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Introduction

In the last decade, two experimental discoveries of extraordinary significance gave addi-
tional drive to research on disordered systems and Anderson transitions.
First, Novoselov, Geim and co-workers invented the ingeniously simple ”scotch-tape-method”
to produce graphene, a monoatomic layer of graphite [NGM+04]. More than that, they
also immediately recognized the unique conduction properties this exceptional material
displays. Among other stunning phenomena and in contrast to conventional metals, the
minimal conductivity is nearly constant over an extended temperature window from room
temperature down to ∼ 1 K [NGM+05]. These ”groundbreaking experiments”1 convinced
the Nobel committee to award the 2010 Nobel prize to Novoselov and Geim.
Second, new quantum Hall-like phases were observed both in two- and three-dimensional
topological insulators [KWB+07] [HQW+08]. In such phases the matter is insulating in
the interior and, paradoxically, at the same time conducting on the surface. Even more
stupefying, the conducting surface states are extremely well protected against localizing
disorder effects.
How can this happen? Why do these materials not obey Anderson’s paradigm, which
predicts localization as the kinetic energy is small in comparison to the disorder strength
[And58]? And, eventually, which mechanisms suppress conductivity and why don’t they
work in graphene and topological insulators?
The recent experimental findings put these old questions into a modern context: since the
seventies numerous condensed matter physicists have tried to understand disorder driven
Anderson metal-insulator transitions. Many answers have been found, many more ques-
tions have arisen, and recent development shows that this research field still surprises with
fascinating phenomena.

It is the declared goal of the present thesis to supply one tiny, but conceptionally new
piece to the jigsaw puzzle of Anderson transitions. Only a certain family of materials shall
be considered: the bipartite systems which form the chiral symmetry classes. According
to the pioneering works by Gade and Wegner [GW91] [Gad93] and unlike the situation in
usual metals, in the systems in question the conductivity is independent of external pa-
rameters such as temperature2. As a matter of fact, this remarkable property is supported
by numerical tests [MDH02] [BC03], revealing also the appearance of a localized phase.
But how can an insulator emerge, if, according to Gade and Wegner, the conductivity
remains unchanged? The answer to this question is the main result of this work.

Apart from disordered metals, the investigation of chiral random systems is likewise of
relevance for the low energy limit of QCD [VZ93]. In solid state physics, the most natural
and charming realization is graphene. (However, depending on the type of disorder, it can
fall into other symmetry classes as well.) There is also theoretical indication that topo-
logical insulators can exist in chiral classes. Experimental confirmation does not yet exist,

1From the Nobel Foundation announcement.
2This might recall the situation of graphene explained above. Even though the effect is similar, the

theoretical reasons differ strongly.
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4 0. Introduction

but the extraordinary present-day efforts concerning the research on topological insulators
might soon lead to a different result.
Whilst the work at hand provides new insights on how localization occurs in chiral classes,
it also deepens the understanding on protected conducting states, which is more than ever
a vibrant field of research.

Outline

This thesis is made up of four main parts, ”Why?”, ”What:”, ”How:” and ”Hence.”. The
first and the last (introduction and conclusion) are comparably shorter and constitute the
framework for the two main sections in the middle.

The part ”What:” is devoted to the well-established foundations which are necessary to
understand the achievements of this work 3. It consists of three chapters.
The first and longest among them reviews the physics of disordered metals. In the second
chapter, two sorts of phase transitions in two dimensional systems are exposed: Anderson
transitions and Berezinskii-Kosterlitz-Thouless transitions. The closing chapter is dedi-
cated to chiral symmetry classes. Physical realizations are presented and the status quo
of chiral systems is reviewed, the emphasis being on the controversy between Gade and
Wegner’s predictions on the one hand, and intuition and numerical works on the other.

The second main part, ”How:”, is mostly about the work performed within the year of
duration of this project. Technical descriptions as well as explicit calculations are included;
however, longer calculations were moved into the appendix.
In chapter four, the non-linear σ model is derived for Dirac electrons of chiral classes AIII
and CII, for the latter including, in some sense, the Z2-topological term. Chapter five is
about the derivation of the renormalized coupling constants within the background field
formalism. Next to this, the well-known Gade-Wegner RG-equations are reobtained with
this method. In order to exemplify the strength of Gade’s and Wegner’s argument, and
also for the benefit of an exhaustive examination of topological effects in chiral symmetry
classes, the (vanishing) influence of the Wess-Zumino-Novikov-Witten-term and the Z2-
instanton on the conductivity are discussed in chapter six. The last two chapters are
devoted to vortices: Their localizing effect is specifically demonstrated in chapter seven
and the implied metal-insulator transition extensively discussed in chapter eight.

3It is obvious, that the most important readers of a diploma thesis, namely the reviewers, do not need such
an introductory chapter. However, in order to best illustrate the newly acquired knowledge, the work
targets a fictitious reader who is equipped with basic knowledge on (condensed matter) field theory and
geometry. This exactly reflects the situation of the author one year ago.

4



5

Notation

• In order to simplify the reading, the reduced Planck constant as well as the unit of
charge are set to unity ~ = 1 = e. However, whenever a comparison to the observable
conductivity is made, the units are restored.

• i denotes the imaginary unit throughout.

• For the Lie-algebra (denoted by Gothic lower case letters) as well as for the tangent
space of the symmetric spaces, the “mathematical” convention is used, i.e. without
the supplementary imaginary unit. For example, the Lie-algebra u of the unitary
group U consists of antihermitian matrices A.

• If not specified otherwise, Einstein sums over repeated indices are to be understood.

• The following definition of Pauli matrices is employed

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

5
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1. Anderson localization and disorder

1.1 What is Anderson localization?

In 1957, Philip Warren Anderson first realized that a quantum-mechanical particle sub-
jected to a random potential might be localized, if the disorder strength is large enough
[And58]. At first glance, this does not seem surprising: Also a classical particle which
has sufficiently small energy, will be localized in the relatively deep valleys of a disordered
potential landscape. But this is not the interesting point: The striking fact of Anderson’s
discovery is that the theorem predicts localization even where there is none expected clas-
sically. Furthermore, at given disorder strength, there do not exist energies at which both
localized and delocalized states are present1.
Finally, being all states either localized or all states delocalized, Anderson localization is
a quantum-mechanical phenomenon with macroscopic effects. There exist two distinct
phases (insulator and metal) and therefore at some point a phase transition occurs: The
Anderson transition.

1.2 Scaling theory

Only about twenty years after Anderson’s fundamental article a phenomenological scaling
theory of this phase transition was developed. Following the ideas of Thouless and Wegner
the ”Gang of Four” (Abrahams, Anderson, Licciardello and Ramakrishnan) formulated a
one parameter scaling theory for the dimensionless conductance g [AALR79]. Three main
(physical) assumptions were made: First, dlng

dlnL = βd (g (L)) does not explicitly depend
on the system-size L for all values of g, second βd (g) is continuous and monotonously
increasing and third the following asymptotics hold:

g (L) =

{
σLd−2 Ohm’s law for macroscopic transport for large g

gae
−L
ξ Anderson localization for small g

(σ denotes the conductivity, ξ the localization length and Ld the size of the d-dimensional
hypercube.)
From these assumptions Abrahams et al. concluded that the β-function must qualitatively

1Mott’s argument: Imagine the coexistence of the two. Then a small change in the disorder configuration
would cause some extended states to be changed into extended states leaking into the region of a
localized state, mix with it and therefore extend it. In this sense, localized states are not stable against
extended states of the same energy. [Nay04], [AS10]

9



10 1. Anderson localization and disorder

Figure 1.1: β-function for one, two and three dimensions. Original plot by [AALR79]

behave as given in figure (1.1)2. This implies the following consequences: First there is no
metallic state at or below two dimensions. Second for d > 2 there exists a metallic phase
and a metal-insulator-transition (MIT) point, at which the β- function vanishes for finite
conductance g = gc and hence zero minimal conductivity σc = gcL

2−d L→∞−−−−→ 0. Third, at
2 + ε dimension there exists a MIT (at g ∼ 1

ε ).
The ”Gang of Four”-scaling theory was a milestone in the understanding of the Anderson
phase transition. Its importance and implications will be wrapped up when a powerful,
microscopically motivated theory will be introduced in (1.6). Instead, in the following
sections, the focus will be spotted onto the role of very basic properties of the system:
dimensionality and symmetry.

1.3 The role of dimensionality and weak-localization

The fundamental dependence on dimensionality can be understood qualitatively following
arguments by A.I. Larkin and D.E. Khmel’nitskii [LK82]3. They explain the impact on
conductivity in the weak disorder limit as follows:

A B

1

2

Figure 1.2: Two paths joining A to B.

A B

1

2

O

Figure 1.3: Self-intersecting paths with the oppo-
site propagation through the loop.

An electron propagating from point A to point B in a dirty metal might take several dif-
ferent connecting paths. For a quantum-mechanical particle, the total probability for this
propagation has to be calculated taking the sum of the amplitudes Ai corresponding to
different trajectories and squaring afterwards: W = |∑iAi|2 =

∑
i |Ai|2 +

∑
i 6=j AiA

∗
j .

The second term describes the interference of amplitudes belonging to different paths.
The electron-propagation along different paths results in a phase difference of its wave
function; e.g. along paths of the type 1 and 2 in figure (1.2). However, the effect of this

2A negative β function means decreasing conductance with increasing system size (i.e. decreasing temper-
ature) and the converse. The asymptotical positive constant value βd>2|g→∞ correspond to increasing
conductance but constant conductivity.

3...which the author collected from textbooks in English language [Abr88], [Efe97].

10



1.4. The role of symmetries 11

phase difference vanishes as the average over the interference term 〈cos (∆φj −∆φi)〉 is
zero.
Nevertheless, there do exist paths where interference plays a crucial role: these are the
self-intersecting trajectories, depicted in figure (1.3). For each of them there always exists
a second path which is exactly the same up to the fact that the loop is taken the other
way round. Still ∆φ is the same for both and hence W = |A1 + A2|2 = 4|A1|2. This is
twice the classical value!
We see that quantum-interference enhances the impact of self-intersecting trajectories.
Those suppress conductivity as the scattering probability increases4. But how does the
crucial dependence on the dimension arise?
Classically, the probability for self-intersecting trajectories in phase space is zero, because
they are ”infinitesimally thin”. However, quantum-mechanically, they have a finite thick-
ness of order λdeBroglie = ~

p0
. Therefore, the particle going to start its loop at point O in

figure (1.3) ”occupies” a finite volume element ∼ λd−1
dB vdt in the time-interval [0, dt]. In

addition, within a certain time t ∈ [τ, τφ] 5 it might access any point within the volume

(Dt)
d
2 (D is the classical diffusion coefficient). The probability of coming back to the initial

point at time t is the fraction of these two volumes: ∼ vdtλd−1
dB

(Dt)
d
2

.

As the conductivity is decreased by the presence of self-intersecting trajectories, the inter-
ference induced relative correction to conductivity is

∆σ
σ
∼ −

∫ τφ

τ

λd−1
dB vdt

(Dt)
d
2

,

a quantity which diverges for d ≤ 2 as τφ
T→0−−−→ ∞. For d = 3 it depends on the ratio λ

l
and justifies classical treatment for the mean free path l much greater than the deBroglie
wave-length λ.
In conclusion, the critical dimension dc = 2 predicted by the ”Gang of Four”-scaling can be
explained qualitatively by Larkin’s and Khmel’nitskii’s arguments. This is the motivation
for considering a spatial dimension of two (or nearby) within many works on Anderson
localization and within this thesis.

1.4 The role of symmetries

In 1951, Eugene Wigner [Wig51] started to investigate heavy nuclei by their symmetries.
This influenced Freeman Dyson: He developed the Random-Matrix-Theory of Hamiltoni-
ans, a theory which should be applied to nuclei in which ”all shell structure is washed out
and [that] no quantum numbers other than spin an parity remain good” [Dys62].
An electronic disordered system has very little symmetries (at least before averaging over
disorder configurations). In this sense, here as well most quantum numbers are ”washed
out” and a classification analogous to Wigner’s and Dyson’s heavy nuclei is justified.

Time-reversal symmetry

The works concerning atomic nuclei were based on the investigation of time-reversal sym-
metry of the systems. Time reversion is realized by an antiunitary operator T = UK
(U unitary, K denotes complex conjugation) which might square to +1 or −1 depend-
ing on systems with even respectively odd total angular momentum. The transformed

4...as already mentioned in Anderson’s 1958 paper.
5i.e. a time longer than the (impurity-) scattering time τ but shorter than a timescale τφ where inelastic

interaction destroys these arguments based on coherence.
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12 1. Anderson localization and disorder

Hamiltonian is
T : H → UHTU−1.

There is a total of three Wigner-Dyson classes: The time-reversal symmetry is absent,
present and T 2 = 1, or present and T 2 = −1.
As long as one requires the Hamiltonian to be invariant under energy shifts, these three
classes are the only ones. Dropping this constraint one can extend the symmetry classifi-
cation.

Particle-hole symmetry

Another rather illustrative concept of symmetry is charge conjugation (in other words
particle-hole symmetry). As known, in quantum mechanics it is also represented by an
antiunitary operator of the form Q = V K (V unitary)6:

Q : H → −V HTV −1.

Particle hole symmetry again can be absent, present and Q2 = 1, or present and Q2 = −1.

Collecting all combinations of time-reversal and particle-hole symmetry, one eventually
obtains 9 different symmetry classes. However, the combined symmetry has also to be
considered:

Chiral symmetry and the total number of symmetry classes

The chiral symmetry - it can be understood to be the combination of the upper two - is
represented by a unitary operator W

C : H → −WHW−1.

As chiral symmetry can either be present or absent in the absence of the two other sym-
metries, in total ten symmetry classes can be constructed7.
Imposing chiral symmetry to the three Wigner-Dyson classes, three chiral classes are ob-
tained.
Chiral systems have been known for a very long time, as for example the massless Dirac
operator falls into this class. In this case, H anticommutes with the fifth Dirac matrix γ5

and as a consequence all eigenvalues are paired (λ,−λ) or zero. Such Hamiltonians play a
fundamental role in high-energy physics. In the context of disordered electronic systems
chiral systems were first considered by Gade and Wegner in the beginning of the nineties
[GW91], [Gad93].
This thesis shall be about chiral systems, consequently the whole chapter 3 will be devoted
to their importance, realizations and properties.

1.4.1 Classification by symmetries and completeness part I

As explained above, there exist

10 = 3|T 2=0,±1 × 3|Q2=0,±1 + 1|C=1,T=0,Q=0

symmetry classes. Usually, they are grouped into three Wigner-Dyson classes, three chiral
classes and the four other Bogoliubov-deGennes classes. The latter were only discovered
in 1996 by Altland and Zirnbauer for certain superconducting systems [AZ97].
For this historical reason and as this work is mainly about chiral classes, the charge con-
jugation will be expressed by the combination of the two others: Q = C ◦ T .

6The unusual notation Q is used in order to keep C free for ”chiral” and K for complex conjugation.
7This argumentation is taken from [SRFL08].

12



1.4. The role of symmetries 13

Physical arguments for the completeness of classes

The possibility of writing one of the symmetries as the product of the two other ones
is a relict of the absence of further such symmetries: Any combination of symmetries of
the three types exposed above will either commute with the Hamiltonian8 or reproduce a
symmetry falling into one of the three classes.

Mathematical expression of symmetries

In principle, any unitary matrices U,W are equally good to define the action of T , C and
C ◦ T . However certain representations are common and appropriate [EM08]:
For example, for a Wigner-Dyson system with time-reversion invariance and T 2 = 1, U = 1
can be chosen and hence H is symmetric.
In the corresponding class where T 2 = −1, U = iσy is common, then H = σyH

Tσy.
The chiral symmetry is usually realized by means of W = σz, therefore {H,σz} = 0 and
H becomes block off-diagonal.
This way, the Matrix iH becomes an element of the tangent space of a certain symmetric
space (see sec. 1.4.2) and a classification according to Cartan’s table of symmetric spaces
is appropriate. The classification table itself is given on the last page of the appendix.

1.4.2 What are symmetric spaces?

Symmetric spaces are the underlying mathematical concept for the classification of random
matrices and (electronic) disordered systems. Furthermore, the effective field theories
dealt with in the non-linear σ model approach also live on symmetric spaces. Finally,
the topology-driven phenomena in disordered systems (like topological insulators, their
prototype - the quantum Hall state - and the metal-insulator transition described in this
work) rely on the topological properties of symmetric spaces.
Here a brief review is given, based on the lecture notes of a course given by Enrico Leuzinger
[Leu10] and the standard textbook by Sigurdur Helgason [Hel78].

Symmetric spaces from the geometric point of view

A connected Riemannian manifold M, 〈·, ·〉 is called symmetric space, if for all points p ∈M
there exists an isometry sp such that

1. p is fixed under sp (sp (p) = p) and

2. the differential mapping the tangent space TpM onto itself has the property dsp|p =
−id|TpM .

As the operation sp simply reflects all tangent vectors, it is called geodesic reflection: Any
point on a geodesic will be mapped on the corresponding opposite point in the sense of
figure 1.4.2.
It follows, that M is homogeneous with respect to group operations of the isometry group
Iso(M). Accordingly, for any two points on M there is an isometry mapping the one onto
the other: Iso(M) acts transitively on M . This mathematically reflects the equivalence of
all points, which is of physical interest for the manifold of equivalent saddle points (see
the non-linear σ model derivation in chapter 4).

8then diagonalization produces two Hamiltonians of a certain symmetry class

13



14 1. Anderson localization and disorder

p

γ′(0)

γ(t)
sp (γ(t))

dsp|pγ′(0)

sp

dsp|p

Figure 1.4: Geodesic reflection

Symmetric spaces from the group theoretical point of view

The geometric definition of a symmetric space can be brought to a group theoretical lan-
guage:
Let M be a connected symmetric space. Denote the compact subgroup of Iso(M) by
G = Iso◦(M) and pick out some base point x0. Then the symmetric space is diffeomorphic
to G

K
9 where K is the compact stabilizer K = {g ∈ G|g · x0 = x0} 10.

The converse theorem also holds: Let G be a connected Lie Group, and K a compact sub-
group of G11. Then M = G

K is a symmetric space in the above given Riemannian/geometric
sense with respect to any G-invariant Riemannian metric.

Symmetric spaces on the level of Lie-Algebras

Consider G,K as in the paragraph above. Be g, k the corresponding Lie-Algebras and θ a
non-trivial involutive Lie-Algebra automorphism of g, i.e. θ2 = idg

12. θ is usually called
the Cartan-involution. Then

1. k = {X ∈ g|θ (X) = X},
2. p = {X ∈ g|θ (X) = −X},
3. g = k⊕ p (”Cartan decomposition”), and

4. the following ”Cartan-relations” hold: [k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

In particular p is the tangent space T1
G
K .

1.4.3 Classification by symmetric spaces and completeness part II

The connection from the symmetry classification of Hamiltonians to symmetric spaces is
carried out on this Lie-algebraic level: One simply checks in which tangent space p the
Hamiltonian multiplied by the imaginary unit (iH) lies.
The exemplary Hamiltonians given above13 display one of the following symmetries: H =
HT , H = σyH

Tσy or {H,σz} = 0. Therefore iH lies in u(N)
o(N) , u(2N)

sp(2N) or u(p+q)
u(p)×u(q) respec-

tively.

9the quotient group is defined by the equivalence relation g ∼ h :⇔ g · x0 = h · x0 for g, h ∈ G.
10The geodesic reflection is incorporated into an involutive automorphism of G: σ : g 7→ sgs = sgs−1. The

set Fix(σ) of fix points of σ is a closed subgroup of G and Fix◦ (σ) ⊆ K ⊆ Fix (σ).
11Further an involutive map σ ∈ AutG with Fix◦ (σ) ⊆ K ⊆ Fix (σ) has to be assumed. The geodesic

reflection at a given base point x0 = eK is sx0 (gK) = σ (g)K
12namely, θ is the differential map of the Lie Group involution σ, i.e. θ = dσe.
13In paragraph ”Mathematical expression of symmetries”, sec. 1.4.1.
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1.5. Effect of disorder 15

Mathematical arguments for the completeness of symmetry classes

In 1926, a complete classification of symmetric spaces was obtained by Elie Cartan. For the
purpose of random-matrix theory and disordered systems, we will be interested in compact
irreducible symmetric spaces, and the matrix groups have to be of arbitrary matrix size,
i.e. we will not consider exceptional Lie groups (like E8). Under these constraints, there
exists a family of seven coset spaces of Lie groups (symmetric spaces of type I) and further
four symmetric spaces of type II, which are simple, compact and connected Lie groups.
However, within the last four, the orthogonal group in odd dimensions, class B, will not
be taken into account: its physical realization would be a disordered superconductor, but
the matrix size of Bogoliubov-Hamiltonians is even (it is a bilinear form of Nambu spinors
which treat creator and corresponding annihilator within one spinor). Therefore a total of
ten symmetry classes is obtained. This is a strong indication that the number of classes
is complete, any other symmetry class would exceed the Cartan scheme. A rigorous proof
has been given by Heinzner et al. in 2004 [HHZ05].

1.5 Effect of disorder

Unfortunately, for this section it will not be possible to outline how things evolved histori-
cally within a practical brevity. In the mid of the 1970s several authors were influenced by
the analogy of the Anderson metal-insulator transition and thermodynamic phase tran-
sitions, especially magnetic phase transitions and spin-glasses14. Pars pro toto, the con-
tributions by Thouless [Tho75], Aharony and Imry [AI77] and Cardy [Car78] are named.
Note, that the conjecture of a (continuous) phase transition was qualitatively confirmed
by the ”gang of four”-scaling (see 1.2) shortly afterwards.
Much of the following summary is a condensed version of the pedagogic introduction in
[AS10].

1.5.1 Techniques in averaging over disorder

The statistical nature of the impurity potential is often, and as well in this work, encoded
in a spatially fluctuating potential landscape V (x). It is assumed to have zero mean but
non-vanishing second moment〈

V (x)V
(
x′
)〉

=
1

2πντ
δ
(
x− x′

)
. (1.1)

Of course generalizations to this Gaussian white noise situation exist but will not be
considered within this work.

