) stems from the discrete nature of the
charge (or photon–energy) and, therefore, is ubiquitious in all phenomena
detecting single electrons and photons. Johnson–Nyquist noise, on the other
hand, originates from the thermal motion of the charge carriers and, hence,
should classically dissappear in the limit T0 → 0. However, the momentum
(or current–) operator (of an electron) is not a conserved quantity, so that
the current must fluctuate even at T0 = 0K , i.e. in the ground state of the
system. This is called Quantum–Noise.

6.1. NON–DISSIPATIVE SYSTEMS

– Harmonic oscillator: Ĥ =
p̂2

2m
+

1

2
mω2

0 x̂2,

– eigenstates: |n〉, n = 0, 1, 2, . . ., En = (n + 1
2)~ω0,

– x-fluctuations: ∆x =

√

~

2mω0
(1 + 2n),

– LC circuit: x → Q, m → L,

– voltage fluctuations at C: ∆U =
∆Q

C
=

√

~ω0

2C
(1 + 2n),

– thermal equilibrium: n → n̄ =
1

e~ω0/kBT0 − 1
.

Example:
C=10 pF, L=0.25µH, ν0 = ω0/2π = 100MHz.
At T0 = 0 K: ∆Q = 4.5e (1500e), ∆U = ∆Q/C = 70nV (25µV).
Values in parenthesis hold for room temperature T0 = 300K. Note, these
fluctuations are not small, however, they originate from a rather broad
band.
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Figure 25. (a) Voltage fluctuations: (a) at impediance Z, (b) at a RCL circuit.

6.2. DISSIPATIVE QUANTUM SYSTEMS IN EQUILIBRIUM

There is no Hamiltonian of a damped system, hence, the quantum me-
chanical treatment of dissipationis nontrivial and must explicitely include
the degrees of freedom of the heat bath[24](a). Nevertheless, Callen and
Welton[24](b) discovered that in linear response theory the Nyquist-result
(12) can be generalized to all quantum systems in thermal equilibrium
(Quantum Dissipation Fluctuation Theorem, QDFT), see also Ref. [24](c)

QDFT: CUU(ω) = ~ω coth

(

~ω

2kBT0

)

Re Z(ω). (16)

Z(ω) is the impediance (without noise source) at the port of the system
where the voltage fluctuations are considered, see Fig. 25(a). Note, that this
is “blue noise” rather than white noise! For kBT0 À ~ω, Eq. (16) conforms
with (12).

Example: voltage fluctuations at the capacitor of Fig. 25(b):

Urms =

√

ε0
C

, ε0 = kBT, (kBT0 À ~ω0), ε0 =
1

2
~ω0, (kBT0 ¿ ~ω0 ¿ ~/RC).

In the classical limit, kBT0 À ~ω0, Urms is independent of R.

6.3. HOW TO BEAT SHOT NOISE?

The dection of gravitational waves is still one of the most challeging prob-
lems in physics[25](a). The relative accuracy needed for detection is 10−21!
Even at very high light intensities the Poissonian statistics of the detected
Laser–photons may be relevant, see Fig. 26.

The quantum state of an ideal single mode laser is described by so-
called “α–states” (coherent states, Glauber—states). In terms of the photon
number eigenstates |n〉 we have

|α〉 = e−
1
2
|α|2

∞
∑

n=0

αn

√
n!
|n〉. (17)
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Figure 26. Sketch of a Michelson–type gravitational wave detector. From Ref.[25](a).

α = |α|eiφ is a complex number. In such a state the photon–distribution
is a Poissonian with mean n̄ = |α|2. The expectation value of the optical
electrical field is identical with a classical monochromatic plane wave

〈Ê(t)〉 ∝ |α| sin(kr − ωt − φ).

Therefore, the detection of photons is limited by “classical” shot noise. The
number states, on the other hand, do not show photon–noise but they are
extremely nonclassical and not related to sinusoidal waves which are needed
in an interferometer. Nevertheless, there are states with sub–Poissonian
statistics which are “in between” α–states and photon number states[25](b)
or Ref.[12]. Recently, the first successful experiment using squeezed states

has been published demonstrating that photon detection 2.8dB below the
shot noise limit is posssible[25](c).

NB: Spatially noiseless optical amplification of images was recently
demonstrated by a french group[26].
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8. Appendix A

The following Huygens–to–earth radio link parameters have been taken
from Folkner et al.[4](b) to estimate the signal and noise voltages at the
receiver at the Green Bank Telescope (GBT) in West Virginia, USA. The
ultrastable signal at 2.040 GHz was down–converted to 300kHz and sampled
at a rate of 1.25Mhz with 8 bit resolution.

– distance Titan – Earth: d ≈ 8AU, (1AU≈ 150 × 106km),

– Huygens radiation power: P = 10.6W, (3dB beam width: 120degree),

– at GBT receiver: Pin ≈ 2.8 × 10−21W,

Uin = 3.7 × 10−10V, (at R = 50Ω),

– thermal noise: U2
rms = 4 kBT0 R ∆ν, (∆ν = 1Hz, T0 = 30K),

– power–matching: Unoise= Urms/2 ≈ 1.4 × 10−10V,

Pnoise= U2
noise/R = 1.6 × 10−21W.

– estimated S/N ratio: S/N ≈ 8dB.
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