Difficulties and remedies

Imagine one is interested in the quantum expectation value of a an observable O in a
disordered system. In principle one could differentiate the logarithm of the (disorder
potential dependent) generating functional with respect to the conjugated source-field J
and afterwards average over disorder:

〈O〉dis =

〈
− δ

δJ

∣∣
J=0
Z [J ]

Z

〉
dis

.

The evaluation of the disorder average is very problematic inasmuch as the disorder po-
tential also enters the partition function in the denominator. Therefore techniques are
14in section 2.1 Anderson transitions will briefly be reviewed.
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16 1. Anderson localization and disorder

applied, where this denominator does not appear. These are the supersymmetric, Keldysh
and replica methods.
The supersymmetric partition function is constructed such that for a quadratic action S
the determinant of the bilinear form in S appears both in the numerator and in the de-
nominator and cancels up to Z = 1. The trick is that bosonic and fermionic variables are
simultaneously (and supersymmetrically) treated.
In Keldysh technique the partition function is identically one because of the very construc-
tion of the Keldysh contour and the time evolution Operator Û .
Within this thesis replica technique will be used throughout. It is in principle only based
on the following representation of the logarithm:

〈O〉dis =
〈
− δ

δJ

∣∣∣∣
J=0

lnZ
〉
dis

= − δ

δJ

∣∣∣∣
J=0

lim
N→0

1
N

(
eN lnZ − 1

)
= − δ

δJ

∣∣∣∣
J=0

lim
N→0

ZN
N

.

(Z = Z [J ])
All physical quantities are first calculated for an arbitrary replica number N and afterwards
the analytic continuation to N → 0 is made.

Advantages and disadvantages of the different techniques

Probably replica is the most straightforward and mathematically ”easy” approach. Never-
theless, the flaw of the analytic continuation to be carried out is not to be underestimated.
Pioneers of the supersymmetric method, like Efetov, argue that because of this problem
some results, like the level-level correlation function, can only be calculated with the super-
symmetric technique. This one, in contrast, cannot be applied to interacting systems. The
Keldysh technique is very powerful but unnecessarily complicated for the present work.
Even though supersymmetry would have been a good alternative, there are several reasons
for treating the present problem in replica. In particular, Pruisken [Pru87b] [Pru87a] also
used the replica technique in his works on the instanton-driven quantum Hall effect. Even
though not related physically to the present work, it was often a reference and source of
inspiration. Second, it seemed more convenient to handle only compact non-linear sigma
model manifolds. In the supersymmetric treatment, the non-compact counterpart would
also appear in the bosonic sector. This requires a useful parametrization of the σ model
matrix, which is only known for AIII symmetry class. The lack of knowledge of useful
parametrizations for BDI and CII, as well as the fact that each symmetry class should
have been treated separately gave the third and final reason for replica instead of super-
symmetry treatment.

1.5.2 Electronic Green’s function

Consider the following fermionic replicated Matsubara action with a random potential in
the sense of equation (1.1):

S
[
ψ̄, ψ

]
=
∑
n

∫
ddxψ̄an (x)

(
−iωn − ∇

2

2m
− EF − V (x)

)
ψan.

(a-summation is to be understood and refers to replicas a = 1...N .
∑

n is the Matsubara
sum.)

The system considered belongs to the Gaussian orthogonal class.
Now calculate the disorder averaged electron propagator in self-consistent Born approxi-
mation (SCBA) (see figures 1.5 and 1.6):

〈G (p)〉dis =
1

iωn + EF − p2

2m + i
2τ sgn (ωn)

.

16



1.5. Effect of disorder 17

Figure 1.5: Hartree-type diagram Figure 1.6: Fock-type diagram

Dq =

p1, n

p1 + q, n+m

+ + + . . .

p1, n p2, n

p1 + q, n+m p2 + q, n+m

p1, n

p1 + q, n+m

p2, n

p2 + q, n+m

p3, n

p3 + q, n+m

Figure 1.7: Series of diagrams contributing to the density density propagator

(Note that the Hartree-type diagram does not contribute in replica limit. The real part of
the Fock-diagram is incorporated in a redefinition of EF .)
It becomes apparent that the parameter τ−1, which measures the strength of disorder,
is responsible for the damping of the electron propagation. This is analogous to the
fluctuation-dissipation theorem. τ−1 can be identified with the elastic impurity scattering
rate.
The SCBA is valid for weak disorder pF � l−1, where the Fermi momentum is much larger
than the inverse of the mean free path l = vF τ . Therefore diagrams with crossed impurity
lines can be neglected.
Performing the summation over Matsubara frequencies and Fourier transforming back to
real space obtain:

〈G (x,y; τ̃)〉dis = Gclean (x,y; τ̃) e−
|x−y|

2l . (1.2)

(τ̃ is the imaginary time.)
Hence, even in the regime of weak disorder and extended states the electron correlation
function decays exponentially on the scale of the mean free path. Some other modes will
therefore be relevant for long-range correlations: diffusons and cooperons.

1.5.3 Diffusons and cooperons

Diffusive motion governs the relaxation process in a classical disordered system. This is the
motivation to investigate the (quantum mechanical) density-density correlation function
D on its long range behaviour.

Diffusons and Drude conductivity

Differentiating the logarithm of the partition function twice with respect to the source
field µ (x) = µ (x, τ) (a space and imaginary time dependent generalization of the chemical
potential µ ∼ EF ) one obtains D in replica language

D(x) =

〈
−T δ2

δµ (x) δµ (0)

∣∣∣∣
µ(x)=µ

lnZ
〉
dis

= lim
N→0

1
N

〈
ψ̄a (x)ψa (x) ψ̄b (0)ψb (0)

〉
.

Neglecting again crossed impurity lines and assuming x� l the density-density correlation
Dq in momentum space can be represented as the series of ladder diagrams, see figure (1.7).
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18 1. Anderson localization and disorder

Γq = + + + . . .

p, n p, n

p + q, n+mp + q, n+m

p′, n

p′ + q, n+m

Figure 1.8: Diffuson mode: the particle-hole mode

+ ++ . . . + . . .=ΓC
q =

p, np, n p, np, n p′, n p′, n

−p + q, n+m −p + q, n+m −p + q, n+m −p + q, n+m
−p′ + q, n+m −p′ + q, n+m

Figure 1.9: Cooperon mode: the particle-particle mode

Within this diagram an effective vertex Γq arises, it is depicted in figure (1.8). The
calculation of this vertex yields

Γq,m =
1

2πnτ2Ld
1

ωm +Dq2
, (1.3)

(D = vF l
d is the diffusion constant).

As the Fourier transform of (1.3) is proportional to the Green’s function of the diffusion
operator

(
∂τ −D∇2

)
, the corresponding mode is called diffuson. Hence the conjecture of

diffusive motion is verified also for the quantum mechanical case. Furthermore the diffuson
propagator is explicitly long-range and has a Goldstone-like form.
Inserting it into the density-density correlator a result again indicating the diffusive motion
is obtained: Dq = ν Dq2

|ωm|+Dq2 . From this and the continuity equation one can (re-)obtain
the classic Drude conductivity.

Cooperons and Quantum corrections

Further one can consider the next order in 1
pF l

. These are the maximally crossed diagrams,
where the diffuson ladder-vertex (figure (1.8)) entering the density-density correlation (di-
agram (1.7)) is replaced by the vertex ΓCq

15 shown in figure (1.9). For analogy the single
interaction line is included (first term in figure (1.8)), and Matsubara frequencies are as-
sumed to be of opposite sign.
We can turn the lower line around and obtain a ladder (right hand side of diagram (1.9)),
which is the same as diagram (1.8), except for the fact, that the lower momenta have been
inversed. As long as Gp = G−p, i.e. the system is invariant under time reversal symmetry,
the calculation of ΓCq is analogous to Γq and the cooperon mode has the same diffusion
pole structure:

ΓCq,m =
1

2πnτ2Ld
1

|ωm|+Dq2
. (1.4)

Still, if one breaks this symmetry explicitly, for example turning on a magnetic field, the
mode will be exponentially decaying in space: In the denominator q will be replaced by
15In analogy to Cooper-pairs, this mode of two particles with nearly opposite momenta is called cooperon.
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1.6. Non-linear sigma models 19

A BO

Figure 1.10: Redrawing of figure (1.3)
with a diffuson mode

A BO

Figure 1.11: Redrawing of figure (1.3)
with a cooperon mode

q→ (q + 2A), the Goldstone propagator form is destroyed.
For the symmetry class considered (AI), the presence of the Cooperon mode will lead to
weak localization. Note the crucial dependence on the symmetries of the problem. Indeed,
it is known that only this symmetry class lacks a critical conductance in two dimensions
[MEGO10].
The connection to Larkin’s and Khmel’nitskii’s argumentation of weak-localization is easily
made: Replace the electronic Feynman paths depicted in (1.3) by a particle-hole propa-
gator, which turns out to be the long range modes to be considered (see figure (1.10)).
Then, considering the reversed propagation through the loop (1.11), the particle-particle
propagation comes into play and weak localization occurs as predicted by Larkin and
Khmel’nitskii and stated above.

1.6 Non-linear sigma models

Around 1980, the equivalence between the localization problem and non-linear sigma mod-
els (NLσMs) was understood. Starting from a microscopic description in terms of a single-
particle Hamiltonian this effective field theory can directly be derived.
A brief technically summary is as follows: First the replicated partition function is aver-
aged over disorder producing an effective four-fermion vertex. This vertex is decoupled by
a Hubbard-Stratonovich transformation. Then the set of saddle-points corresponding to
self-consistent Born approximation (section 1.5.2) is determined. Onto this set of saddle-
points, which has the structure of a symmetric space, the (quantum-) fields are mapped.
For one of the first historic examples see Hikami [Hik81]. In chapter 4 of this thesis an
explicit derivation for chiral systems is presented.
Physically, the field living on the non-linear sigma model manifoldMσ describes the long
range diffuson and cooperon modes. The two of them being related by time-reversal sym-
metry, it makes sense to describe them by a unified, symmetrized object. Depending on
the symmetries of the system, different soft modes are present, and hence Mσ differs (see
the table of symmetry classes, appendix I).
The sigma model therefore describes the disordered system in its metallic regime, and only
as long as the conductivity is large (or the diffusive modes ”slow”).

1.6.1 An illustrative example

The most illustrative example of a NLσM is a system which is governed by a so called
mexican hat potential. Within a mean-field approach such potentials arise (usually) below
the critical temperature of a certain phase transition. The system spontaneously falling
into a definite ground state out of the (degenerate) ground state manifold causes sponta-
neous symmetry breaking (SSB). By Goldstone’s theorem, massless modes appear which
describe the alteration of the ground state over spatial extension. All this happens within
the ground state manifold, in the present example a circle, see figure (1.12). Furthermore,
also massive modes appear, which describe changes perpendicular to the ground state
manifold. In the NLσM treatment, the massive modes are neglected, as they are strongly
suppressed by energetic reasons, see figure (1.13).
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20 1. Anderson localization and disorder

Physically, this example characterizes superfluid Helium-4 or any other system, where a
spontaneous breaking of global U(1) symmetry appears. (Also s-wave superconductors
exhibit such a potential structure, but here a local symmetry is broken.)

Figure 1.12: Mexican hat potential,
massless and massive
mode.

Figure 1.13: The simplest NLσM mani-
fold: a circle.

If one calls the angle assigning a definite vacuum state φ, the NLσM action describing the
system below the critical temperature is

S [φ] =
∫
ddx

J

2
(∇φ)2 . (1.5)

Already in this simple example, also the role of topology becomes apparent: φ is a Gold-
stone mode and lives on a topologically non-trivial manifold: a circle. One implication of
this fact, namely the Berezinskii-Kosterlitz-Thouless phase transition, is of fundamental
importance for the present work and section 2.2 is devoted to it.

1.6.2 NLσM of disordered metals and renormalization group

In this work, we will be interested in two dimensional disordered metals. The circular
NLσM arising due to SSB and the phase transition in a mean-field theory of superfluidity
can be seen as a conceptional prototype.
For two-dimensional dirty metals, the NLσM looks like

S [Q] =
∫
d2x

1
t
tr
[∇Q∇Q−1

]
. (1.6)

Q is the field describing the low excitation modes and lives on some symmetric space
(appendix I). The prefactor 1

t is proportional to the conductance.

Analogies and differences compared to the illustrative example

In the case of usual phase transitions (e.g. in superfluids or the Heisenberg ferromagnet)
self-consistent average over the interaction term generates an effective mean-field ”poten-
tial”, for example the gap function or the magnetization. By symmetry arguments they are
constrained to certain manifolds and the spontaneous symmetry breaking occurs, when the
system falls into a definite ground state corresponding to a point on this manifold. Smooth
variations of the order parameter, the Goldstone modes, are then described by non-linear
σ models.
For disordered systems the situation is similar: The interaction with the disorder potential
is also self-consistently (SCBA) averaged out, yielding an effective mean-field potential,
namely the Hubbard-Stratonovich field. Analogously, there exists a mechanism of ”sym-
metry breaking”, namely when a saddle-point corresponding to SCBA is determined, as

20



1.6. Non-linear sigma models 21

well as a NLσM treating the fluctuations of the field.
However there are substantial differences: Most prominently the field Q does not play the
role of an order parameter. In the replica limit, a phase of vanishing Q does not exist.
This is due to the symmetry being broken both in the phase of extended and in the phase
of localized states, as shall be explained below.
To this end consider the Goldstone propagator 1

Dp2+iδ
16. Both for usual phase transitions

and Anderson transitions, it is a manifestation of long-range correlations and there is no
mass gap as the order parameter is responsive to infinitesimal perturbations of the order
parameter. The propagator is divergent for p→ 0 as δ → 0. For usual phase transitions,
there is a phase of restored symmetry, yielding a mass term and hence the divergence
is cured. However, for Anderson transitions this is not the case: at the transition from
extended to localized states, the diffusion propagator changes from the Goldstone like

form to 1
δ e
− ‖x−x′‖

ξ , which is divergent in δ → 0 for any momentum (or real-space dis-
tance). In this sense, the spectrum is gapless in the localized regime as well, even though
no long-wavelength excitations exist. This is, even though in an unconvential manner, a
manifestation of Goldstone’s theorem, which predicts this gapless spectrum as the sym-
metry is broken.17

The renormalization group

Now, in order to obtain information on the Anderson transition, perturbative renormal-
ization group (RG) treatment is performed with the NLσM. Explicit examples are given
below for chiral classes. There, an extra term appears during the RG procedure: the ”Gade
term” , see sec. 3.3.1.
The idea of RG is to collect the ”fast” modes together, average them out, and incorpo-
rate the effect into slightly changed dynamics of the remaining ”slow” fields. In this step
approximations are made, and only the simplest of an infinite series of Feynman graphs
might be kept. The division between ”fast” and ”slow” is somehow arbitrary, and hence in
a next step, the faster part of the ”slow” fields will be integrated out again and so fourth.
Qualitatively, averaging ”fast” modes (i.e. fluctuations with higher energy) out, reflects
the lowering of temperature. Stated differently, we will experimentally be interested only
in the very long-distance (∼ sample size) behaviour of the diffusive modes, and therefore
integrate out stepwise their small-scale fluctuations.

RG treatment of disorder NLσM’s

If the scale-dependent corrections to the inverse conductivity t are calculated to one loop
order, one will obtain a gradually lowered (”weak localization”), unchanged, or enhanced
(”weak anti-localization”) conductivity. There are also classes, the chiral classes, in which
the β-function vanishes to all orders in perturbation theory. All this depends on the sym-
metry class, and for all of them the one loop correction is given in the table in appendix I.
When the β-function is always negative (weak localization), there exists only the insulat-
ing state; the result exposed in section 1.5.3 is reproduced this way. On the contrary a
positive β-function (weak anti-localization) in the perturbative regime (large conductivity)
indicates the presence of a metallic phase. However, in most of the cases there is a localized
phase for strong disorder and therefore also a transition point at which β (g) = 0.
The presence of weak anti-localization is physically related to the destructive interference

16Retarded and advanced Green’s functions are defined GR,A (r, r′) =
“
E − Ĥ ± δ

”−1

r,r′
. Then the diffusion

propagator in the delocalized regime has the indicated Goldstone form.
17In order to describe Anderson transitions and the qualitative change of the Green’s function in terms

of spontaneous symmetry breaking, Zirnbauer [Zir86] first introduced the order parameter function
F (Q) =

R
Q6=Q(x0)

DQe−SNLσM .
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22 1. Anderson localization and disorder

of time-reversed paths for particles with spin 1
2 .

As a side remark, it should be mentioned that often the RG approach is taken slightly
above the lower critical dimension dc = 2 in order to study the transition point at g ∼ 1

ε
(i.e. in the perturbative regime). In contrast, in the present work only two dimensional
systems will be investigated.

1.7 Role of topology and connection to symmetries

In the sections above, the presence of both metallic and insulating phases, and conse-
quently the presence of critical points was exposed for some of the ten symmetry classes.
In all cases discussed, the appearance of a critical point was associated to the symmetries
of the systems: weak anti-localization appears in fermionic systems (half-integer angular
momentum) with time-reversion invariance, whereas the criticality in chiral systems ex-
plicitly depends on the chiral symmetry of the system (for a straightforward argument on
the NLσM-level, see section 3.3.1). Here, it will be presented how within certain symmetry
classes other mechanisms for criticality can emerge: those related to topology.
Topological terms arise often in the context of Dirac fermions. In this section, the possible
appearance of topological terms is motivated from non-trivial homotopy groups. In section
3.2, the definitive emergence of certain topological terms is exposed for Dirac fermions (e.g.
in graphene or topological insulators).

1.7.1 Topology of the σ-model and topological excitations

In the illustrative example of a NLσM (see sec. 1.6.1) arising in a mean-field theory, an
interesting and relevant feature is already given: its non-trivial topology. Mathematically,
the statement is that the first homotopy group of U(1) is Z.

Field theories and compactified base-manifold

The Q-fields map the physical space to the NLσM model manifold Mσ:

Q : Rd →Mσ.

However, in order to keep the action finite, a constraint has to be imposed on Q: namely
Q (x)|‖x‖→∞ = const.. Therefore, the more precise mapping is

Q : Rd ∪ {∞} ' Sd →Mσ,

where ' denotes the homeomorphism, realized through stereographic projection.

Homotopy group

With the help of the homotopy group topologically different field configurations can be
distinguished in a mathematically clean way:
Consider two field configurations Qi : Sd → Mσ where i = 1, 2. Then an equivalence
relation can be defined:

Q1 ∼ Q2 :⇔ ∃Q̂ : Sd × [0, 1]→Mσ , Q̂ continuous,
such that Q̂ (x, 0) = Q1 (x) and Q̂ (x, 1) = Q2 (x) .

This simply states that two field configurations can continuously deformed one into the
other. The set of equivalence classes forms the d-th homotopy group πd (Mσ).
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1.7. Role of topology and connection to symmetries 23

Figure 1.14: An O(3)-skyrmion as a prototype for instantons in disorder NLσMs

Non-trivial topology of σ-model manifolds

The homotopy groups of the Cartan symmetric spaces are well studied in mathematics
and given in the table in appendix I. For the present work, the first, second and third
homotopy group will be of interest.
Non-trivial topological properties can also be directly deduced from the Hamiltonians, as
shown by Kitaev [Kit09]18. In the past years, the most important interest when considering
topological properties of disordered systems has been a classification scheme of topological
insulators (see sec. 3.1.2). Both using Kitaev’s and the σ-model homotopy group table,
the same classification scheme can be obtained.
If one of the homotopy groups πn, n ≤ d, is non-trivial, then topological excitations, such
as vortices or instantons (like in figure (1.14)), can appear. They always come along with
a certain energy cost but on the other hand raise the entropy, as changing their position
or orientation does not cost any further energy.
In many cases, the effect of the non-trivial homotopy group can be expressed via a locally
defined topological term added to the action. Still, there not being a canonical recipe for
constructing topological terms, in the present work we also encounter a case where such a
topological term is not yet known.

In the remainder of this chapter, topological terms for two dimensional NLσMs will be
exposed.

1.7.2 θ-terms

Three out of ten classes of disordered electronic two dimensional systems have a π2 (Mσ) =
Z. For all of them the first homotopy group is trivial. They have broken time-reversal
symmetry in common and differ in the presence or absence of particle-hole symmetry. The
most prominent example among them, and maybe of all sigma models with a topological
term, is Pruisken’s action describing the integer quantum Hall effect (class A):

S [Q] =
1
8

∫
d2xσxxtr [∇Q∇Q]− σxyεµνtr [Q∇µQ∇νQ] .

The second term is the θ-term which counts how many times the mapping Q : S2 →
U(2N)

U(N)×U(N) covers the subgroup U(2)
U(1)×U(1) ' S2.

The two other classes where a similar action occurs are C (spin quantum Hall effect) and
D (thermal quantum Hall effect).

18Again, the homotopy groups are not obtained from the ”direct” Hamiltonian symmetric space but from
the symmetric space associated to ”reduced Hamiltonians”. They are obtained by replacing all eigenval-
ues by their sign and keeping the eigenvectors at the same time. An idea of how to deduce topological
properties on Hamiltonian level is also given in sec. 3.1.2 based on Schnyder et al. [SRFL08].
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24 1. Anderson localization and disorder

Figure 1.15: Extension of the base manifold to the lower (left) respectively upper (right)
hemisphere. In the picture the physical space is a 1-sphere representing a 2-
sphere, and the extension a 2-hemisphere representing the 3-hemisphere. The
physical space is the boundary of the hemisphere, here depicted by a black
line.

1.7.3 Wess-Zumino-Novikov-Witten terms

For the ”principal chiral models”, i.e. two-dimensional σ-models defined on a Lie group
U(N),O(N) or Sp(2N), the second homotopy group is trivial but π3 (Mσ) = Z. This
allows for a Wess-Zumino-Novikov-Witten term (also WZW term). In the case of U(N) it
is

iSWZ =
ik

12π

∫
d2x

∫ 1

0
dsεµνλtr

(
Q−1∂µQ

) (
Q−1∂νQ

) (
Q−1∂λQ

)
. (1.7)

In order to write the WZW term in a manifestly invariant form, the field Q : S2 → U(N)
has to be extended to

Q : S2 × [0, 1]→ U(N) such that Q (x, 0) = 1;Q (x, 1) = Q (x) .

This is topologically equivalent to the base manifold being extended from a 2-sphere to a 3-
hemisphere of which the the 2 -sphere is the boundary (see figure (1.15), left). π2 (Mσ) = 0
is a necessary condition.
One could also imagine extensions in the other direction, i.e.

Q : S2 × [1, 2]→ U(N) s.th. Q (x, 1) = Q (x) ;Q (x, 2) = 1,

and the base manifold is extended to the upper 3-hemisphere (see figure (1.15), right).
In that case the WZW term (1.7) acquires an extra minus sign, as the orientation of the
manifold is inversed.
The way of extending the base manifold does not matter,

iS
s∈[0,1]
WZ − iSs∈[1,2]

WZ =
ik

12π

∫
S3

d2xdsεµνλtr
(
Q−1∂µQ

) (
Q−1∂νQ

) (
Q−1∂λQ

)
= i2πk.

In this integral Q : S3 → U(N), see figure (1.16). The (integer) WZW-level k counts, how
many times the SU(2) subgroup of U(N) is covered. This topological nature of the WZW
term explains the stability of iSWZ against different kinds of extensions.
It is important to stress that the WZW term itself is not quantized. Imagine a mapping
of winding number k = 1. Then the integral in (1.7) measures the volume of the image
of the lower (”blue”) hemisphere on U(N). It varies smoothly depending on the mapping
and is not quantized. Only the sum of the ”blue” and the ”red” image gives an integer
value, in this case k = 1. This will be of fundamental importance for the argumentation
concerning the appearance of the Z2-topological term in class CII (sec. 4.5).

”Local” representation of the WZW term

There also exist another representation of the WZW term for which the Q-field is not
extended. In order to understand its appearance, some notions from differential geometry
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1.7. Role of topology and connection to symmetries 25

Figure 1.16: The mapping Q : S3 → S3 ⊂ U(N). The WZW-level k is the winding number
of this mapping.

are used.
For any non-Abelian, simple group G (the target space) there exists a 3-form ω which is
invariant under group rotations, closed (dω = 0) and locally exact ω = dλ (λ is hence a
2-form). Further let Q̃ be the field on the extended base manifold B and Q̃∗ denote the
pullback of differential forms19. Using the commutativity of exterior derivative with the
pullback and Stokes’ theorem20

iSWZ := i2πk
∫
B
Q̃∗ω = i2πk

∫
B
Q̃∗dλ = i2πk

∫
B
d
(
Q̃∗λ

)
= i2πk

∫
∂B=S2

Q∗λ.

With the help of coordinates φi on the target manifold, the formula is represented in a
less abstract way

iSWZ = i2πk
∫
d2xεµνλij (φ (x)) ∂µφi∂νφj . (1.8)

(λij = λ
(

∂
∂φi

, ∂
∂φj

)
is the coordinate representation of λ.)

It is of central importance to remark that the local21 condition ω = dλ allows only for the
local representation (1.8) (therefore the coordinate dependence).
A global22 rotation of the Q-fields produces the following correction to λij [Wit84]

λij → λij +
∂βj
∂φi
− ∂βi
∂φj

. (1.9)

(The β (φ) incorporate this rotation and are not explicitly space dependent (only φ is).)
The WZW term is corrected as well

δiSWZ = i2πk
∫
d2xεµν

(
∂βj
∂φi
− ∂βi
∂φj

)
∂µφ

i∂νφ
j = i4πk

∫
d2x∂µ

(
εµνβj∂νφ

j
)
. (1.10)

As the base manifold is compactified to a sphere, the integral vanishes and the WZW-model
is invariant under group operations also in its ”local” representation.

When do WZW terms occur?

WZW terms appear in the context of non-Abelian bosonization of massless Dirac-fermions
[Wit84]. If the fermionic theory displays chiral anomaly23, then the effect of the anomaly
on the sigma model will be the WZW term.

19The pullback is defined
“
Q̃∗ (ω)

”
v = ω

“
dQ̃ (v)

”
for any v ∈ VB.

20The first equals sign denotes the abstract definition of the WZW term. The normalization of ω is chosen
such that the integral over upper and lower extension yields integer values.

21Local in the sense of the target manifold.
22Here global in the sense of the base manifold: The rotation is x-independent.
23 i.e. chiral symmetry is present in the classical action and equations of motion, but anomalously broken

within (quantum-)perturbation theory
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26 1. Anderson localization and disorder

In solid state physics, the presence or absence of the chiral anomaly and the WZW depend
on the underlying microscopic theory. For example, graphene with vacancies and a random
vector potential falls into class AIII without WZW term, whereas the σ-model of graphene
with dislocations and a random vector potential (also AIII) will include a WZW term
[MEGO10].
More details can be found in section 3.2.

1.7.4 Z2-topological terms

Z2-topological terms arise for spin-1
2 -particles with spin-orbit coupling and preserved time-

reversal symmetry, and are related to Kramer’s degeneracy (see also section 3.1.2). This is
the case for the classes CII and AII. The following topological term is added to the action:

iStop = iπN [Q] , N [Q] = 0, 1.

A local notion of this Z2-topological term is yet not known. However, for class CII, its
appearance can be understood from the microscopic theory as a descendant of the AIII
WZW term, see sec. 4.5. Some conjectures for its effect will be given as well in sections
6.2 and 7.5.
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2. Some phase transitions in 2D

2.1 Anderson transitions

The mobility edge

Consider a weakly disordered metal, where the band structure is still present1. Then, due
to their low kinetic energy, states at the bottom and top of the band will be localized.
Conversely, states in the middle of the band are extended. It has already been stressed
that extended and localized states cannot coexist at a certain energy and disorder strength
(section 1.1). Consequently, a sharp energy Ec, called ”mobility edge”, will separate the
localized from extended states in a certain band. As the Fermi energy is moved over the
mobility edge, the phase transition occurs.

Critical exponents

The observables which exhibit a non-trivial behaviour nearby the Anderson transition are
most importantly the localization length ξ on the insulating side and the DC-conductivity
σ on the metallic side. The critical exponents will determine their scaling behaviour.
Let τ be the perturbation which most relevantly drives the system through the transition2.
It scales as τ → τb

1
ν and changes sign at the transition from positive (extended) to negative

(localized). Then the correlation length diverges as

ξ ∝ |τ |−ν ∼ |E − Ec|−ν .
1This section is adapted from [Nay04]
2τ = const.× (E − Ec) for a system homogeneous in energy.

ρ (E)

E

localized

extended

mobility edge
Ec

Figure 2.1: Graphical representation of mobility edge (adapted from [Nay04])
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28 2. Some phase transitions in 2D

The scaling equation of the DC-conductivity is

σ (τ) = b2−d σ
(
τb

1
ν

)
.

From this Wegner [Weg76] first obtained the critical exponent for the vanishing conduc-
tivity

σ ∝ τν(d−2) ∼ (E − Ec)ν(d−2) , τ > 0.

The critical exponent ν can be expressed in terms of the β-function, which has been
calculated, e.g., in perturbative RG of the NLσM (see section 1.6.2). The value for the
Gaussian orthogonal class is for instance [Weg89]

ν = − 1
β′ (t∗)

=
1

d− 2
− 9

4
ζ (3) (d− 2)2 + . . . . (2.1)

All this makes the Anderson transition look very similar to usual (SSB) phase transitions.
We have a diverging correlation length, well defined critical exponents and the absence of
a phase transition in two or less dimensions. However, the Anderson transition is different
from usual thermodynamic phase transitions: The conductivity is the only thermodynamic
quantity which changes, and only the propagator of the effective modes changes its form
(the electronic propagator decays on both sides exponentially) [Nay04] [AI77]. In section
1.6.2 the impact on the different nature of the corresponding NLσM has already been
discussed.

2.2 Berezinskii-Kosterlitz-Thouless phase transition

It is well-established that in two dimensions or less, no long-range ordered phase can occur
(Mermin, Wagner, [MW66]). However, in the beginning of the seventies, Berezinskii
[Ber70] and Kosterlitz and Thouless [KT73] established a theory which could explain
two-dimensional phases of quasi-long range order.

A model with topological excitations

Let us consider again the simplest σ model stressed above, eq. (1.5), where the field φ
is defined modulus 2π. J is often called spin-stiffness3. Its physical meaning varies in
different systems, and is in many cases proportional to the inverse temperature.
If φ was living on a topologically trivial manifold, the theory would be Gaussian and no
renormalization could occur. However, as eiφ ∈ S1, topological defects are allowed: Vor-
tices, see figure (2.2), left.
Within the vortex core the σ-model description breaks down4: the mathematical singular-
ity is regularized by some high core energy replacing the φ-field description. This energy
is incorporated into the statistical weight y0 � 1. Each vortex carries this weight, which
is often called fugacity.
In principle and for completeness, vortices of any integer winding number have to be consid-
ered. However, it turns out that for the phase transition to be discussed below, those with
winding number ni = ±1 are the most relevant. All other kinds of vortices will be dropped.

3This terminology is due to the fact that (1.5) can be understood as the continuous version of the xy-
model.

4A more precise technical description of what is going to follow will be given in 7.3, when the effect of
vortices in the context of diffusive NLσMs is described.
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2.2. Berezinskii-Kosterlitz-Thouless phase transition 29

Two distinct phases

What happens if one inserts N vortices into the action 1.5? Expressed in formulae, a
vortex is a configuration where ∂µφ = rotµniln

‖x−xi‖
γ−1 (γ−1 is the vortex core size)5. The

contribution of the harmonic excitations, which decouple from the topological channel,
will be neglected. Then the action of an overall neutral6 N -vortex gas is

SN = −2πJninj
∑
i<j

ln
‖xi − xj‖
γ−1

.

As long as J is large (low temperature), the vortices are strongly bound in tiny dipoles
‖xi − xj‖ & γ−1. However, when J becomes small (high temperature), the dipole size
might grow until, eventually, a plasma of charged isolated vortices is present.
A quantitative description of this phase transition follows.

RG from the low temperature side

In the present work the direct RG-calculation starting from the low-temperature phase is
performed7. As mentioned above, here the vortices form a dilute gas of dipoles. The RG
consists in integrating out the fastest (i.e. closest) dipole-pair ‖xi−xj‖ ∈

[
γ−1,m−1

]
and

adding its effect into the renormalized stiffness J ′ and fugacity y′.
The corresponding RG-equations are well-established [JKKN77] and at the same time a
special case of the calculations exposed in appendix H and sec. 7.3.4. For these reasons,
only the result is given here:

− dJ

dlnm
= −y2J2,

− dy

dlnm
= (2− πJ) y.

(a prefactor of π2

γ2 has been incorporated into the definition of the fugacity.
At Jc = 2

π the β-function of the fugacity changes sign and vortices start to proliferate.

In the vicinity of Jc the flow goes along hyperbolae y =
√

π
4 (2− πJ)2 + const. and a

schematic plot is given in figure (2.2), right. The shaded region corresponds to the low-
energy phase, where eventually, the fugacity vanishes and the stiffness assumes a finite
value. The non-shaded region on the contrary, corresponds, to the high-temperature phase,
where vanishing stiffness and large fugacity produce the vortex plasma8.

Correlations and (absent) critical exponents

Above it is stressed that the phase transition distinguishes a phase of dipoles from a vortex
plasma. However, this is rather abstract and one may ask, how more direct physical
observables are affected. Is the low-temperature phase governed by long-range order,
analogously to phase transitions in higher dimensions?
The Mermin-Wagner theorem rules long-range correlations out. Still, quasi-long-range
correlations between elements of U(1) can easily be shown:

〈
eiφ(x)eiφ(0)

〉
≈
(
γ−1

‖x‖
) 1

2πJeff

. (2.2)

5The connection to the definition via a contour integral is given in sec. 7.2.
6Without imposing neutrality, a surface term diverging as lnL arises.
7One can also map the U(1)-problem onto a sine-Gordon model, the result being unchanged. The sine-

Gordon-treatment might seem more rigorous, but is by far harder to generalize to the U(N)- NLσM of
disordered systems.

8Note that the system flows towards a region where assuming small y is not anymore justified.
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30 2. Some phase transitions in 2D

2 - ΠJ

y

Figure 2.2: Left: A vortex in the field eiφ. Center: The gradient field ∇φ visualizing the
attractive vortex-antivortex interaction. Right: RG-flow in the vicinity of the
critical (transition) point.

On the other side of the separatrix, in the high temperature phase, the correlations decay
exponentially and the correlation length ξ can be defined as follows: Consider the system
to be slightly above the transition point, i.e. in terms of temperature at T − Tc and at
small y0. Then, the ξ is defined as the length scale, at which the fugacity has grown to
y ∼ 1 under RG. It diverges as

ξ ∝ eC
q

Tc
T−Tc ,

as it approaches Tc. Below, ξ =∞ for the whole low temperature phase, as expected from
the line of fixed points representing this phase.
From the scaling of ξ and the underlying RG-equations it is also evident that it is not pos-
sible to define the critical exponent associated to the correlation length (the same holds
also for other exponents).
All this makes the Kosterlitz-Thouless-transition very peculiar and different from the stan-
dard phase transitions. It might be applied to different physical systems, such as two
dimensional crystals, Josephson junction arrays, neutral superfluids9 or the xy-model of
interacting spin-systems.
The metal-insulator transition discovered in this work relies on a similar mechanism as the
BKT-transition even though the implied critical behaviour differs (most likely) substan-
tially. A discussion of analogies and differences is given in section 8.2.6.

9Note, that by Mermin-Wagner, there is no SSB in two dimensions and hence no superfluid and no U(1)-
σ-model to start with. However, we assume small superfluid regions in the normal liquid, so the phase
of the condensate function is defined locally.The discussion of the interaction of the phases of these
flakes brings us back to the discussion above and the U(1)-σ-model.
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3. Chiral classes and Dirac fermions

3.1 Physical realizations

3.1.1 Gade’s original sublattice model

The first microscopic Hamiltonian describing a disordered chiral system was proposed by
Renate Gade in 1993 [Gad93]. In full analogy to Anderson’s original work, she considered
a tight-binding model, but with an internal degree of freedom at each site (effective spin).
Regular spin-flipping hopping is allowed between the sites whereas on the sites random
spin-flipping occurs, see figure (3.1). The tight-binding Hamiltonian is manifestly invariant
under chiral symmetry:

H =
∑
〈ij〉

(
c+
↑ c+

↓

)
i

(
0 t
t 0

)(
c↑
c↓

)
j

+
∑
i

(
c+
↑ c+

↓

)
i

(
0 δti
δt∗i 0

)(
c↑
c↓

)
i

.

Instead of realizing the two sublattices as two different spin-orientations, any other bipar-
tite lattice with symmetry-preserving randomness is equally chiral.
All this seems like an academic exercise, but there are indeed physical realizations of such
a kind. The most prominent example of a bipartite lattice is graphene, see section 3.1.3.

δt δt δt δt δt δt δt δt

t t t t t t t

Figure 3.1: Gades original sublattice model: regular spin-flipping next neighbour hopping
t and random on-site spin-flipping δt.
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32 3. Chiral classes and Dirac fermions

3.1.2 Topological Insulators

Topological insulators are one of the most active research areas in present-day solid state
physics. Their bulk state is an insulator (gapped band structure) but in contrast to usual
insulators this state is topologically non-trivial. The consequence are surface states which
are stable against disorder.
The first known topological insulator was the quantum Hall state discovered by von Klit-
zing et al. in 1980 [KDP80]. The quantized σxy-plateaus arise in different topological
phases between which at the steps a phase transition occurs.

Topology, Bloch’s Theorem and connection to NLσM classification

Such topological phases can be explained using Bloch’s theorem, as first stated by Thouless
et al. [TKNdN82]. For example for the quantum Hall effect (Cartan class A) this works
as follows [SRFL08]:
Assume the presence of (discrete) translational invariance 1, then for each reciprocal vector
k there is a Bloch state |uâ (k)〉 with energy Eâ (k). Assume m (i.e. Eâ (k) < E0) filled
and n (Eâ (k) > E0) empty Bloch states, where E0 lies in the bulk gap. Define the m+ n
matrix

QBloch =
∑
â,filled

|uâ (k)〉〈uâ (k) | −
∑

â,empty

|uâ (k)〉〈uâ (k) |.

This matrix is involutive, unitary and invariant under U(m) ( U(n) ) rotation of the filled
(empty) states. Hence QBloch ∈ U(m+n)

U(m)×U(n) and the Bloch states preserving the energy gap
span a topologically non-trivial manifold! Its second homotopy group is Z which explains
the appearance of topologically distinct ground states labeled by an integer k. (Recall that
for the fermionic NLσM in class A QNLσM ∈ U(2N)

U(N)×U(N) .)

Gapless edge-states

At the interface between a topological insulator and an ordinary insulator (such as vacuum)
the topological constant has to continuously change from an integer k to 0. But due to its
very topological nature this is impossible: You cannot continuously undo such a ”knot”tied
in the manifold of Bloch states. Therefore, the only possibility is to broaden the manifold
by closing the energy gap at the interface. The surface modes living in this region are
gapless, in the case of 2D topological insulators chiral (i.e. one way propagating) and have
a Dirac-particle like dispersion relation for 3D topological insulators (see figure (3.2) ).
As their appearance relies on the topological necessity of closing the gap they are robust
against disorder (”topologically protected”).

Classification and relation to chiral classes

The classification of topological insulators is very similar to the table of random Hamil-
tonians, appendix I. As stated in 1.7.1 the possible presence of topological insulators can
equivalently be deduced from the homotopy groups of the reduced Hamiltonian spaces and
NLσM-manifolds respectively. In the latter case the assignment is2

d-dimensional TI of type
{

Z
Z2

}
⇔
{

πd (Mσ) = Z
πd−1 (Mσ) = Z2

}
. (3.1)

The full classification is given in table 3.1. In particular, the chiral symplectic NLσM
with a Z2 - topological term describes the surface states of a possible three dimensional

1Translational invariance in the presence of a vector potential can be achieved assuming rational numbers
of flux quanta per unit cell.

2NLσMs with a WZW-term or a Z2 topological term can guarantee “non-localizable” boundary states,
hence the connection.
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3.1. Physical realizations 33

Figure 3.2: Experimental observation of the Dirac-like dispersion relation in the group of
M.Z.Hasan [HK10].

Symmetry class 1D TI 2D TI 3D TI
AI 0 0 0

BDI Z 0 0
BD Z2 Z 0
DIII Z2 Z2 Z
AII 0 Z2 Z2

CII Z 0 Z2

C 0 Z 0
CI 0 0 Z
A 0 Z 0

AIII Z 0 Z

Table 3.1: Table of one-, two- and three-dimensional topological insulators.

topological insulator of class CII. Unfortunately such a topological insulator has not yet
been realized experimentally.
All of the three chiral classes are Z topological insulators in one dimension. It is the very
same topological property, that will be responsible for the metal-insulator transition in
two dimensions.

3.1.3 Graphene

One of the most important experimental discoveries in the last decade was, without any
doubt, graphene, first isolated by Noveselov, Geim, et al. in 2004 [NGM+04].
Graphene is a single layer of graphite. The sp2-hybridized carbon atoms form a hexagonal
lattice and their pz-orbitals, oriented vertically to the lattice, allow for electronic mobility
as they weakly overlap.
Graphene has fascinatingly good conduction properties and shows manifestations of the
quantum Hall effect. This being of main interest for applications, graphene’s beautiful
theoretical description motivates also theorists’ interest on it. These and more reasons
convinced the Nobel prize committee to assign Novoselov and Geim the 2010 Nobel prize.

Tight-binding model and Dirac electrons

Graphene can be described by a tight-binding approach allowing next-neighbour hopping
on a hexagonal lattice, see figure (3.3), left. The spectrum of such a tight-binding model
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34 3. Chiral classes and Dirac fermions

Figure 3.3: The hexagonal lattice of graphene and its spectrum.

Disorder Class Criticality
Vacancies, strong potential impurities BDI Gade
Vacancies and random magnetic field AIII Gade
σ3τ1,2-disorder CII Gade
Dislocations CI WZW
Dislocations and random magnetic field AIII WZW
Ripples, random magnetic field 2 × AIII WZW
Charged impurities 2 × AII θ = π
Random Dirac mass 2 × D θ = π
Charged impurities and random magnetic field 2 × A θ = π

Table 3.2: Types of disorder in graphene which lead to critical behaviour. Adapted from
[MEGO10].

is plotted next to it. On account of the sublattice structure of the honeycomb lattice, the
model is manifestly chiral similarly to Gade’s Hamiltonian in sec. 3.1.1. Furthermore, the
band structure of graphene includes two very peculiar points (K,K ′) per Brillouin zone, at
which the conduction and valence band touch each other. In the vicinity of these points,
the effective low energy Hamiltonian has Dirac-like form

H = v0τ3σ · k. (3.2)

(τ3 is the third Pauli-matrix living in the K − K ′-space and σ = (σ1, σ2) the first and
second Pauli matrix in the sublattice space.)

Symmetries of disorder in graphene

Depending on the type of disorder, all different symmetry classes can be obtained. Os-
trovsky, Gornyi and Mirlin classified all possible kinds of disorder by symmetries of the
clean Hamiltonian (3.2) [OGM06],[OGM07],[MEGO10]. All cases in which disorder leads
to criticality are summarized in table (3.2). In particular, the shaded rows correspond
to classes which are potentially relevant for the present work, as their NLσM allows for
Z-vortices. Differently stated, if the disorder in graphene is realized in one of these ways,
the Anderson transition can occur as worked out within this diploma thesis.
The complete classification of 2D Dirac Hamiltonians reveals a subdivision of some of the
ten Altland-Zirnbauer classes (Bernard and LeClair [BL02]). Why this is so and what the
consequences are will be stated in the next section.
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3.2. Dirac fermions and relation to topology 35

3.2 Dirac fermions and relation to topology

Graphene and topological insulators substantially differ from the Gade model: They come
along with Dirac fermions (and hence a linear dispersion relation). In this section it will
be reviewed, how Dirac fermions evoke topological phenomena in the NLσM.
As stated, Bernard and LeClair [BL02] classified all two-dimensional Dirac Hamiltoni-
ans with disorder potential and found a finer categorization than known within the usual
Altland-Zirnbauer scheme. To be specific, each of the classes corresponding to the principle
chiral models (AIII, DIII and CI) splits up. The authors conjectured that their classifica-
tion scheme might distinguish systems whose NLσMs include the WZW term from those
which do not.
If a WZW term is present in the NLσM of classes AIII and CI, there is an attractive fixed
point at which σ = σclean = 4

π
e2

h (see sec. 6.1 and rows 3 to 5 of table (3.2)). This fixed
point corresponds to the case, when the disorder in the underlying fermionic theory is of
a certain type and therefore the theory exactly solvable. Ostrovsky, Gornyi and Mirlin
[OGM06] showed how this occurs:
Consider a disordered system, the free theory being governed by the Hamiltonian (3.2),
and the disorder preserving the H = −σ3Hσ3-symmetry. Further, because of the Dirac-
structure of the Hamiltonian, the current operator follow σ3jx = −jxσ3 = ijy. Then, the
Kubo formula for conductivity can be rewritten as

σxx = − 1
π

∑
α=x,y

∫
d2
(
r − r′) tr

[
jαGR

(
0; r, r′

)
jαGR

(
0; r′, r

)]
∝ δ2

δAαδAα

∣∣∣∣
A=0

Z [A] ∝ δ

δAα

∣∣∣∣
A=0

∫
trjαGR [A] .

The right-hand side is proportional to the second derivative of the partition function with
respect to a constant vector potential A. As the partition function is gauge invariant, it
should be independent of such a constant vector potential and σxx = 0. However, this
argument does not hold for the clean conductivity bubble:

∫
d2ktrjαGcleanR (k) is ultra-

violet divergent, and a definite regularization scheme will bring the gauge-independence
argument to collapse. For this reason, σ = σclean.
The outlined mechanism, which is responsible for the exactly solvable fermionic theory,
is called chiral anomaly: The classical action is both chiral and gauge-invariant, but the
quantized theory is not: Whichever regularization scheme one choses, either one preserves
only chiral or only gauge symmetry3.
Dirac fermions allow also for further topological phenomena. Systems which are described
by a single-flavour Dirac Hamiltonian always display critical phenomena [MEGO10]. They
occur in graphene, in which the disorder does not mix different valleys (long-range dis-
order). Both WZW-criticality as well as criticality corresponding to a θ = π-topological
term might appear. A more detailed review exceeds the purpose of this section, however,
all cases of single-flavour Dirac fermions are listed in the last four rows of table (3.2).

3.3 The status quo of 2D chiral systems

3.3.1 Gade-Wegner criticality

The NLσM for chiral symmetry classes was first intensively studied by Renate Gade and
Franz Wegner [GW91], [Gad93]. It has the following form

S [Q] =
∫
d2x

[ σ
8π
tr
[∇Q−1∇Q]− c

8π
{
trQ−1∇Q}2

]
. (3.3)

3...or none of the two, but this is not a convenient choice.
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36 3. Chiral classes and Dirac fermions

(Q ∈


U(N)
U(2N)/Sp(2N)
U(N)/O(N)

for classes


AIII
BDI
CII

respectively.)

As stated above, in classes AIII and CII a WZW term respectively Z2-topological term
might be added.
The first term in the action (3.3) is the kinetic term. σ = π

2σphys. for class AIII and
σ = π

4σphys. for classes BDI and CII. σphys. is the physical conductivity in units of the
inverse Klitzing constant e2

h , its bare value is the Drude conductivity (see also chapter 4).
The second term, the ”Gade term”, appears only in the chiral classes, because the NLσM
manifolds allow for traceful generators. Even though it usually does not appear in the di-
rect NLσM derivation, it is generated within renormalization. The physical interpretation
of the prefactor is not apparent, however, both the density of states and the scaling of the
localization length depend on it 4.

Vanishing β function in perturbative RG: Gade’s and Wegner’s argument

Another pecularity of chiral systems is the absence of conductivity corrections in pertur-

bative RG. Rewrite Q in (3.3) as Q = e
i φ√

tr1U (U is an element of the special submanifold
of NLσM manifold and detQ = eiφ). As a functional of U and φ the action is

S [U, φ] =
∫
d2x

[
σ

8π
tr
[∇U−1∇U]+

(
σ + tr1c

8π

)
(∇φ)2

]
. (3.4)

(tr1 = N for classes AIII and CII and tr1 = 2N for BDI.)
Hence the theory is Gaussian in the phase φ and its prefactor is not renormalized.

d

dlnL
(σ + tr1c) = 0.

Using this and assuming non-singular β-functions βσ and βc in replica limit, it follows that
the conductivity corrections vanish in every order of perturbation theory:

dσ
dlnL = βσ (N) = −tr1βc (N) → 0,
dc
dlnL = βc (N) → βc (0) <∞.

Hence, for any σ the system is critical: this is called the critical Gade phase.

3.3.2 Intuitive expectation of a phase transition

Wegner’s argumentation and the Gade-Wegner criticality can be applied among others to
graphene with vacancies (class BDI, see table (3.2)). Imagine a tight-binding model of
graphene on the honeycomb lattice, from which sites are gradually removed, fig. (3.4). It
is intuitive to expect two distinct phases: one in which only few vacancies occur (weak
disorder, finite conductivity) and another one, where the disorder is strong, many sites
removed and the conductivity zero. In between, a phase transition takes place. Numerical
works (see section below) indicate that this transition is not the classical percolation
transition but the Anderson transition. Gade-Wegner theory does not describe this phase
transition.

4Due to the absence of conductivity corrections in chiral classes, the density of states and scaling of the
localization length are calculated examining the crossover to usual Wigner-Dyson classes.
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Figure 3.4: The hexagonal lattice of graphene with vacancies.

Figure 3.5: (a) The dimerized brickwall lattice. (b) The phase diagram of the system,
δc ≈ 1.432. [MDH02]

3.3.3 Numerical works

Dimerization driving the system away from criticality

In the beginning of the last decade, Motrunich et al. [MDH02] examined chiral models
with staggered hopping strength and demonstrated the appearance of a localized phase,
in addition to confirming Gade’s critical phase. 5

One of the systems considered is the brick wall (honeycomb) lattice, where the random
nearest neighbour hopping amplitudes are uniformly distributed in [0, Je] . According to
the background dimer pattern, some bonds (thick lines) are different (typically stronger)
to others, see fig. (3.5). Here, this is realized taking Je = eδ for the thick bonds and
Je = 1 for all others. In particular it is argued that such a dimerized situation is a good
description for the strong disorder limit.
The system is investigated using the transfer matrix analysis on a strip of width N . The

inverse of the smallest, positive Lyapunov exponent of the random matrix product defines
the largest localization length ξmax (N). Two qualitative distinct phases can be observed:

• ξmax (N) increases linearly with increasing N . This critical behaviour corresponds
to the critical Gade-phase.

• ξmax (N →∞) saturates. This corresponds to the localized phase.

Motrunich et al. find that for weak dimerization δ < δc = 1.432 the system remains in the
critical Gade-phase 6, whereas for larger δ > δc the states are localized.

5There are chiral lattice models, such as the π-flux model and the honeycomb-lattice model with non-
negative bonds, which allow for a direct mapping onto the random dimer model on the same lattice.

6For the purpose of better distinction, Motrunich et al. call the critical phase ”delocalized”.
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38 3. Chiral classes and Dirac fermions

Two phases in chiral network models

Marc Bocquet and John Chalker investigated chiral network models [BC03]. A brief re-
view of their results concerning symmetry class AIII follows.
The AIII network model is constructed connecting two copies of the U(1) (class A) network
model on their links in the following sense:

z

z′

z1 z3

z2 z4

z′ = eiφ
(
cosh (b) sinh (b)
sinh (b) cosh (b)

)
z

(
z3

z2

)
= 12 ⊗

(
cos (α) −sin (α)
sin (α) cos (α)

)(
z1

z4

)

Figure 3.6: Units of Bocquet’s and Chalker’s chiral network model.

Without mixing (b = 0) the two complex valued components of z describe the usual link
amplitudes of two decoupled U(1)-network models.
Randomness is incorporated in the link-depending mixing variable bl and into the inde-
pendently random phase φl. b is Gaussian distributed with zero mean and variance g. The
latter is parametrized by γ in the following way: sin (γ) = tanh

√
g.

The localization length ξM is again defined as the inverse of the smallest positive Lyapunov
exponent. It was numerically calculated in a quasi one-dimensional system of fixed length
L and given width M , node parameter α ∈ [0, π4 ) and disorder strength γ ∈ [0, π2 ] .
Again the two phases are distinguished analyzing the M -dependence of the ratio ξM

M . If
it approaches a constant value for increasing M , the system is in the critical phase. If the
ratio decreases, the states are localized. The phase diagram, fig. 3.7 (right), distinguishes

Figure 3.7: Left: ξM
M at α = π

4 as a function of γ. Also for very small γ the critical phase
can be observed. Middle: ξM

M at α = 7π
32 as a function of γ. The critical phase

appears only at higher γ. Right: Phase diagram of the AIII network model in
the (α, γ) plane [BC03].

these two phases. The line γ = 0 corresponds to the two decoupled U(1) submodels, in
which the states are localized in the given range of α. In the region of small γ the localized
phase can be understood as to be a relic from the A → AIII crossover. However, it is a
remarkable result, that for any finite variance g <∞⇔ γ < π

2 a localized phase seems to
exist. Note that this is well in the quantum regime and that in this model a percolation
transition cannot take place. This phase was not described in Gade’s and Wegner’s NLσM
approach.
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3.3.4 Controversy

The results exposed in sec.s 3.3.1 - 3.3.3 suggest partly controversial behaviour:

• On the one hand, Gade’s and Wegner’s argument rules out any kind of conductiv-
ity corrections. Within the NLσM approach, there is no evidence suggesting the
existence of an insulating phase.

• On the other hand, numerical simulations do predict the existence of a localized
phase. This is also what one intuitively expects.

It is the aim of the present work, to resolve this apparent controversy.
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How:

41





4. Derivation of chiral NLσMs and
appearance of the Z2-topological term

In this chapter the non-linear sigma model for Dirac electrons will be derived. The
classes to be considered are the chiral (AIII) and chiral symplectic (CII). Furthermore
the crossover between the two is investigated and it will be explained, how within this
crossover the WZW term in class AIII mutates to the Z2-term in class CII.

4.1 Dirac Hamiltonian of classes CII and AIII

The CII -Hamiltonian has to be invariant under the following transformations:

chiral symmetry C : H → −U−1HU (U unitary),
time reversal T : H → V −1H∗V T 2 = −1 (V unitary),
charge conjugation C ◦ T : H → −U−1

(
V −1H∗V

)
U CT 2 = −1 (U, V from above).

For AIII the latter two symmetries are absent. Following standard convention, U = σz is
chosen. The presence of time reversal and particle hole symmetry require the Hamiltonian
to have a definite structure in a further subspace 1. This substructure is determined by the
matrix V , which in turn is constrained by the above symmetry operations. One possible
choice is V = 1σ ⊗ τy. Then,

H =


0 0 p− +A V
0 0 −V ∗ −p+ +A∗

p+ +A† −V T 0 0
V † −p− +AT 0 0

 . (4.1)

(The potentials A, V incorporate the randomness, and an abbreviated notation for mo-
mentum operators is used: p± := px ± ipy.)
H is diagonal in the space of the N replicas, whereas the disorder potentials mix the n
fermionic flavours2. In contrast to usual Wigner-Dyson ensembles, in chiral classes it is
not necessary to keep the advanced/retarded subspace: The Green’s functions are related
by chiral symmetry:

GA = −σzGRσz.
1U is diagonal in this subspace.
2In a minimal model of only one type of fermions, A and V are simple complex numbers, but in a more

general (n > 1) situation they are matrix-valued.
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44 4. Derivation of chiral NLσMs and appearance of the Z2-topological term

Connection to Cartan’s symmetric space

Invariance under T requires τy (iH)+(iH)T τy = 0⇔ iH ∈ sp (4nN). Furthermore, chiral
symmetry divides out the block diagonal generators (sp (2nN)× sp (2nN)) and therefore

iH ∈ sp (4nN)
sp (2nN)× sp (2nN)

.

Fermionic action and crossover to AIII

Conveniently introducing the 8nN Grassmann-fields 3 allows to rewrite the zero-energy
action as

SCII ≡ S = −
∫
d2x

(
Ψ̄T
I1 ΨT

I1 −Ψ̄T
II2 −ΨT

II2

)
H


ΨI2

−Ψ̄I2

−ΨII1

Ψ̄II1


= −

∫
d2x

(
Ψ̄T
I ΨT

I

)( V −p− −A
−p+ +A∗ V ∗

)(
Ψ̄II

ΨII

)
. (4.2)

In this step both manifest chirality and hermiticity were lost. Expression (4.2) will however
be the starting point for the whole NLσM derivation.
Furthermore the crossover to AIII symmetry class is easily performed. Set V = 0, then

SAIII = SV=0 = −
∫
d2x Ψ̄T

(
0 −p− −A

−p+ −A† 0

)
Ψ. (4.3)

This is the usual AIII-action for Dirac fermions subjected to a random vector potential
(more precisely two copies of it, as A = A⊗1τ in contrast to the usual case). Both chirality
and hermiticity are restored.

Rotation of fermionic fields

SCII and SAIII are invariant under the following global rotations of Grassmann-fields :

CII:


Ψ →

(
U 0
0 U−T

)
Ψ,

Ψ̄ →
(
U 0
0 U−T

)
Ψ̄,

AIII:


Ψ →

(
U 0
0 W

)
Ψ,

Ψ̄ →
(
W−T 0

0 U−T

)
Ψ̄,

with U,W ∈ GL (2N) . (4.4)

Hence, the presence of the random potential V forces W = U−T .

3The following notation is used: ΨT =
`
ΨT
I ,Ψ

T
II

´
=
`
ΨT
I,1,Ψ

T
I,2,Ψ

T
II,1,Ψ

T
II,2

´
and equivalently for Ψ̄T .

Roman indices I ,II refer to the σ-space, Arabic numbers 1,2 to the τ -subspace of e.g. ΨI .
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4.1. Dirac Hamiltonian of classes CII and AIII 45

Randomness of potentials, SCBA and Drude conductivity

Gaussian white-noise statistics for each of the entries A, V of the quaternionic random
potential is assumed:

〈A〉 = 〈A∗〉 = 〈V 〉 = 〈V ∗〉 = 0,

〈A†αβ (r)Vγδ
(
r′
)〉 = 〈Aαβ (r)V †γδ

(
r′
)〉 = 〈Aαβ (r)Vγδ

(
r′
)〉 = 0,

〈Aαβ (r)A†γδ
(
r′
)〉 = 〈Aαβ (r)A∗δγ

(
r′
)〉 =

πα

n
δαδδβγδ

(
r− r′

)
,

〈Vαβ (r)V †γδ
(
r′
)〉 = 〈Vαβ (r)V ∗δγ

(
r′
)〉 =

πβ

n
δαδδβγδ

(
r− r′

)
.

(4.5)

(Greek indices (α = 1, ..., n) are used for flavour and 〈...〉 denotes average in disorder.)
The crossover from CII to AIII, being performed as V → 0, is equivalently taken as β → 0.
Consequently, soft modes which are connected via V -impurity lines disappear.

Self-consistent Born approximation

Self-consistent Born approximation (recall diagram (1.6) in sec. 1.5.2) leads to the follow-
ing integral:

1 = π (α+ β)
∫

d2p

(2π)2

1
p2 + γ2

(4.6)

.=
α+ β

2
ln

(
Λ
γ

)
⇔ γ = Λe

− 1
α+β

2 .

(Λ is the ultraviolet energy cut-off.)
For weak disorder, the imaginary self-energy γ is proportional to the scattering rate, i.e.
to the inverse mean-free path.

Drude conductivity

The zero-temperature Kubo-formula for DC-conductivity is

σxx = − 1
2π

∫
(dp) tr

(
ĵx
[GR (p)− GA (p)

])2
,

and equivalently for σyy. ĵµ := δS
δAµ

is the current operator (and Aµ is the vector potential
introduced by minimal substitution).
The Drude conductivity is obtained calculating σxx = σyy = σ on SCBA-level:

σ = − 1
2π

∫
(dp)

∑
τ,σ,flavour

−4γ2

p2 + γ2

=
2n
π2
. (4.7)

In the present system of units the elementary charge is set e = 1 as well as the reduced
Planck’s constant ~ = 1. Restoring them yields the extra factor e2

~ in (4.7). Then, in units
of the inverse Klitzing constant

σ =
4n
π

e2

h
. (4.8)

For n = 1 the Hamiltonian (4.1) is a 4× 4 matrix, describing Graphene for a certain kind
of disorder (2 (spin) × 2 (valleys) = 4). In this case σ = 4

π
e2

h
4.

4This is in accordance to experiment and the theoretical works [OGM06] exposed in sec. 3.2.
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46 4. Derivation of chiral NLσMs and appearance of the Z2-topological term

4.2 Effective action and Hubbard-Stratonovich transforma-
tion

The potential part in (4.2) can be rewritten as

Sdis =
∫
d2x trσ,flavour

(
V −p− −A

−p+ +A∗ V ∗

)
M, (4.9)

where M =
∑

τ,replica

(
Ψ̄II

ΨII

)(
Ψ̄T
I ΨT

I

)
.

Average over disorder gives the effective four-point interaction

S(4) = −π
n

∫
d2x β trσ,fl. M11M

T
22 − α trσ,fl. M21M

T
12

= −π
n

∫
d2x β trτ,replica VWT + α trτ,replica VW (4.10)

with Vab :=
∑

flavour ΨII,aΨ̄II,b and Wab := −∑flavour ΨI,aΨ̄I,b.
These last matrices are decoupled with four real Hubbard-Stratonovich matrix-fieldsR1,2, S1,2 ∈
R2N×2N . It is convenient to use the definitions

Q±1 = S1 ± iR1, Q+
2 = ST2 + iRT2 ,

Q−2 = S2 − iR2.

Then the action, being quadratic in both Hubbard-Stratonovich fields and Grassmann
fields allows to integrate out the fermions:

SHS =
∫
d2x

nγ2

πβ
tr Q+

1 Q
−
1
T +

nγ2

πα
tr Q+

2 Q
−
2

S(2) =
∫
d2x Ψ̄T

(
iγ
(
Q+

1 +Q+
2

)
p−

p+ iγ
(
Q−1 +Q−2

) ) Ψ

→ −n
∫
d2x tr ln

(
iγ
(
Q+

1 +Q+
2

)
p−

p+ iγ
(
Q−1 +Q−2

) ) . (4.11)

Within the total action S = SHS + S(2) the crossover from CII to AIII can be seen
analogously to the fermionic actions (4.2) and (4.3). Sending the disorder potential V → 0
implies sending its disorder strength β → 0. Then the ”mass” nγ2

πβ of the fields Q±1 becomes
infinite and their effect in (4.11) vanishes. Only the Hubbard-Stratonovich fields Q±2 are
left: This corresponds to the AIII situation. It is worth to emphasize the structural
difference between the massive terms nγ2

πβ tr Q+
1 Q
−
1
T and nγ2

πα tr Q+
2 Q
−
2 . The transposition

operation in the Q±1 -term will eventually constrain the fields to the smaller CII NLσM
manifold.
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4.3 Saddle point approximation

Variation of the total action yields the following saddle point equations for uniform fields
Q±1,2:

Q+
1
T = πβ

∫
(dp)

1
p2 + γ2

(
Q+

1 +Q+
2

) (
Q−1 +Q−2

) (Q+
1 +Q+

2

)
,

Q−1
T = πβ

∫
(dp)

1
p2 + γ2

(
Q−1 +Q−2

) (
Q+

1 +Q+
2

) (Q−1 +Q−2
)
,

Q+
2 = πα

∫
(dp)

1
p2 + γ2

(
Q+

1 +Q+
2

) (
Q−1 +Q−2

) (Q+
1 +Q+

2

)
,

Q−2 = πα

∫
(dp)

1
p2 + γ2

(
Q−1 +Q−2

) (
Q+

1 +Q+
2

) (Q−1 +Q−2
)
.

Manifold of equivalent saddle points

The saddle point equations are solved equivalently to SCBA by

Q±1
∣∣
SP

=
β

α+ β
1τ,N ,

Q±2
∣∣
SP

=
α

α+ β
1τ,N .

However, invariance of the action under global rotations (4.4) implies that any of the
following rotated saddle point matrices solves the equations just as well

Q+
1,2

∣∣∣
SP
→ UT Q+

1,2

∣∣∣
SP
U

Q−1,2

∣∣∣
SP
→ U−1 Q−1,2

∣∣∣
SP
U−T

 CII,

Q+
1,2

∣∣∣
SP
→ W−1 Q+

1,2

∣∣∣
SP
U

Q−1,2

∣∣∣
SP
→ U−1 Q−1,2

∣∣∣
SP
W

 AIII.

(4.12)

(With U,W ∈ GL (2N).)
As Q±1,2 ∝ 1 at the saddle point, rotations U ∈ O (2N) for class CII and U = W ∈ GL (2N)
for AIII belong to the stabilizer. The generated manifold hence is GL (2N) /O (2N) and
GL (2N) × GL (2N) /GL (2N) ' GL (2N) for classes CII and AIII respectively. The
convergence requirement restricts the saddle-point manifold to its maximal compact sub-
manifold, on which the field theory of the NLσM is defined. It is

U (2N)
O (2N)

for CII,

U (2N) for AIII.

4.4 NLσM of class AIII and WZW term

At the saddle point, the action of Hubbard-Stratonovich fields has pure ”trace-log”-form

SSP = −n
∫
d2x tr ln

(
iγQ p−
p+ iγQ−1

)
, (4.13)

where Q ∈ U (2N) for class AIII.
It is known from non-abelian bosonization technique [Wit84] that the low-energy bosonic
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48 4. Derivation of chiral NLσMs and appearance of the Z2-topological term

theory corresponding to Dirac electrons includes a WZW term. The AIII NLσM of Dirac
electrons in a random vector potential is also a bosonized theory which indeed includes a
WZW term. Altland et al. obtained this WZW term from direct gradient expansion of
the above action (4.13) with an appropriate regularization scheme [ASZ02]. The U(2N)-
NLσM-action is

S [Q] =
σ

32

∫
d2x tr∇Q−1∇Q− c

32

∫
d2x

[
tr
(
Q−1∇Q)]2

+ i
k

12π

∫
d2x

∫ 1

0
ds εµνλtr

(
Q−1∂µQ

) (
Q−1∂νQ

) (
Q−1∂λQ

)
. (4.14)

The second term (”Gade term”) appears in RG or as a result of integrating out the massive
modes.
The gradient expansion yields a prefactor n

8π = σ
32 and σ = 4n

π is the Drude conductivity
of the present model in units of e2

h . It is calculated in sec. 4.1, eq. (4.7)

WZW-level and number of flavours

The derivation of the WZW term in the work by Altland et al. was performed for one
flavour. The outcome was a WZW term with WZW-level k = 1. For the above NLσM the
whole action was multiplied by the number n of flavours, yielding the Drude conductivity
as the prefactor of the kinetic term n

8π = σ
32 . In particular, multiplying Altland’s et al.

WZW term with n, leads to eq. (4.14) with n instead of k. In this sense, the WZW-level
k equals the number of flavours n (k = n ∈ Z).
If the NLσM was derived for a 2n× 2n Hamiltonian H = − (p+A)µ σµ, the prefactor n

8π

of the kinetic term would be unchanged (but then σ = 2n
π and Q ∈ U(N)).

In particular, n
8π is the correct prefactor displaying the fixed point σ = σclean of the

WZW-model, see sec.s 3.2 and 6.1.

4.5 NLσM of class CII and Z2-topological term

Again, at the saddle point, the action of Hubbard-Stratonovich fields has the form (4.13),
with Q ∈ U(2N)

O(2N) for class CII. Performing gradient expansion of the real part of the action
yields the kinetic term:

Skin =
∫
d2x

σ

32
tr∇Q−1∇Q.

However, it is generally not known how and when the Z2-topological term arises and how
a local form of it looks like.

AIII - CII crossover

In the following, it will be shown that for CII-Dirac electrons the Z2-topological term is
present and it can be seen as a descendant of the AIII WZW term. To this end, a detour
will be taken: The AIII-theory will be weakly perturbed by the disorder potential V (4.1).
In this sense the πβ

n -term in the effective fermionic four-point action (4.10) is evaluated at
the AIII-saddle point where

〈
ΨΨ̄T

〉
=

1
p2 + γ2

( −iγQ−1 p−
p+ −iγQ

)
+O (∇Q) .

The matrix structure of the correlator reflects the spin-space, which will be denoted by
Roman numbers I,II. Further, the Green’s function is diagonal in flavour space (Greek
letters α = 1, ..., n) and its non-trivial structure in τ and replica space is incorporated in
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4.5. NLσM of class CII and Z2-topological term 49

Figure 4.1: The image of the map from a 3-hemisphere onto U(N) may have arbitrary
(non-integer) volume (in units of the volume of S3).

Q ∈ U (2N) (miniscule Latin letters).
Using Wick’s theorem

〈Sβ〉 = −πβ
n

∫
d2x

〈
ΨII,a,αΨ̄II,b,αΨ̄I,b,βΨI,a,β

〉
= −πβ

n

∫
d2x

p22Nn
(p2 + γ2)2 − n

−iγ
p2 + γ2

Qab
−iγ

p2 + γ2
Q−1
ab

.= µ2

∫
d2x tr

[
1−QTQ−1

]
.

The symbol .= denotes that a term N × const. was dropped, as well as all derivatives of
Q. An effective mass has been introduced µ2 := σπ2β

8n ≥ 0 (equality for β = 0).
The AIII-WZW-action including the effective perturbation is

S [Q] =
σ

32

∫
d2x tr∇Q−1∇Q− c

32

∫
d2x

[
tr
(
Q−1∇Q)]2

+ µ2

∫
d2x tr

[
1−QTQ−1

]
+ i

k

12π

∫
d2x

∫ 1

0
dsεµνλtr

(
Q−1∂µQ

) (
Q−1∂νQ

) (
Q−1∂λQ

)
. (4.15)

It is important to emphasize that

tr
[
1−QTQ−1

]
=

1
2

tr
[(
Q−QT ) (Q−QT )†] ≥ 0.

Unitarity of Q was used. Here, equality is achieved if and only if Q = QT .
Accordingly, perturbing the AIII-theory with the (class CII)-potential V effectively assigns
a mass to the antisymmetric modes in U(2N). On large distance scales d � µ−1 (i.e.
large β) only the symmetric U(2N)

O(2N) -fields will contribute and the model has become the
CII-NLσM.

Mutation of WZW term to Z2-term

It has been stressed in the section on WZW terms 1.15, that the WZW term itself is not
quantized as it measures the volume covered by the image of a hemisphere (figure 4.1).
However, when the AIII NLσM is perturbed by the mass term µ2

∫
d2x tr

[
1−QTQ−1

]
, the

situation changes: On the boundary of the 3-hemisphere, i.e. on the physical space, only
the unitary matrices which are symmetric are not suppressed. In the topologically relevant
subgroup of U(N) (this is SU(2) ' S3) the symmetric matrices form a hyperequator, a
2-sphere5.

5SU(2) 3 Q = a0 + iaµσµ with
P3
µ=0 a

2
µ = 1 and σµ are the Pauli matrices. Requiring symmetry sets

a2 = 0 (Q lies on an equator) and a2
0 + a2

1 + a2
3 = 1, which is S2.
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50 4. Derivation of chiral NLσMs and appearance of the Z2-topological term

Figure 4.2: The mass term pushes the image of the boundary of the 3-hemisphere onto the
equator of SU(2). These mappings cover the 3-sphere a half-integer number
of times.

The effect of the mass-term is incorporated into boundary conditions for the extended
unitary Q-field:

Q (x, 0) = 1 and Q (x, 1) = Q (x) = QT (x) .

Now, mappings where an arbitrary part of the 3-sphere is covered are not allowed anymore.
As the boundary of the image of the hemisphere lies on the equator of SU(N), the WZW
term measures a volume which is a half integer times the volume of the 3-sphere (see fig.
(4.2)). In this sense

i SWZ |Q(x)=QT (x) = iπN [Q] and N ∈ Z.

However, any N [Q] + 2l, l ∈ Z leads to the same result as N [Q]. Consequently, the AIII -
WZW term becomes a Z2-topological term when the crossover from AIII to CII is taken.
A mathematical proof for the topological quantization of the WZW-term with the indi-
cated boundary conditions can be found in appendix A. There, an examplary N [Q] = 1
configuration is also discussed, completing the above argumentation.
The total CII NLσM-action is

S [Q] =
σ

32

∫
d2x tr∇Q−1∇Q− c

32

∫
d2x

[
tr
(
Q−1∇Q)]2 + iπN [Q] . (4.16)

Again σ = 4n
π
e2

h is the Drude conductivity, the Gade term has already been introduced
and N [Q] = 0, 1 reflects the Z2-topological term, which is present due to the arguments
exposed above.
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5. Quantum corrections to conductivity

The content of this chapter is twofold: First, it will be explained, how the renormalization
procedure is precisely performed. Second, the perturbative RG-equations for the two
parameter (σ,c)-scaling are rederived in accordance with [GW91].

5.1 Derivation of renormalized coupling constants

As has been exposed in sec.s 3.3.1 and 4, the bare chiral NLσM has the form

S0 [Q] =
∫
d2x

{
σ0

8π
tr
[∇Q−1∇Q]− c0

8π
[
trQ−1∇Q]2 +

σ0

8π
m2

4
tr
[
Q−Q−1

]2}
. (5.1)

In particular, σ0 and c0 are the bare coupling constants1. As stressed, their connection
to the classical Drude conductivity is σ0 = π

2σDrude for class AIII and σ0 = π
4σDrude for

classes BDI and CII (see sec. 3.3.1). It is the aim of renormalization group treatment to
understand how the scale-dependence of the coupling constants is generated by the critical
quantum fluctuations of Q (x).
To this end, short-scale (i.e. fast) fluctuations will be averaged out and incorporated into
the renormalized coupling constants. Within this work, the separation between fast and
slow fields is achieved introducing the mass term in the action (5.1). The modes to be
integrated out are subjected to this mass term and effectively, only those with momenta
m . |p| < Λ (i.e. |p| ”fast”) contribute. m−1 hence plays the role of the running scale.

5.1.1 Technical description and renormalized coupling constants

The detailed derivation of the renormalized coupling constants is given in appendix C.
Here only a summary is given as well as a motivation for this procedure, see next section
5.1.2.
As mentioned, the Q-field is divided into slow (background field) and fast contributions:

Q→ U−1QV (Q fast; U, V slow). (5.2)

For classes BDI and CII V = σyU
−Tσy and V = U−T respectively.

The action splits up into three parts: one for the slow fields, one for the fast ones and
interaction terms. The exponent of the latter is expanded to second order in gradients of
slow fields and reexponentiated into the renormalized action.
This way correction terms of the following types are obtained:

1Note the difference to the way the coupling constants were defined in ch. 4.
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52 5. Quantum corrections to conductivity

• ”diamagnetic”:
∫
d2x

〈
tr
[
Q−1 [∇ (slow)]Q [∇ (slow)]

]− [∇ (slow)]2
〉

,

• ”paramagnetic”:
∫
d2xd2x′

〈
tr
[(
Q−1∇Q) [∇ (slow)]

]
x

tr
[(
Q−1∇Q) [∇ (slow)]

]
x′

〉
.

The renormalized coupling constants are calculated within background field formalism
[Pol75], [Pru87a]. Within this approach, exponential parametrization is used for slow
fields U, V . The Goldstone bosons associated to each of the generators are considered one
by one and their gradient is assumed to be constant on the short length-scale of the fast
fields.
This way the coupling constant of each Goldstone mode is renormalized. For the U(1)-
Goldstone boson the coupling constant is (σ + tr1c), for all others σ. Now, the corrections
to σ (which were obtained for all modes independently) are averaged over generators using
the Fierz identities (see appendix B).
Eventually, the diamagnetic term is evaluated with the help of Ward Identities. These
can be obtained considering the stabilizer modes, again one by one (see appendix C.2, eq.
(C.4)). Averaging over generators of the stabilizer yields a relation that allows to replace
the diamagnetic term.
The renormalized coupling constants are

σ = σ0 +
1

Vol

∫
d2xd2x′

σ2
0

8π
1

tr1 dim [SM]{
tr1
〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉− 〈tr [(Q−1∇Q)
x

]
tr
[(
Q−1∇Q)

x′

]〉}
,

(5.3)

c = c0 +
1

Vol

∫
d2xd2x′

σ2
0

8π
−1

tr1 dim [SM]
〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉
+
[
σ2

0

8π
dim [M]

(tr1)2 dim [SM]
+

2σ0c0

tr1 8π
+
c2

0

8π

] 〈
tr
[(
Q−1∇Q)

x

]
tr
[(
Q−1∇Q)

x′

]〉
.

(5.4)

M denotes the NLσM manifold and SM its special submanifold. The manifolds and their
dimensions are

SM dim [SM] tr1

AIII SU(N) N2 − 1 N

BDI SU(2N)
Sp(2N) 2N2 −N − 1 2N

CII SU(N)
O(N)

N2+N−2
2 N

5.1.2 Why background field formalism and mass term regularization?

In the thesis at hand, renormalized coupling constants are derived using background-field
formalism. As mentioned, this method was also applied by Pruisken in context of the field
theory of the integer quantum Hall effect.

For class AIII the derivation of renormalized coupling constants was performed also in
another way. Averaging over the gauge group U(N) (on group level, not on generator
level) the same renormalized coupling constants were derived.
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5.1. Derivation of renormalized coupling constants 53

Mass term regularization

The mass term introduced in eq. (5.1) is a way of regularizing the infrared singularity of
the fast modes. Why was such a regularization introduced?
In many areas of physics, improper regularization methods come along with unwanted
artefacts. For example, in high energy physics, cut-off regularization destroys gauge in-
variance. Therefore, dimensional regularization is widely used.
In the present work, something similar occurs: The RG-treatment of vortex-interactions
produces a non-local term in the action if cut-off regularization is used. In particular, this
non-local term couples also the smooth (i.e. non-vortex) parts of Q.
Using the Yukawa-like mass term regularization these terms do not appear.
How can the difference between regularization schemes be understood? The most natural
infrared regularization for field theories describing a metal would be a finite sample with
given boundary conditions and m→ 0. Taking now the thermodynamic limit means hav-
ing interchanged limTD and limm→0. Commutation of the two limits might have drastic
effects, if the boundary conditions of the finite sample are not subtly chosen.
In this work, the boundary conditions allow the Q-field to vary only within a specific area
V and require the trivial vacuum state Q = 1 outside this region. This is equivalent to
mass term regularization [Pru87a].
The vortex-vortex correlations decay as a power-law. This slow decay eventually produces
the non-local interaction of slow modes when an inappropriate regularization scheme is
used. However, the mass term ensures vortex-vortex-correlations to decay exponentially
on the length-scale of slow modes and locality is preserved.

Background field formalism

The background field formalism is a way to implicitly translate the Kubo formulae in
NLσM language. During the year of working on the subject of this thesis, also different
methods were applied. In particular, it has been tried to translate the fermionic Kubo
formulae directly into Q-field language. The motivation was to have a more physical
picture of how the conductivity σ is renormalized. These attempts failed. Chiral anomaly
requested a very delicate treatment and it turned out that the background field method
was a possibility to circumvent those problems.
In this approach the gradients of the Goldstone and stabilizer modes play the role of
electromagnetic source terms. Their physical interpretation as slow fields might even be
completely forgotten. In appendix C.4 the way the Kubo formulae translate is explicitly
demonstrated. The sketch of the demonstration is as follows: Consider the quadratic
fermionic action with Hubbard-Stratonovich fields living on the NLσM manifold. The
replacement Q → U−1QV is compensated by a slow rotation of fermionic degrees of
freedom. For each Goldstone mode ga (constant gradient) a supplementary term of the
form Ψ̄ (∇ga) · jσztaΨ enters the action. For each stabilizer mode sa the additional term
is Ψ̄ (∇sa) · j τaΨ. In the appendix it is shown that twice differentiating with respect to
stabilizer and Goldstone modes reproduces the (fermionic) Kubo formula for conductivity.
In particular, when this differentiation is taken after gradient expansion and the above
slow mode treatment (sec. 5.1.1), it reproduces

σphys. = const.× (eq.(5.3))
[
e2

~

]
= (const.× σ0 + . . . )

[
e2

~

]
.

const. = 1
π2 for class AIII and const. = 2

π2 for classes BDI and CII are indeed the correct
prefactors to reproduce the physical conductivity.
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54 5. Quantum corrections to conductivity

5.2 Perturbative RG: Gade-Wegner-criticality

The calculation of the perturbative coupling constants is performed using exponential
coordinates for the fast fields

Q = eiWata ,

where ta are the generators of the special NLσM manifold. The mode of the U(1)-generator
turns out not to contribute. The calculation itself is given in appendix D.
The propagators of Wa-fields are obtained expanding the fast action to quadratic order
O (∇W 2

a

)
. The corrections of the coupling constants are expanded to leading order in Wa

(i.e. quartic order2). Again, the Fierz identities are used to obtain the logarithmically
divergent result (eqs.(D.5) and (D.6)). Differentiating with respect to the mass:

− dσ
dlnm = −tr1


1 AIII,

1
2 BDI,

1
2 CII,

− dc
dlnm =


1 AIII,

1
2 BDI,

1
2 CII.

Note the accordance with Gade’s and Wegner’s argument.
It has been stressed (sec. 3.3.1) that σ = π

2σphys. for class AIII and σ = π
4σphys. for classes

BDI and CII. Therefore, the β-function of the physical conductivity is equal for all chiral
classes even before replica limit.
Now replica limit is taken

− dσ
dlnm = 0,

− dc
dlnm =


1 AIII,

1
2 + O ( 1

σ

)
BDI,

1
2 + O ( 1

σ

)
CII.

(5.5)

The results by Gade and Wegner are reproduced.
Note that the one-loop-RG is exact for class AIII, but not for classes BDI and CII. This
is indicated by +O ( 1

σ

)
.

The proof for exactness in class AIII is most easily seen in the supersymmetric approach
and included in appendix E. In contrast, non-vanishing contributions from diagrams O ( 1

σ

)
in classes BDI and CII are known from works by Hikami and Wegner, which are summa-
rized in [EM08].

2The quadratic order vanishes, because it corresponds to two integrals, each over one fast and slow field.
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6. Influence of topological terms in chiral
symmetry classes

This chapter is devoted to topology-induced corrections to conductivity, which arise due to
other effects than vortices. In the first part the renormalization group flow of the WZW-
model is reviewed. The second part is about the effect of the Z2-instanton in class CII. In
particular, in both cases the RG flows according to Gade’s and Wegner’s arguments and
there is no correction to conductivity in the replica limit.

6.1 AIII scaling with a WZW-term

The renormalization of the WZW-model is contained in Witten’s original paper [Wit84]
for the O(N)-NLσM and well-studied also for the SU(N)-NLσM. For U(N) the flow obeys
Gade’s and Wegner’s argument and can be found in textbooks, such as [AS10]:

− dσ

dlnm
= −N

(
1−

(
k

σ

)2
)
,

− dc

dlnm
=

(
1−

(
k

σ

)2
)
.

After replica limit, this is

− dσ

dlnm
= 0, (6.1)

− dc

dlnm
=

(
1−

(
k

σ

)2
)
. (6.2)

In particular, there is a single true fixed point for σ = k 1. From direct derivation, sec.
4.4, it is known that the WZW-level is k = n (n is the number of flavours). The critical

1This is a fixed point already before replica limit is taken, and hence also for the two other principle chiral
models. For CI it is attractive and for DIII repulsive. AIII displays critical Gade scaling and by ”single
true fixed point” the vanishing βc is meant.
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56 6. Influence of topological terms in chiral symmetry classes

value of conductivity is consequently the bare value σ∗ = σ0 = n or in units of the Klitzing
constant σ∗phys. = σDrudephys. = 2n

π
e2

h (sec. 3.3.1). As pointed out in sec. 3.2, for Dirac fermions
the WZW-term translates the absence of conductivity corrections due to chiral anomaly
into NLσM language.

6.2 Absence of conductivity correction in CII with Z2-term

In sec. 4.5 the Z2-term in class CII was derived as a descendant of the AIII-WZW-
term. One can also look at it from the (Z-)θ-term perspective. In the case of 2 replicas
π2

(
U(N)
O(N)

∣∣∣
N=2

)
= Z as U(2)

O(2) ' S2. For higher N the homotopy group reduces to Z2
2.

Even though the homotopy group is smaller, a single U(2)
O(2) -instanton still belongs to the

topologically non-trivial sector. The effect of such an instanton will be considered in this
section.

The Z2 instanton

The explicit calculations of the conductivity correction due to the instanton are given in
appendix F. The topological excitation considered is

QZ2 =
(
a312 + ia2σx + ia1σz 0

0 1

)
.

Here, a = 1
λ2+‖x−x0‖

(
2λ (x− x0) , 2λ (y − y0) , ‖x− x0‖2 − λ2

)T is the skyrmion configu-
ration of the O(3)-NLσM, it has size λ and position x0. This excitation was also considered
by Pruisken [Pru87a].
The instanton configuration is weightened by3 the action SZ2 ≡ S [QZ2 ] = 2σ0 + iπ.
Furthermore, the action is invariant under shifts and spatial rotations of the instanton, as
well as under

QZ2 → OTQZ2O , O ∈ O(N)
Z2 ×O (N − 2)

. (6.3)

Any transformed instanton is therefore equivalent to QZ2 , which results in an overall
prefactor

2πVolspaceVol
O(N)

Z2 ×O (N − 2)
= 4πVolspace

πN−
1
2

Γ
(
N
2

)
Γ
(
N−1

2

) . (6.4)

There is one more degree of freedom of the instanton: its size λ. The integral over it
produces the logarithmic divergence, as

Zinst.
Z0

∝
∫
dλ

λ3
,

and ∫
d2xd2x′

〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉
Z2

= −16π2λ2

(see [Pru87b], [Pru87a]). Note that the expectation value of the two-trace term in the
”Q-field Kubo formulae”, eqs. (5.3),(5.4) vanishes. The ratio of partition functions for the
instanton and topologically trivial sector Zinst.Z0

contains also the above mentioned prefactor
(6.4).
The corrections to the coupling constants due to the instanton are given in eqs. (F.3),

2An illustrative explanation: Insert two instantons in the U(2)
O(2)

submanifold of U(N)
O(N)

. Then one of the two

can be rotated on the whole manifold and back to its original replicas U(2)
O(2)

such that the configuration

becomes a (topological trivial) instanton-antiinstanton configuration.
3... the inverse of the exponent of...
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6.2. Absence of conductivity correction in CII with Z2-term 57

(F.4). Combining them with the quantum correction from sec. 5.2, the β-function of the
coupling constants are

− dσ

dlnm
= −N

(
1
2
− 2πσ2e−2σ 2πN+ 1

2

(N + 2) Γ
(
N
2 + 1

)
Γ
(
N+1

2

)) ,
− dc

dlnm
=

1
2
− 2πσ2e−2σ 2πN+ 1

2

(N + 2) Γ
(
N
2 + 1

)
Γ
(
N+1

2

) .
In particular, as the corrections obey Gade’s and Wegner’s argument, in replica limit the
β-function of conductivity vanishes:

− dσ

dlnm
= 0,

− dc

dlnm
=

1
2
− 2πσ2e−2σ. (6.5)

Similarly to class AIII with a WZW-term, “true” fixed points arise for definite (small)
values of conductivity (σ ≈ 0.436 and σ ≈ 1.915). However, in class CII the perturbative
βc function is not exact and these fixed points are far beyond the controllable region where
1
σ is small.
In the large conductivity limit, the instanton corrections to βc are exponentially small with
respect to the quantum corrections. This justifies neglecting them.
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7. Influence of vortex excitations in chiral
symmetry classes

In this chapter the most important results of this work are exposed: Taking vortex ex-
citations into consideration, localization effects and consequently (traces of) the metal-
insulator transition in two-dimensional bipartite systems are demonstrated.

7.1 How to circumvent Gade’s and Wegner’s argument

A brief review of what has been explained up to now follows:

• Gade’s and Wegner’s argument, sec. 3.3.1, states that βσ = −tr1βc → 0 because of
the Gaussian nature of S [φ] =

∫
d2x

(
σ+tr1c

8π

)
(∇φ)2.

• The perturbative β-functions follow this argument (sec. 5.2) ...

• ... as well the β-functions for the NLσMs which include topological terms (ch. 6).

Summing up, it looks as if Gade’s and Wegner’s argument prevented any kind of metal-
insulator transition. Still a loophole exists: as φ ∈ S1 lives on a topologically non-trivial
manifold, S [φ] is not really Gaussian. Topological excitations, namely vortices, are al-
lowed. Their logarithmical interaction will produce logarithmic corrections to the cou-
pling constants under RG. All this is to some extent similar to the Berezinskii-Kosterlitz-
Thouless transition (sec. 2.2).

7.2 Generalities on vortex excitations

In which field do vortices appear?

In Gade’s and Wegner’s argument the following notation of the Q-field was assumed:

Q = e
i φ√

tr1U with detU = 1 and detQ = eiφ ∈ U(1). This notation has to be treated with
care, both for physical and mathematical reasons:
The non-trivial first homotopy group of the chiral NLσM manifolds arises due to its U(1)
determinant. It seems natural to assume vortex excitations in φ. However, this is very
questionable, as it would be equivalent to replica dependent, fractal vortex excitations

e
i φ√

tr1 in the Q-fields.
Mathematically, these problematics arise due to the fact that the unitary group is not the
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60 7. Influence of vortex excitations in chiral symmetry classes

direct product of its subgroups U(N) 6= U(1) × SU(N). This is related to the extension
problem of U(1) by SU(N), which yields the so-called semi-direct product [Bac67], [Isa08].
Vortices are hence not introduced into the overall phase-factor but into the phase of a single
replica. The topologically trivial saddle-point, which served as a base point for the NLσM
manifold, is replaced by a vortex configuration

QSP = 1→ QSP (vortex) =
(
eiφ(x) 0

0 1

)
,

where ∮
ds·∇φ = 2π. (7.1)

(
∮

integrates over a path enclosing the center of the vortex.)1 2

The vortex solution is then rotated by the appropriate soft modes of classes AIII, BDI and
CII respectively (see sec. 7.3.3). It is worth to remark that for any such rotated matrix
detQvortex = eiψ+iφ ∈ U(1) (ψ is the contribution from the soft modes). The determinant
of the Q-field hence acquired the vorticity, in accordance to its S1-topology.
Inserting the vortex excitations into distinct replica’s is in complete analogy to how
Pruisken [Pru87b] introduced the instantons into the NLσM describing the integer quan-
tum Hall effect.

7.2.1 Estimate of the vortex size

The following estimate will be performed for an AIII-model with Dirac fermions. In
particular, the disorder is supposed to be of the kind not to imply a WZW-model (e.g.
vacancies and random magnetic field).
Even though a particular model is considered, the conclusions are valid for any other chiral
NLσM which allows for vortices.
The action in terms of Hubbard-Stratonovich fields is (analogously eq. (4.11), Q±2 have
been renamed Q and P )

S [Q,P ] =
∫
d2x

nγ2

πα
tr QP − n

∫
d2x tr ln

(
iγQ p−
p+ iγP

)
. (7.2)

As a vortex excitation of the kind of eq. (7.1) has a diverging action in the center of the
vortex, the NLσM treatment is not valid within a certain region around this point. This
region will be called ”core” of the vortex and its extension shall be estimated. To this end
the following ansatz is made:

Q = diag
(
A (r) eiφ, 1, 1, .., 1

)
and P = diag

(
A (r) e−iφ, 1, 1, .., 1

)
. (7.3)

(r = ‖x‖ and φ is the vortex field in the sense of eq. (7.1). For A (r)→ 1 the fields obey
the saddle-point constraint Q = P−1.)

1For BDI QSP (vortex) =

„
eiφ(x)12 0

0 1

«
2For the semidirect product U(N) = U(1)oSU(N) the U(1)-subgroup is realized by diag

`
eiφ, 1, 1, .., 1

´
=:

eiφΠ̂ (or equivalently). The semidirect product comes along with the following multiplication:

∗ : (U(1) o SU(N))× (U(1) o SU(N)) → U(1) o SU(N),“
eiφΠ̂, U

”
∗
“
eiψΠ̂, V

”
:=
“
eiφΠ̂UeiψΠ̂U−1, UV

”
,

which is nothing but the usual matrix multiplication. A very good presentation can also be found on
www.en.wikipedia.org → ”Unitary Group” (Version of May, 19th, 2011).
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Inserting the Q and P field into the saddle-point equation leads to the following operator
equality

1
πα

=
[
p2 + 2B′ · p + γ2A2 (r)

]−1

xx
, (7.4)

(B′ = e−iφ

2

( −i
1

)(
1
r − ∂rA(r)

A(r)

)
.)

This recalls the structure of the Green’s function of a particle subjected to a ”vector-
potential” B′. Hermitizing the corresponding Hamiltonian by a non-unitary ”gauge”-
transformation3 H → e−φ(x)Heφ(x) yields the Hamiltonian

H = γ2

((
p
γ

+ B (r)
)2

+ V (r)

)
,

(B (r) = 1
2

( −sinφ
cosφ

)(
1
γr − A′(γr)

A(γr)

)
and V (r) = A2 (γr) − 1

γr∂γr

(
γrA′(γr)
A(γr)

)
. A′ (γr) =

∂γrA (γr).)
For large distances from the vortex center (γr � 1) the SCBA solution A (γr) = 1 solves
also equation (7.4). In contrast, in the vicinity of the center of the vortex (γr � 1)
the divergence of 1

γr requests A (γr) = const. × γr (otherwise the effective d potential B
diverges).
In this sense the mean free path γ−1 sets the length-scale, which distinguishes between
inside and outside the vortex core. Taking this estimate as a basis, the amplitude A (r) of
the vortex fields is approximated by the step function,

A (r) ≈ θ (r − γ−1
)
.

7.2.2 Estimate of the core energy

In the section above, the vanishing amplitude A(r) was introduced to regularize the diver-
gence of the action inside the vortex core. In this section an estimate for the regularized
core energy shall be given.
The action per unit volume (s = S [Q] /Vol) inside the vortex is larger than outside. The
difference multiplied by the inner volume is approximately the core energy:

Score ≈ Vinside (sinside − soutside) . (7.5)

In this rough estimate, the kinetic contribution of the vortex field is not taken into
consideration. The Hubbard-Stratonovich-fields inserted into eq. (7.2) are Q = P =

diag
({

0
1

}
, 1, 1, 1, ..., 1

)
for the calculation of

{
sinside

soutside

}
.

The explicit calculation of the core energy is straightforward but somewhat lengthy. For
this reason it has been relegated to appendix G. The final result is

Score ≈ n

4
=
σ0

4
. (7.6)

(”≈” reflects only the estimate in the definition of Score, eq. (7.5). The calculation itself is
exact.)
σ0 is the bare coupling constant in the Gade-Wegner NLσM (eq. (3.3)) and related to the
Drude conductivity via σ0 = π

2σ
Drude for class AIII and σ0 = π

4σ
Drude for classes BDI and

CII.

3Note that the Green’s function is evaluated at coincident points.
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62 7. Influence of vortex excitations in chiral symmetry classes

7.2.3 Mathematical description of a vortex

Summarizing the estimates from the last two sections, in our model, vortices have a spatial
extension of the order of the mean-free path and are energetically suppressed by a factor
e−Score = e−

σ0
4 =: y0. The last quantity, y0, is called bare fugacity and describes the

statistical weight for each vortex.
Vortices of charge ni = ±14 and position xi are introduced only in the first replica (first
pair of replicas for BDI) in the following sense:

QVortex = einiφxi (x)P̂ +
(
1− P̂

)
. (7.7)

(P̂ denotes the projector on the first replica for classes AIII and CII and on the first pair
of replicas for BDI.)
The vorticity is encoded in the analytical property

∇µφxi (x) = rotµln
‖x− xi‖
γ−1

. (7.8)

Using Stokes’ theorem the correspondence between this local definition and the integral
definition in eq. (7.1) becomes apparent.

7.3 Explanation of RG-procedure

The idea behind the RG-procedure, which describes the corrections to the coupling con-
stants, is similar to the concept for the BKT-transition exposed in sec. 2.2. As explained,
the stiffness J is replaced by trP̂ σ0+trP̂ c0

4π . Therefore, the low temperature phase (J large),
where dipoles are tiny, corresponds to the metallic regime. The small stiffness phase, which
describes the plasma of unbound charged vortices, appears here for small σ0 + trP̂ c0.
As the NLσM describes the metallic regime, the RG-procedure is taken from the large
stiffness side, analogously to the usual BKT-transition. A dilute gas of tiny vortex dipoles
is therefore assumed, and, as explained, the smallest of these dipole pairs is explicitly
integrated out. Its effect is incorporated into the renormalized coupling constants.
It is of central relevance to state that keeping a single dipole corresponds to expanding the
vortex-corrected coupling constants to leading order in fugacity, i.e. to order O (y2

)
5.

As mentioned, vortices are introduced in the first replica(s) and can be seen as an addi-
tional saddle-point solution. The following approximation is used: only slow soft-mode
rotations of this saddle-point are assumed. Differently stated, the fast Q-field (see eq.
(5.2)) contains only the topological excitations. In particular, this implies that vortex
dipoles are each in the same replica6.

7.3.1 The calculation of vortex-induced corrections

A vortex-antivortex pair at positions x1, x2 is introduced in the Q-field according to
eq.(7.7). Then, the action for such a configuration is

SV−AV = 2Score + trP̂
σ0 + trP̂ c0

2
ln
‖x1 − x2‖

γ−1
+ Sm. (7.9)

4Vortices with higher winding number are less relevant for the phase transition and therefore neglected.
5Any further vortex pair is suppressed by additional y2. Note that overall neutrality of the vortex gas is

imposed, otherwise a surface term diverging as lnL arises in the action.
6The configuration of two vortices close to each other but situated in different replicas is the same as a

pair in the same replica which was rotated by fast fields.
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7.3. Explanation of RG-procedure 63

The first term is the core energy, estimated in sec. 7.2.2. The last term is the mass
term regularization and approximately e−Sm ≈ θ

(
m−1 − ‖x1 − x2‖

)
. The logarithmic

term in the middle reflects the Coulomb-like interaction between vortex and antivortex, it
eventually provides the logarithmic corrections.
The explicit calculation of the current-current-correlators renormalizing σ and c (eqs. (5.3)
and (5.4)) can be found in appendix H. In particular, considering vortices, both the single
trace and two trace term of the ”Kubo formulae” contribute. This is how Gade’s and
Wegner’s argument is circumvented by vortices.

1
trP̂

∫
d2xd2x′

〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉
=

1(
trP̂
)2

∫
d2xd2x′

〈
tr
[(
Q−1∇Q)

x

]
tr
[(
Q−1∇Q)

x′

]〉 ∼

− VolP̂ Vol
γ4π2y2

0

2
Iξ. (7.10)

ξ = ‖x1 − x2‖ denotes the relative distance of vortex and antivortex. This result is
obtained in leading order expansion in small7 ξ and includes the following integral (which
is divergent for small stiffness):

Iξ = 2π
∫

1
γ

dξ ξ3e
−trP̂

σ0+trP̂ c0
2

ln ξ

γ−1 . (7.11)

7.3.2 Renormalization group procedure

The renormalization group procedure follows the method first exposed by José, Kadanoff,
Kirkpatrick and Nelson [JKKN77].
The integral (7.11) appears whenever the effect of a vortex pair is incorporated into the
coupling constants. For the smallest vortex pair (γ−1 < ξ < m−1)8 the integral yields

Ifast
ξ ≈ 2π

γ4
ln
γ

m
+O

((
ln
γ

m

)2
)
. (7.12)

The coupling constants σ0, c0 are renormalized. Assume to perform another RG step where
a dipole of size m−1 < ξ is integrated out, producing the same integral Iξ (eq. (7.11)), this
time with lower bound m−1. It can be rescaled to the original integral:

Islow
ξ = 2π

∫
1
m

dξ ξ3e
−trP̂ σ+trP̂ c

2
ln ξ

γ−1

=
( γ
m

)4−trP̂ σ+trP̂ c
2 Iξ. (7.13)

At the new scale determined by m, y2
0 is replaced by y2

0

( γ
m

)4−trP̂ σ+trP̂ c
2 (see eq. (7.10)).

Hence, all of the bare constants σ0, c0 and y0 have to be replaced by their renormalized
values.

7With respect to the slow-mode length scale ‖x− x′‖.
8More rigorously, the integral has a lower bound 2γ−1, which is twice the vortex core radius. However,

this is beyond the accuracy of the estimate of sec. 7.2.1 and neither changes the RG-equations (7.15),
in which a prefactor is included into a redefined fugacity y anyhow.

63



64 7. Influence of vortex excitations in chiral symmetry classes

7.3.3 Volume of space of possible projections

Similarly to the case of the Z2 instanton in class CII, the vortex-antivortex pair has several
degrees of freedom which do not alter the value of the action (7.9): It might be shifted,
rotated around its center in the two-dimensional plane or rotated in replica space. There
is one degree of freedom of the dipole which does not leave the action invariant, namely
changing the extension of the dipole. This is the reason why the logarithmic correction to
the coupling constants is provided by ξ = ‖x1 − x2‖. (In the case of the Z2 instanton, the
argumentation is completely analogous regarding the size of the instanton λ instead of the
dipole size.)
In the derivation of the renormalized coupling constants σ0 and c0, eq. (7.10), the formula
already included the integration over all dipole positions and dipole orientations in the
physical space. What is left, is to integrate the result over possible projection in replica
space. The infrared boundary condition Q (x) x→∞−−−→ 1, as well as the structure of P̂
constricts the space of possible projections to compact manifolds: these are the complex,
quaternionic and real projective space (CPN−1, HPN−1 and RPN−1) for classes AIII, BDI
and CII respectively (see appendix H). Their volume is

VolP̂ =


S2N−1

S1 = πN

πΓ(N) AIII,
S4N−1

S3 = π2N

π2Γ(2N)
BDI,

SN−1

S0 = π
N
2

Γ(N2 ) CII.

(7.14)

7.3.4 Vortex-induced corrections to the coupling constants

In this subsection the vortex-induced corrections to the coupling constants for arbitrary
number replicas N shall be given. For the benefit of a better overview, the perturbative
corrections from the topologically trivial sector will be left apart for the moment. The
RG-equations obtained from the interplay of both vortex and quantum corrections are
exposed in the next section 7.4.
Using the above calculated expectation values of current-current correlators (7.10), the
RG treatment from sec. 7.3.2 and the calculated volume of possible projections (7.14)
to renormalize the coupling constants according to eqs. (5.3) and (5.4) yields the result
(adapted from appendix H, eq. (H.7)):

AIII


− dσ

dlnm

∣∣
V

= − πN

Γ(N+2)σ
2y2,

− dc
dlnm

∣∣
V

= −
[
σ2 πN

Γ(N+2) + 2σc πN

Γ(N+1) + c2 πN

Γ(N)

]
y2,

− dy
dlnm

∣∣∣
V

=
[
2− σ+c

4

]
y,

BDI


− dσ

dlnm

∣∣
V

= − π2N

Γ(2N+2)σ
2y2,

− dc
dlnm

∣∣
V

= −
[
σ2 π2N

Γ(2N+2) + 2σc π2N

Γ(2N+1) + c2 π2N

Γ(2N)

]
y2,

− dy
dlnm

∣∣∣
V

=
[
2− σ+2c

2

]
y,

CII


− dσ

dlnm

∣∣
V

= − 2π
N
2

(N+2)Γ(N2 +1)σ
2y2,

− dc
dlnm

∣∣
V

= −
[
σ2 π

N
2

(N+2)Γ(N2 +1) + 2σc π
N
2

Γ(N2 +1) + 2c2 π
N
2

Γ(N2 )

]
y2,

− dy
dlnm

∣∣∣
V

=
[
2− σ+c

4

]
y.

(7.15)

For the different symmetry classes, different prefactors have been incorporated into y, see
appendix H.
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7.4. RG including vortex and perturbative corrections 65

The case N = 1 of eqs. (7.15) reproduces, as to be expected, the well-studied usual
RG-equations of the BKT-transition exposed in sec. 2.2 for any of the symmetry classes.

7.4 RG including vortex and perturbative corrections

The main results of this diploma thesis are exposed in this section. These are the N → 0
RG-equations of the the three chiral symmetry classes under the influence of both per-
turbative and vortex-induced corrections. In particular, in all three symmetry classes
localization effects are demonstrated.
The perturbative corrections are exact for class AIII and leading order corrections for BDI
and CII, which is denoted by +O ( 1

σ

)
. For all of the three classes, the RG-equations are

obtained in the limit of small fugacity y (which is not further marked).

AIII


− dσ
dlnm = − σ2y2,

− dc
dlnm = 1 − [

σ2 + 2σc
]
y2,

− dy
dlnm =

[
2− σ+c

4

]
y,

BDI


− dσ
dlnm = − σ2y2,

− dc
dlnm = 1

2 − [
σ2 + 2σc

]
y2 + O ( 1

σ

)
,

− dy
dlnm =

[
2− σ+2c

2

]
y,

CII


− dσ
dlnm = − σ2y2,

− dc
dlnm = 1

2 − [
1
2σ

2 + 2σc
]
y2 + O ( 1

σ

)
,

− dy
dlnm =

[
2− σ+c

4

]
y.

(7.16)

(One last time it is recalled that σ is related to the physical conductivity in units of e2

h via
σ = π

2σphys. for class AIII and σ = π
4σphys. in classes BDI and CII.)

7.5 Vortices and topological terms

In section 1.7 the possible appearance of a WZW term or Z2-topological term in classes
AIII and CII respectively has been exposed. In particular, for Dirac fermions with a
certain kind of disorder, these terms were explicitly derived (sec.s 4.4 and 4.5). In both
cases, the physical meaning was associated to the absence of localization corrections: The
WZW term is the NLσM expression which reflects that due to the form of the current
operators and to chiral anomaly only the clean conductivity bubble contributes, see sec.
3.2. The class CII-NLσM with Z2-term describes the surface states of a three-dimensional
topological insulator, which are protected against localization.
How can the absence of localization be understood if vortices (which drive the system
into the localized phase, see above 7.4) are present? There is no definite answer to this
question, but a very strong conjecture. Consider first the model with the WZW term, the
Z2 term can be understood as its descendant afterwards. The manifestly U(N)-invariant
definition of the WZW relies on the extension of the base manifold from a 2-sphere to
a 3-hemisphere. This way of defining the WZW term is, however, not opportune in the
presence of vortices. Inside the vortex core the theory is not defined, or more sloppily
said, there are holes in the base manifold. Expanding into the third dimension, the base
manifold is continuously shrunk to a point and it is not clear how to unambiguously do
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66 7. Influence of vortex excitations in chiral symmetry classes

that when the vortex holes are present.
Therefore, it is more convenient to consider the ”local” expression of the WZW term,
eq. (1.8). It is constructed without the extended base manifold but is tied to a certain
coordinate representation φi. It was exposed in section 1.7.3 that a global rotation of
Q-fields (represented by βk

(
φi
)
) produces the following correction to the WZW term

iδSWZ = i4πk
∫
d2x∂µ

(
εµνβj∂νφ

j
)
.

As long as vortices are absent, this integral vanishes due to the compactified base-manifold
S2, and the theory is U(N) invariant. On the contrary, when vortices are present, this
term does not vanish: The theory is only defined outside the vortex core, which yields a
boundary contribution for each vortex

iδSWZ = i4πk
∮

Vortex
ds · (βj∇φj) =: iφ (β) .

By definition, the Q-field acquires a phase of 2π on the path around the vortex core9. This
phase does also enter the non-Abelian part of Q (see sec. 7.2) and consequently the above
integral. Depending on the values of β, the total action acquires a phase iφ (β).
Following the above argumentation, the action seems to lose its U(N)-invariance as soon
as both a vortex and the WZW term are present. However, the U(N)-invariance is a strict
symmetry from the underlying fermionic theory. Reexpressing the theory in terms of the
NLσM should not destroy this basic property. How can this happen?
It has been stressed that inside the vortex core the NLσM description breaks down and it
was replaced by a hole in the sample. This brute approximation is obviously not physical.
Inside the core, there exists another theory describing the physics which is not known. The
energy associated to it is estimated by Score and, in order to restore the U(N) symmetry,
it must have boundary conditions such that it produces a term −iφ (β) under the above
mentioned transformation.
With these requirements to the extended theory inside the vortex core, the WZW term is
well defined. So are the vortices, which now carry a complex core energy

Score + iφ,

φ transforms in the way to keep the theory U(N)-symmetric. The vortices acquired an
extra degree of freedom φ, over which the vortex-induced corrections have to be averaged.
This average over a phase, however, eventually destroys the effect of the vortices.
For class CII with the Z2-topological term the argumentation is similar. The phase φ (β)
can only acquire values 0, π and so can the imaginary part of the core energy. Still, the
average over this degree of freedom cancels the vortex contributions.

7.6 Z2 vortices

In total, five symmetry classes display a non-trivial first homotopy group. The three chiral
classes AIII, BDI and CII have π1 (Mσ) = Z and were considered in the main part of this
work. For two more classes (AII and DIII) π1 (Mσ) = Z2. This also allows for (Z2-)vortex
excitations. Some of these vortices are known from studies of the B-phase of superfluid
He3 (class DIII), and rely on the topology of SO(3), which is homeomorphic to a ball with
opposite points on the boundary identified, see fig.s (7.1) and (7.2). In particular, such Z2

vortices are their own antivortices.
9φj ≡ φj (Q (x)) = tr|j 〉〈 j|Q is the Q matrix projected onto a certain coordinate. One can formally

rewrite
P
j βj∇〈j|Q|j〉 = trB∇Q for B =

P
j βj |j 〉〈 j| to see that the vorticity of the Q matrix enters

whatever coordinate representation is chosen.
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7.6. Z2 vortices 67

Figure 7.1: Two distinct paths
in SO(3).

Figure 7.2: A Z2 vortex in SO(3).

No explicit calculation has been performed for these kind of excitations. In contrast to
chiral classes, the effect is expected to be less relevant for classes AII and DIII: Vortex
corrections are of order σ2y2 ∼ σ2e−2σ and hence exponentially suppressed with respect
to the weak antilocalization corrections. Still, y scales itself and, if the RG-equations are
similar to eq.s (7.16) a new kind of fixed point might appear10.
Conclusively, a closer investigation might lead to interesting results, but could not be done
within the diploma thesis.

10For example, if also Z2 vortices have a localizing effect, the following RG-equations are conceivable:
σ̇ = 1− σ2y2, ẏ = (2− σ) y . This implies an unstable fixed point at σ = 2, y = 1

2
.
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8. Analysis of the renormalization flow

8.1 Discussion of approximations

The main result, the RG-equations (7.16), was obtained making certain approximations:

• The size of the vortex core as well as the bare fugacity y0 could only be roughly
estimated (sec.s 7.2.1 and 7.2.2).

• The calculation was performed in the region of small fugacity y.

• Quantum fluctuations around the vortex solutions were not considered.

• For classes BDI and CII the perturbative βc-function is valid only deep in the metallic
regime where σ is large (sec. 5.2).

The precise estimate of the vortex size and energy does not influence the RG-equations
(7.16). The size enters only the lower limit of the integral Iξ, eq. (7.11). The differenti-
ation is taken with respect to the upper limit m, the lower bound does not matter. The
bare value of the fugacity neither is of crucial importance. It has been stressed that in
eq.s (7.16) a prefactor O (1) has been included into its definition. Hence, the bare value
of the fugacity is not related directly to the bare conductivity. Depending on the disorder
strength it might take any value within a certain diffuse region of the parameter space.
In any case it is legitimate to assume the bare fugacity to be small in the metallic regime,
which justifies the calculation to order O (y2

)
. This has to be taken into account when

the RG-equations are evaluated.
The influence of quantum fluctuations around the vortex solution is not clear. Being cor-
rections of higher orders

(
1
σ

)
to the vortex-induced term, at least in the high conductivity

regime it is reasonable to drop them.
If there do not exist any quantum-corrections to the vortex sector, for class AIII the RG-
equations (7.16) are exact in σ and c and valid for small y. For classes BDI and CII, the
high conductivity assumption has to be taken in any case.

8.2 Metal-insulator transition

In this section it shall be demonstrated that eq.s (7.16) indeed allow for a metallic and
an insulating phase. First, assuming the RG-equations to be valid in the whole parameter
space, the points of “stationary” flow will be derived. Afterwards, examining in particular
class AIII more precisely, the regions of validity and accessibility are determined. Finally
some remarks concerning the nature of the phase transition are made.
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70 8. Analysis of the renormalization flow

8.2.1 Class AIII: transformed RG-equations and “fixed” points

For class AIII it is possible to rearrange the RG-equations such to decouple the equation
for the fugacity from the two others.
Define

K = σ + c and Σ = σy2, (8.1)

then

− dΣ
dlnm = −Σ2 +

[
4− K

2

]
Σ,

− dK
dlnm = 1− 2ΣK,

− dy
dlnm =

[
2− K

4

]
y.

(8.2)

The two upper equations are now decoupled and allow for three “stationary” points1

 σy2

σ + c
y

∗ ∈

 0
∞
0

 ,

 2−
√

15
2

4 +
√

15
∞, 0

 ,

 2 +
√

15
2

4−√15
∞, 0

 . (8.3)

The first out of the three fixed points describes the “metallic” phase. It corresponds to the
Gade-Wegner critical phase, where c∗ → ∞ because K∗ → ∞ and y∗ = 0. Translating
back to the original RG-equations, as y∗ = 0, βσ = 0 for any finite σ yielding the “usual”
line of fixed points.
The middle one is “the” Metal-insulator transition point. More precisely, there are two
“fixed” points: both are unstable in the

(
σy2
)
-(σ + c)-plane and differ only by the value

of y∗. Among them, the first is attractive in y-direction and σ∗ = 0 as
(
σy2
)∗ is finite

and y∗ → ∞. The physical meaning of the second (it is unstable also in y-direction) is
questionable: (σ, c, y)∗ = (∞,−∞, 0) even though vortices of weight y are responsible for
its formation.
Also the last fixed point, it is attractive in the

(
σy2
)
-(σ + c)-plane, appears doubled. The

first, being attractive in all directions, corresponds to the insulating phase: again y∗ →∞
while

(
σy2
)∗ is finite, hence σ∗ → 0. As with the transition point there also exists an

unstable fixed point at y = 0.

Before the flow towards these fixed points is discussed (see sec. 8.2.3 and fig. (8.1)) the
attention will first be spotted onto the two other symmetry classes.

8.2.2 “Fixed” points in classes BDI and CII

Even though it is not known how to transform the RG-equations of classes BDI and CII
into relations of the form (8.2), also for these classes fixed points analogous to (8.3) can
be obtained.

Class BDI

As for all chiral classes there exists a metallic fixed point corresponding to the Gade fixed
point(s) at y∗ = 0 and c∗ →∞ for any value of σ∗. For the two other fixed points βc = 0
and therefore (σ + 2c)∗ = 1

2(σy2)∗
. Then the beta function for Σ = σy2 depends only on

1Similarly to the usual Gade-Wegner RG-equations, it is not always possible to have all three β-functions
vanishing. The symbol ∞ indicates the one out of the three β-functions which remains positive at the
“fixed” point.
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the variable itself yielding a quadratic expression. Solving this equation and summarizing
gives

 σy2

c
y

∗ ∈

 0
∞
0

 ,

 2−
√

14
2

1 +
√

14
4

∞, 0

 ,

 2 +
√

14
2

1−
√

14
4

∞, 0


 . (8.4)

The interpretation of the fixed points is in complete analogy to the case of class AIII, sec.
8.2.1.

Class CII

In order to obtain the fixed points for class CII the same procedure as for class BDI is
applied. To gather the connection σy2 ↔ σ+ c, the β-function of 3σ

2 + c is set to zero. As
it turns out that σ = 0 at these fixed points anyhow, the arbitrariness of the definition is
irrelevant. The stationary points are

 σy2

3σ
2 + c
y

∗ ∈

 0
∞
0

 ,

 2−
√

31
8

4 +
√

31
2

∞, 0

 ,

 2 +
√

31
8

4−
√

31
2

∞, 0


 . (8.5)

Again, the interpretation is akin to the other two chiral classes. The c-value of the fixed
points was derived for the combination σ+c but for the Gade-like fixed point(s) the σ-value
is irrelevant, and for the two others it vanishes.

8.2.3 Phase diagram class AIII

For class AIII, the RG-flow in the
(
σy2, σ + c

)
-plane is depicted in figure (8.1), right. In

order to better visualize the flow diagram, a schematic plot is given as well ((8.1), left)2.
As the RG-equation for the fugacity decouples from the others, the flow diagram is the
same for any value of y (however, for large values of y the equations are not correct). The
shaded (white) region indicates that y grows (shrinks)3. The flow diagram is at the same
time the phase diagram for the AIII disordered metal: The red line separates the curves
which flow towards the “metallic” fixed point(s) (green dot, σ+ c→∞) from those which
flow towards the insulating fixed point (blue dot). The unstable fixed point is marked by
a red dot. The region, where the curves are directed to the metallic fixed point is denoted
by green roman numbers I,II and the areas where the flow points to the insulating fixed
point are labeled by blue roman numbers III, IV.

8.2.4 Validity

As mentioned, in the gray shaded region of the phase diagram (8.1) the fugacity y increases.
If the system, which evolves according to the curves in the

(
σ2y, σ + c

)
-plane, stays in this

region for too long, y will have increased too much and the small fugacity expansion is no
more valid. In particular, this also happens in the vicinity of the unstable metal-insulator
transition point. The flow within the plane slows down while y grows (nearly) constantly.
As all points which lie on the red separating curve or very close nearby will eventually
flow close to the unstable fix point the theory can neither be applied to them. The same is

2The RG equation of K has been modified (the number 8 has been added). This does not change the
qualitative RG flow.

3For y > 0.
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Σy2

Σ+c

I

II

III

IV

0

8
y increases

y decreases

Σy2

Σ+c

I

II

III

IV

0

8
y increases

y decreases

Figure 8.1: RG flow for class AIII in the
(
σy2, σ + c

)
-plane. Left: Schematic RG-flow.

Right: Flow according to equations (8.2). The flow in the
(
σy2, σ + c

)
-plane

is the same for any value of y. The white/shaded region, σ + c ≷ 8, indicates
the y decreases/increases.

true for the insulating fixed point. Consequently, vortices provide a mechanism producing
an insulating state, the corresponding stable and unstable fixed points are however out of
the range of applicability of the theory.
Furthermore, in classes BDI and CII, the perturbative RG-equations are valid for large
conductivity σ only. In all three chiral classes higher terms in 1

σ might multiply the vortex-
induced terms due to quantum fluctuations around the vortex solutions.
It has been stressed, that the flow in the

(
σ2y, σ + c

)
-plane is valid for any value of y

and in particular for y = 0. The physical meaning is doubtful but mathematically all of
the y∗ = 0 fixed points lie in the controllable region. Consequently, criticality might be
studied at the transition point for y = 0, keeping always in mind that eventually only
other technical approaches (e.g. simulations) might clarify its meaning.

8.2.5 Region of possible bare values

The fugacity y which enters the RG-equations (7.16), even though rescaled, falls exponen-
tially with increasing bare conductivity:

y0 ∼ e−σ0 .

The region where σ0 is large is the upper left part of phase diagram (8.1), flowing towards
the Gade fixed points and hence confirming expectation.
Even though the rough estimate of the fugacity, section 7.2.2, yields a disorder strength
independent value, corrections to this estimate can depend on the concentration of impu-
rities. It is intuitive to expect stronger disorder to eventually drive the system towards
the right hand side of the flow diagram, hence to the insulator.
In particular, assuming the NLσM description itself to be appropriate for any non-vanishing
bare conductivity4, the whole

(
σ2y, σ + c

)
-plane might be covered by the initial values of

the type (σ0 = n, c0,disorder strength)5 (n is the number of flavours). Among the regions
where the theory is applicable, all of the regions I, II, III and IV are accessible by the set
of bare values.

4For class AIII the exact perturbative RG justifies this assumption.
5It has been mentioned in sec. 4.4 that the Gade term can also be introduced by integrating massive

modes out. For class AIII with Dirac fermions, this yields a bare value c0 ≈ 0.18 [Ost07].
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Figure 8.2: RG flow for class AIII in a larger set of the parameter space in the
(
σy2, σ + c

)
-

plane.

8.2.6 Conjectures on the phase transition

It has been stressed that the applicability of the present theory breaks down at the metal-
insulator transition point and the separating red curve (plane). For this reason it is not
possible to study the nature of the phase transition within the given context. Nonetheless
some indications can be deduced from the phase diagram.
The theory is not valid on the transition line (plane) but it definitely distinguishes the
critical phase from the insulator. In particular, for a given bare conductivity there exists
most likely a definite critical disorder strength above which the red line is crossed and the
system flows into the insulating state. The other way round, for a given disorder strength
there is probably a finite minimal bare conductivity for which the system still flows into
the Gade-phase, and below which the system is insulating. They can be determined by
intersecting the red line with the family of curves(

σy2, σ + c
) ∼ (σ0e

−2σ0+f(disorder), σ0 + c0

)
(8.6)

for given disorder strength, bare conductivity and bare value of c. The further the inter-
section point is away from the critical point, the better is the accuracy for the obtained
value.
Consequently, as expected by Motrunich et al. [MDH02], for given disorder strength there
is a critical conductivity which separates the insulating from the Gade phase. But this
point in parameter space is not the end point of a line of fixed points in the sense of the
BKT-transition. It is simply the intersection of the curve (8.6) with the red separatrix,
which is however not necessarily accessible to the theory.
In particular, as the theory fails to describe the unstable fixed point, there is no informa-
tion of the nature of the phase transition. Formally, the theory allows for the calculation
of (finite) critical exponents but the result is not at all reliable. It might also be that in
the inaccessible region close to the critical point further phase transitions occur. In spite
of the little information about the unstable fixed point, the RG-flow indicates the phase
transition to be possibly of the Anderson-type rather then of the Kosterlitz-Thouless type.
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Part IV

Hence.
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Conclusion

The main achievement of this work is the demonstration of localization effects in chiral
classes, induced by vortices in the NLσM fields. A more distinctive summary of the results
follows.
In chapter 4, an explicit mathematical proof for the presence of a Z2-topological term in
the CII NLσM for Dirac fermions is given. Concretely, the term can be expressed as a
class AIII Wess-Zumino-Novikov-Witten term with additional boundary conditions. In
the present case, these are imposed by the natural appearance of a mass term within the
AIII-CII crossover.
Having a system with the definite appearance of the Z2-term at hand, microscopic exam-
ples for each of the chiral NLσMs (with and without topological term) are known. With
regard to this, the RG-equations for chiral symmetry classes are (re-)derived. Quantum-
fluctuations as well as all conceivable topological corrections are taken into account. In
this sense, the results are complete.
Chapter 5 is devoted to the technical description of the procedure - especially to the back-
ground field formalism - and the Gade-Wegner RG-equations are recalculated. Next, the
influence of topological terms is investigated. In particular, as these topological properties
are inherited from the special submanifold, Gade’s and Wegner’s argument takes effect
and conductivity is not renormalized.
Eventually, vortex-like excitations are examined. Starting from general argumentation
estimates for the bare vortex size and core energy are given. Thereafter the explicit calcu-
lation of the renormalization of the N -replica NLσM coupling constants is presented. For
N = 1 the results reproduce the U(1)-Berezinskii-Kosterlitz-Thouless-transition, whereas
in the replica limit they yield suppression of conductivity. Also, the interplay of topologi-
cal terms with vortices is discussed: it eventually results in vanishing localization effects.
Finally some conjectures are made concerning Z2-vortices.
The main part of the thesis ends with an extensive discussion of the obtained results. The
three parameter scaling, its fixed points and limits of validity are examined, as well as the
region of possible bare values. Most strikingly, the appearance of an insulating phase next
to the critical phase is shown, the two of them being within the domain of both applica-
bility and accessibility. Ultimately, some remarks concerning the Anderson-like nature of
the phase transition conclude the main part.

Altogether, a novel localizing mechanism was added to the variety of critical phenom-
ena in two-dimensional disordered systems. This is the announced newly inserted piece
into the Anderson jigsaw puzzle. The apparent controversy between the observed local-
ized phase in numerical tests [MDH02] [BC03] and the Gade-Wegner scaling is resolved.
In particular, the results of this work are in full agreement with the simulations.
Notwithstanding, there are still issues open for investigation. Above all, numerical simu-
lations directly attached to the exposed mechanism are expected to allow a more detailed
understanding of the phase transition. They possibly provide a link to experimental re-
search, too.
Furthermore, direct follow-up analyses also remain. A more rigorous statement concerning
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the neglected quantum-fluctuations around the vortex-saddle point, as well as regarding
the vanishing effect of vortices in the presence of topological terms are desirable. Besides,
analogous consideration of classes AII and DIII will help to elucidate the (presumably
antagonistic) interplay of weak-antilocalization and Z2-vortices. Both classes have NLσM
with topological terms, and extraordinary experimental realizations. Notably, the B-phase
of superfluid He3 falls into class DIII and, even more topical, (most) experimentally re-
alized three-dimensional topological insulators are of class AII, and so is graphene with
charged impurities.
The open questions eventually bring us back to the beginning of this diploma thesis.
Graphene and topological insulators, apart from displaying amazing experimental proper-
ties, provide a fascinating arena for the research on Anderson transitions. Their promising
future technical applications, as well as the natural realization of abstract concepts from
fundamental physics illuminate the immense scientific richness implicated by the 1958
discovery of P.W. Anderson.
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Deutsche Zusammenfassung

Zwei außerordentliche experimentelle Entdeckungen des noch jungen einundzwandzigsten
Jahrhunderts gaben der Forschung an ungeordneten Systemen und Anderson-Lokalisierung
zusätzlichen Schwung.
Zum einen erfanden Novoselov, Geim und Mitarbeiter die genial einfache ”Tesafilm - Me-
thode”, mit der Graphen, eine einatomige Graphitschicht, effektiv produziert werden kann
[NGM+04]. Sie erkannten darüber hinaus unmittelbar die einzigartigen elektrischen Eigen-
schaften dieses Materials. Unter anderem ist, im Gegensatz zu gewöhlichen Metallen, die
Leitfähigkeit über ein beträchtliches Temperaturfenster (von Raumtemperatur bis ∼ 1K)
hinweg nahezu konstant [NGM+05]. Diese ”bahnbrechenden Experimente” 6 veranlassten
das Nobelkomitee, den Nobelpreis 2010 Novoselov und Geim zu verleihen.
Zum anderen wurden neuartige, Quanten-Hall-artige Phasen in zwei- und dreidimensio-
nalen topologischen Isolatoren beobachtet [KWB+07] [HQW+08]. In diesen Phasen ist
Materie isolierend im Inneren und, paradoxerweise, gleichzeitig auf der Oberfläche leitend.
Noch erstaunlicher ist, dass die leitenden Oberflächenzustände extrem gut gegen lokalisie-
rende Unordnungseffekte geschützt sind.
Wie kann das passieren? Wieso gehorchen diese Materialen nicht Andersons Satz, welcher
Lokalisierung vorhersagt, falls die kinetische Energie klein im Vergleich zur Unordungsstär-
ke ist [And58]? Welche Mechanismen unterdrücken die Leitfähigkeit und warum greifen
sie nicht in den genannten Beispielen?
Graphen und topologische Isolatoren setzen diese alten Fragen in einen modernen Kontext:
Seit den siebziger Jahren versuchen zahlreiche Festkörperphysiker die unordnungsgetrie-
benen Andersonübergänge zu verstehen. Viele Antworten wurden gefunden, noch mehr
Fragen aufgeworfen doch die jüngsten Entwicklungen bestätigen, dass dieses Forschungs-
feld noch immer mit faszinierend überraschenden Phänomenen aufwarten kann.

Das ausgesprochene Ziel dieser Arbeit ist es, ein winziges, aber konzeptionell doch neues
Stück dem Puzzle der Andersonübergänge hinzuzufügen. Nur eine bestimmte Sorte Mate-
rialien soll betrachtet werden, nämlich die sogenannten bipartiten Systeme, die die chira-
len Symmetrieklassen bilden. Gemäß den Pionierarbeiten von Gade und Wegner [GW91]
[Gad93] und im Gegensatz zur Situation in gewöhnlichen Metallen ist die Leitfähigkeit der
betroffenen Systeme unabhängig von externen Parametern wie Temperatur7. Tatsächlich
ist diese bemerkenswerte Eigenschaft durch numerische Tests bestätigt worden [MDH02]
[BC03], allerdings entlarvten diese auch eine zusätzliche lokalisierte Phase. Wie kann ein
Isolator entstehen, wenn, nach Gade und Wegner, die Leitfähigkeit unverändert bleibt?
Die Antwort zu dieser Frage ist das wichtigste Ergebnis dieser Arbeit.

Abgesehen von ungeordneten Metallen ist die Untersuchung chiraler zufälliger Systeme
ebenfalls für den Grenzwert kleiner Energien in der Quantenchromodynamik relevant
[VZ93]. In der Festkörperphysik ist die natürlichste und charmanteste Verwirklichung Gra-

6Aus der Preisankündigung der Alfred Nobel Stiftung.
7Das erinnert womöglich an die Situation von Graphen, die weiter ober geschildert wurde. Obwohl der

Effekt ähnlich ist unterscheiden sich die theoretischen Gründe deutlich.
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phen. (Je nach Art der Unordnung, kann Graphen allerdings auch in andere Symmetrie-
klassen fallen.) Es gibt des weiteren theoretische Hinweise darauf, dass auch topologische
Isolotoren chiraler Symmetrieklassen existieren. Bis jetzt steht der experimentelle Nach-
weis noch aus, die außergewöhnlichen Anstrengungen, die heutzutage in der Forschung
an topologischen Isolatoren unternommen werden, können jedoch unter Umständen schon
bald zu einem anderen Ergebnis führen.
Indem die vorliegende Arbeit neue Einsichten darüber gewährt, wie Lokalisierung in chi-
ralen Klassen auftritt, vertieft sie gleichzeitig das Verständnis geschützter Zustände, die
mehr denn je ein lebhaftes Forschungsfeld darstellen.

Anderson-Lokalisierung

1957 machte Philip Warren Anderson die Entdeckung, dass ein quantenmechanisches Teil-
chen in einem ungeordneten Potential lokalisiert wird, falls die Unordnungsstärke im Ver-
gleich zur kinetischen Energie groß genug ist. Das Besondere daran ist, dass die Anderson-
Lokalisierung auch dann stattfindet, wenn man sie klassisch nicht erwartet. Ferner sind
bei gegebener Unordungsstärke und Energie entweder alle Zustände lokalisiert oder alle
delokalisiert. Es gibt also eine bestimmte Energie oder Unordungsstärke, bei der ein Pha-
senübergang stattfindet: der Andersonübergang.
Frühen Arbeiten von Wigner [Wig51] folgend entwickelte Freeman Dyson die sogenannte
Zufallsmatrixtheorie um die Physik schwerer Atomkerne zu beschreiben, in denen ”jegliche
Schalenstruktur ausgewaschen und keine Quantenzahlen außer Spin und Parität gut sind”
[Dys62].
Elektronische ungeordnete Systeme haben sehr wenige Symmetrien (zumindest, bevor über
Unordnung gemittelt wird). In diesem Sinn sind auch hier die meisten Quantenzahlen ”aus-
gewaschen” und eine Klassifizierung ähnlich derer von Wigner und Dyson ist angebracht.
Auf diese Art und Weise wurde nach und nach eine Liste von zehn unterschiedlichen Sym-
metrieklassen erstellt. Aufgrund physikalischer Argumente, aber auch mathematischer Be-
weise [HHZ05] kann diese Liste als vollständig angenommen werden. Sie ist im Anhang I
widergegeben.
Die zehn Symmetrieklassen spalten sich in drei Wigner-Dyson-, drei chirale und vier
Bogoliubov-deGennes-Klassen auf. Für die vorliegende Arbeit sind nur die drei chiralen
Klassen AIII, BDI und CII von Belang.
In ungeordneten Metallen fällt die elektronische Green’s Funktion auf der Längenskala der
mittleren freien Weglänge ab. Es gibt jedoch auch Moden, Diffusonen und Cooperonen, die
langreichweitig sind. In Störungstheorie und mit Hilfe des Replicatricks 8 lässt sich deren
korrigierender Effekt auf die klassische Drudeleitfähigkeit berechnen.
Anfang der achtziger Jahre wurde man sich dessen gewahr, dass diese perturbative Re-
normierung exakt der Renormierung nichtlinearer Sigmamodelle (NLσM) entspricht. Es
konnte gezeigt werden, dass ausgehend von einer mikroskopischen Theorie diese niede-
renergetischen effektiven Theorien direkt hergeleitet werden können. Abhängig von den
ursprünglichen Symmetrien des Systems bilden die Q-Felder des NLσM auf unterschiedli-
che Zielmannigfaltigkeiten ab.

Chirale Symmetrieklassen

Für chirale Symmetrieklassen sind die Zielmannigfaltigkeiten die unitäre Gruppe oder de-
ren Quotientengruppen. Da die Moden, die mit der Determinante des Feldes assoziert sind,
eine Gauß’sche Theorie bilden, ist ihr Vorfaktor nicht renormiert. Dies führt letztlich zum
Verschwinden der Korrekturen zur Leitfähigkeit. Dieses Argument von Gade und Wegner
wird bestätigt durch die perturbative Renormierung des NLσMs [GW91] [Gad93]. Auch
topologische Terme, wie der Wess-Zumino-Witten-Term in AIII und der Z2 topologische

8Auch die supersymmetrische Methode und die Keldysh-Technik sind weit verbreitet.
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Term in CII (dessen Auftreten in dieser Arbeit für ein bestimmtes System bewiesen wird)
ändern nichts am Gade-Wegner-Skalenverhalten.
Allerdings gibt es in Gades und Wegners Argument ein Schlupfloch, das schließlich lokali-
sierende Effekte hervorruft: die ”Gauß’sche” Theorie der Fluktuationen der Determinante
kann Wirbelanregungen enthalten, da sie auf einer einem Kreis homöomorphen Mannig-
faltigkeit definiert ist (det (U(N)) = U(1)). Diese Wirbelanregungen entsprechen Punkt-
defekten, die coulombartig, das heißt logarithmisch, miteinander wechselwirken. Zunächst
wird das Ausmaß und statistische Gewicht (Fugazität) dieser Anregungen abgeschätzt.
Die nackte (nicht renormierte) Fugazität ist das Inverse des Exponenten der Drudeleit-
fähigkeit. Anschließend kann die explizite Berechnung der Renormierung des N-replica
NLσM durchgeführt werden. Für N = 1 reproduzieren die Ergebnisse den wohlbekannten
Berezinskii-Kosterlitz-Thouless-Phasenübergang [Ber70] [KT73]. Im Replicalimes N→ 0
ergeben sie eine Unterdrückung der Leitfähigkeit:

AIII


− dσ
dlnm = − σ2y2,

− dc
dlnm = 1 − [

σ2 + 2σc
]
y2,

− dy
dlnm =

[
2− σ+c

4

]
y,

BDI


− dσ
dlnm = − σ2y2,

− dc
dlnm = 1

2 − [
σ2 + 2σc

]
y2 + O ( 1

σ

)
,

− dy
dlnm =

[
2− σ+2c

2

]
y,

CII


− dσ
dlnm = − σ2y2,

− dc
dlnm = 1

2 − [
1
2σ

2 + 2σc
]
y2 + O ( 1

σ

)
,

− dy
dlnm =

[
2− σ+c

4

]
y.

(σ ist proportional zur Leitfähigkeit, c der Vorfaktor des sogenannten Gadeterms und y
die Fugazität.)
Die Analyse des Renormierungsflusses, der den Wirbeln Rechnung trägt, lässt auf drei
”stationäre” Punkte schließen. Diese entsprechen der Gade-Wegner-Phase, der isolierenden
Phase und einem instabilen Metall-Isolator-Übergangspunkt. Insbesondere zeigt die Dis-
kussion der möglichen Anfangswerte und der Grenzen der Anwendbarkeit der Theorie, dass
sowohl die isolierende, als auch die ”metallische”Phase im Parameterraum zugänglich sind.

Résumé und Ausblick

Alles in allem wurde ein neuer lokalisierender Mechanismus der Vielfalt kritischer Phä-
nomene in zweidimensionalen ungeordneten Systemen hinzugefügt. Das ist das genannte
neu in das Puzzlespiel der Anderson-Lokalisierung eingesetzte Stück. Der scheinbare Wi-
derspruch zwischen der in numerischen Tests beobachteten lokalisierten Phase [MDH02]
[BC03] und dem Gade-Wegner Skalenverhalten ist gelöst. Insbesondere stehen die Ergeb-
nisse dieser Arbeit in vollem Einklang mit den Simulationen.
Dennoch sind noch einige Probleme ungelöst. Vor allem von numerischen Simulationen,
die direkt an den dargestellten Mechanismus anknüpfen, wird ein tieferes Verständnis des
Phasenübergangs erwartet. Auf diese Art und Weise könnte ebenfalls eine Verbindung zu
experimentellen Untersuchungen hergestellt werden.
Desweiteren bleiben auch direkt anschließende Fragen zurück. Tiefergehende Argumente
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bezüglich des Vernachlässigens von Quantenkorrekturen um den Wirbel-Sattelpunkt und
auch für das Verschwinden der wirbelinduzierten Effekte in der Gegenwart topologischer
Terme sind wünschenswert. Im Übrigen können gleichartige Betrachtungen der Symmetrie-
klassen AII und DIII helfen, das (vermutlich gegensätzliche) Wechselspiel von schwacher
Antilokalisierung mit Z2-Wirbeln aufzuklären. Beide Symmetrieklassen erlauben topolo-
gisch nichttriviale nichtlineare Sigmamodelle; darüber hinaus gibt es außergewöhnliche ex-
perimentelle Realisierungen. So fällt beispielsweise die B-Phase supraflüssigen 3-Heliums in
DIII. Noch aktuelleren Bezug gibt es zu AII: die meisten dreidimensionalen topologischen
Isolatoren und auch Graphen mit geladenen Störstellen gehören in diese Symmetrieklasse.
Die offenen Fragen bringen uns schließlich zurück zum Ausgangspunkt dieser Zusammen-
fassung. Graphen und topologische Isolotoren bilden, neben ihrer erstaunlichen experi-
mentellen Eigenschaften, einen faszinierenden Schauplatz für die Forschung an Anderson-
übergängen. Ihre vielversprechenden technischen Anwendungen, aber auch die natürliche
Verwirklichung abstrakter Konzepte aus der fundamentalen Physk erhellen den immensen
wissenschaftlichen Reichtum, den wir dank P.W. Andersons Entdeckung aus dem Jahre
1958 erforschen dürfen.
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Appendix

A Z2 topological term from the WZW perspective

This section is supplementary to the discussion in section 4.5. There it is argued that
the WZW term with boundary conditions Q (x, s = 0) = QT (x, s = 0) is a Z2 topological
term, acquiring only values in {0, iπ} (mod 2πi).

A.1 Topological quantization

Here, a proof is presented, that the WZW term with the boundary conditions has only
quantized values. To this end, consider small and slow fluctuations changing the extended
Q-field:

Q→ eiVQeiW ≈ (1 + iV )Q (1 + iW ) .

The symmetry condition on the boundary imposes V (x, s = 0) = W T (x, s = 0). With
these assumptions, the variation of the WZW-term vanishes:

iδSWZ = ik
4π

∫
d2xds εµνλtr

(
Q−1i∂µV Q

) (
Q−1∂νQ

) (
Q−1∂λQ

)
+ εµνλtr (i∂µW )

(
Q−1∂νQ

) (
Q−1∂λQ

)
= ik

4π

∫
d2xds ∂µ

{−iεµνλ (tr [V ∂νQ∂λQ−1
]

+ tr
[
W∂νQ

−1∂λQ
])}

= ik
4π

∫
S2 d

2x
{−iενλ (tr [V ∂νQ∂λQ−1

]
+ tr

[
W∂νQ

−1∂λQ
])}

boundary cond.
= ik

4π

∫
S2 d

2x
{
−iενλtr

[
V
(
∂νQ∂λQ

−1 +
(
∂νQ

−1∂λQ
)T)]}

= 0.

A.2 An exemplary Z2 instanton

In this section an example for an instanton yielding the non-trivial value

i SWZ |Q(x)=QT (x) = iπ

is exposed. This eventually demonstrates that the interpretation of the WZW term as Z2

topological term is meaningful.
It is sufficient to restrict oneself to the SU(2) subgroup of the NLσM manifold. The
extended fields are defined the following way:

Q :
(
R2 × [0,∞)

) ∪ {∞} → SU(2) ⊂ U(2N),

hence the boundary s = 0 is the physical space and Q (x, 0) = QT (x, 0). Notably, SU(2)
is parametrized in the ”quaternionic” way

Q = aµσ̃µ where σ̃µ =
{

1, µ = 0,
iσm, µ = m ∈ {1, 2, 3} .
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Now the WZW term is rewritten in terms of the real fields aµ:

iSWZ = i k
12π

∫
d2xds εµνλ tr

(
Q−1∂µQ

) (
Q−1∂νQ

) (
Q−1∂λQ

)
= −i k

12π

∫
d2xds εµνλ tr

[
Q−1∂µQ∂νQ

−1∂λQ
]

= −i k
12π

∫
d2xds εµνλ aα∂µaβ∂νaγ∂λaδtr

[
σ̃†ασ̃βσ̃

†
γ σ̃δ

]
= −i k6π

∫
d2xds εµνλ { +εabc aa∂µab∂νac∂λa0

−εabd aa∂µab∂νa0∂λad
+εcda aa∂µa0∂νac∂λad
−εcdb a0∂µab∂νac∂λad }

boundary cond.
= −i 2k

3π

∫
d2xds εµνλ εabc aa∂µab∂νac∂λa0.

For a better reading, the coordinates are renamed x1 = x, x2 = s, x3 = y. The Levi-
Civita-Symbol acquires an extra minus sign. With this new convention, the instanton of
size λ at position x0 is

a0 =
‖x− x0‖2 − λ2

‖x− x0‖2 + λ2
,

ak =
2λ (x− x0)k
‖x− x0‖2 + λ2

.

(Note, that a2 = 0 on the physical space, in accordance to the boundary conditions.)
Differentiating and inserting into the WZW-term,

iSWZ = ik
64λ5

3π

∫
d3x

(x− x0)a (x− x0)µ
(‖x− x0‖2 + λ2)5 εbcλεbca

= ik
128λ5

3π
2π
∫ ∞

0
dr

r4

(r2 + λ2)5

= ikπ. (A.1)

For odd WZW-levels k, the newly obtained Z2 topological term indeed acquires the non-
trivial value iπ (mod 2πi).

B Fierz identities

In this section a list of Fierz identities useful for the present work will be given.

SU(N)

Let {ita}N2−1
a=1 be a basis of the Lie algebra su(N) 9 such that

ta† = ta,

trta = 0,
trtatb = δab.

Then ∑
a

taijt
a
kl = δilδjk − 1

N
δijδkl. (B.1)

9the unconventional notation is due to the physicists’ wish to consider hermitian rather than anti-hermitian
generators and is kept throughout for consistency
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Sp(2N)

Let {iτa}N(2N+1)
a=1 be a basis of the Lie algebra sp(2N) such that

τa† = τa = −σ̂yτaT σ̂y,
trτa = 0,

trτaτ b = δab.

(σ̂y = σy ⊗ IN , σy is the usual second Pauli-Matrix). Then

∑
a

τaijτ
a
kl =

1
2

(
δilδjk − (σ̂y)ki (σ̂y)jl

)
. (B.2)

O(N)

Let {iτa}
N(N−1)

2
a=1 be a basis of the Lie algebra o(N) such that

τa† = τa = −τaT ,
trτa = 0,

trτaτ b = δab.

Then ∑
a

τaijτ
a
kl =

1
2

(δilδjk − δkiδjl) . (B.3)

SU(2N)
Sp(2N)

Let {ita}N(2N−1)−1
a=1 be a basis of the tangent space pSU(2N)

Sp(2N)

such that

ta† = ta = σ̂yt
aT σ̂y,

trta = 0,
trtatb = δab.

Then ∑
a

taijt
a
kl =

1
2

(
δilδjk + (σ̂y)ki (σ̂y)jl

)
− 1

2N
δijδkl. (B.4)

SU(N)
O(N)

Let {ita}
N(N+1)

2
−1

a=1 be a basis of the tangent space pSU(N)
O(N)

such that

ta† = ta = taT ,

trta = 0,
trtatb = δab.

Then ∑
a

taijt
a
kl =

1
2

(δilδjk + δkiδjl)− 1
N
δijδkl. (B.5)
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C Derivation of renormalized coupling constants

C.1 Renormalized action

First divide the Q-field in the bare action,

S0 [Q] =
∫
d2x

{
σ0

8π
tr
[∇Q−1∇Q]− c0

8π
[
trQ−1∇Q]2 +

σ0

8π
m2

4
tr
[
Q−Q−1

]2}
,

into fast and slow contributions:

Q→ U−1QV,

where U, V describe slowly varying fields and Q is fast. Hence,

S0 [Q]→ S0

[(
U−1V

)]
+ S0 [Q] + SIA [Q,U, V ] . (C.1)

Now expand the exponential in SIA to second order in gradients of slow fields and reex-
ponentiate the Q-averaged terms to obtain the renormalized action:

S′
[(
U−1V

)]
= S0

[(
U−1V

)]
+

∫
d2x

σ0

4π
〈
tr
[
Q−1

(
U∇U−1

)
Q
(
V∇V −1

)− (U∇U−1
) (
V∇V −1

)]〉
− 1

2

∫
d2xd2x′

〈{σ0

4π
tr
[(
Q∇Q−1

) (
U∇U−1

)
+
(
Q−1∇Q) (V∇V −1

)]
− c0

4π
tr
[
Q−1∇Q] tr

[(
U−1V

)−1∇ (U−1V
)]}x

{σ0

4π
tr
[(
Q∇Q−1

) (
U∇U−1

)
+
(
Q−1∇Q) (V∇V −1

)]
− c0

4π
tr
[
Q−1∇Q] tr

[(
U−1V

)−1∇ (U−1V
)]}x′〉.

Here 〈...〉 =
∫ D[Q]...e−S0[Q] denotes the average over fast fields.

C.2 Background field formalism

In order to calculate the renormalized coupling constants σ and c, the background field
formalism is employed (similar to [Pru87a]).

U(1)-Goldstone bosons

First consider, for all symmetry classes, the slow modes g0 of U(1)-subgroup: U−1 = V =
e
i
2
g01. These renormalize σ + tr1c. As the renormalization of σ is calculated below, the

formula for c is given:

c = c0− σ − σ0

tr1
+

1
Vol2

∫
d2xd2x′

(σ0 + tr1c0)2

8π (tr1)2

〈
tr
[(
Q−1∇Q)

x

]
tr
[(
Q−1∇Q)

x′

]〉
. (C.2)

(Vol :=
∫
d2x).
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Goldstone bosons of special submanifold

Now consider the slow Goldstone modes ga, which live on the special submanifold SM of
the σ-model manifold M:

class SM slow fields generators
AIII SU(N) U−1 = V = e

i
2
gata ta† = ta; trta = 0; trtatb = δab

BDI SU(2N)/Sp(2N) σyU
−Tσy = V = e

i
2
gata ta† = ta = σyt

aTσy; trta = 0; trtatb = δab

CII SU(N)/O(N) U−T = V = e
i
2
gata ta† = ta = taT ; trta = 0; trtatb = δab

Note that the Goldstone modes are considered one by one, hence within this paragraph
gat

a is not to be understood as a (Einstein-) sum.
This way one obtains

σ = σ0 +
1

Vol

∫
d2x

1
2
〈
tr
[
Q−1taQta − ta2

]〉
+

1
Vol2

∫
d2xd2x′

σ2
0

16π〈
tr
[(
Q∇Q−1

)
x
ta
]

tr
[(
Q∇Q−1

)
x′
ta
]− tr

[(
Q∇Q−1

)
x
ta
]

tr
[(
Q−1∇Q)

x′
ta
]〉

CII, BDI
= σ0 +

1
Vol

∫
d2x

1
2
〈
tr
[
Q−1taQta − ta2

]〉
+

1
Vol2

∫
d2xd2x′

σ2
0

8π
〈
tr
[(
Q−1∇Q)

x
ta
]

tr
[(
Q−1∇Q)

x′
ta
]〉
. (C.3)

Stabilizer modes

Finally stabilizer modes sa, which will not generate any translation on the manifold, are
considered.

class stabilizer slow fields generators
AIII SU(N) U = V = e

i
2
saτa τa† = τa; trτa = 0; trτaτ b = δab

BDI Sp(2N) σyU
−Tσy = V = e

i
2
saτa τa† = τa = −σyτaTσy; trτa = 0; trτaτ b = δab

CII O(N) U−T = V = e
i
2
saτa τa† = τa = −τaT ; trτa = 0; trτaτ b = δab

This leads to the following Ward-identity:

∫
d2x

〈
tr
[
Q−1τaQta − τa2

]〉
=

1
Vol

∫
d2xd2x′

σ0

8π
〈tr [(Q∇Q−1

)
x
τa
]

tr
[(
Q∇Q−1

)
x′
τa
]

+tr
[(
Q∇Q−1

)
x
τa
]

tr
[(
Q−1∇Q)

x′
τa
]〉

CII, BDI
=

1
Vol

∫
d2xd2x′

σ0

4π
〈
tr
[(
Q−1∇Q)

x
τa
]

tr
[(
Q−1∇Q)

x′
τa
]〉
.

(C.4)

C.3 Renormalized coupling constants

Now, both the renormalization of σ (C.3) and the Ward identity (C.4) are averaged over
generators using the Fierz identities (B.1) - (B.5). The second term in (C.3) becomes of
the type trQ−1trQ+ ... and is replaced using the Ward identity. Finally one obtains:
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σ = σ0 +
1

Vol

∫
d2xd2x′

σ2
0

8π
1

tr1 dim [SM]{
tr1
〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉− 〈tr [(Q−1∇Q)
x

]
tr
[(
Q−1∇Q)

x′

]〉}
,

(C.5)

c = c0 +
1

Vol

∫
d2xd2x′

σ2
0

8π
−1

tr1 dim [SM]
〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉
+
[
σ2

0

8π
dim [M]

(tr1)2 dim [SM]
+

2σ0c0

tr1 8π
+
c2

0

8π

] 〈
tr
[(
Q−1∇Q)

x

]
tr
[(
Q−1∇Q)

x′

]〉
.

(C.6)

Hence for all three chiral symmetry classes the conductivity and the coupling constant
of the Gade term are renormalized in an equivalent way by current-current correlation
functions.
The dimensions of the corresponding manifolds are listed below (dim [M] = dim [SM]+1).

SM dim [SM] tr1

AIII SU(N) N2 − 1 N

BDI SU(2N)
Sp(2N) 2N2 −N − 1 2N

CII SU(N)
O(N)

N2+N−2
2 N

C.4 Kubo formula in terms of background fields

Here the connection between the Kubo formula and eq. (C.5) shall be made. To this end,
the fermionic chiral action at the saddle point is considered

S =
∫
d2x Ψ̄

(
iγQ ξ (p)
ξ∗ (p) iγQ−1

)
Ψ,

where ξ (p) is a function of momentum operators, which depends on the underlying micro-
scopic theory. The substitution Q→ U−1QV is absorbed into a slow rotation of fermionic
degrees of freedom 10. This way, there arises an extra term in the action:

δS =
∫
d2x Ψ̄

(
0 U

[
ξ (p) , U−1

]
V
[
ξ∗ (p) , V −1

]
0

)
Ψ.

Goldstone modes

First, consider Goldstone bosons of the special submanifold U−1 = V = e
i
2
gata as in sec.

C.2. Again the gradients of ga are constant and the modes are considered one by one.
Then,

δS =
∫
d2x Ψ̄

(
0 i

2 [ξ (p) , ga] ta

− i
2 [ξ∗ (p) , ga] ta 0

)
Ψ = −1

2

∫
d2x Ψ̄ (∇ga) · jσztaΨ.

j is the current operator δS
δp .

10Even though the theory might display chiral anomaly, this rotation has unit Jacobian as it is slow.
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Stabilizer modes

Next, the stabilizer modes U = V = e
i
2
saτa are considered:

δS =
∫
d2x Ψ̄

(
0 − i

2 [ξ (p) , sa] τa

− i
2 [ξ∗ (p) , sa] τa 0

)
Ψ = −1

2

∫
d2x Ψ̄ (∇sa) · j τaΨ.

Kubo formula

Differentiating twice the partition function with respect to the gradients of Goldstone
respectively stabilizer modes and averaging over generators yields the conductivity,

σ

8<: AIII

BDI & CII

9=;
=

{
4
8

}
π

Tr

〈
δ2

δ (∂xsa)
2

∣∣∣∣
(∂xsa)=0

Z [(∂µsa)]− δ2

δ (∂xga)
2

∣∣∣∣
(∂xga)=0

Z [(∂µga)]

〉
gen.

=

{
1
2

}
π

Tr
〈

Ψ̄jx τaΨΨ̄jx τaΨ− Ψ̄jx σztaΨΨ̄jx σztaΨ
〉

generators

SCBA= − 1
π

tr
[
jxGRjxGR − jxGRjxGA

]
. (C.7)

’Tr’ includes trace over flavours, replicas, spins and integration over space, whereas tr
excludes replicas. Note that for classes BDI and CII, the τ -space (valley) degree of freedom
is incorporated into the NLσM manifold 11. To reobtain it after averaging over generators,
the extra factor of 2 had to be included.
On the other hand, differentiating the renormalized NLσM action in the above way(s)
yields

σ =


1
π2 × (eq. (C.5)) = n

π2 + . . . AIII,

2
π2 × (eq. (C.5)) = 2n

π2 + . . . BDI & CII.

(in units of
[
e2

~

]
.) This eventually motivates the slow (background) fields to have constant

gradient and assigns eq.s (C.5) and (C.6) the correct physical meaning.

D Perturbative corrections

In order to calculate the average over fast fields in the given non-linear integration space,
exponential coordinates will be chosen:

Q = eiWata ≈ 1 + iWat
a − 1

2
WaWbt

atb.

The summation is to be understood. The generators ta live on u(N), p U(2N)
Sp(2N)

and pU(N)
O(N)

for classes AIII, BDI and CII respectively. Note that t0 = 1√
tr1

is now explicitely included.

11Even though U(N)
O(N)

is used throughout, in the derivation of class CII NLσM (see ch. 4) it becomes

apparent that for microscopic reason U(2N)
O(2N)

is necessary.
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Fast propagators

Expanding the bare action (5.1) for fast fields to order O (W 2
)
, the propagators for the

Wa fields follow:

〈Wa (p)Wb (q)〉 = Πa (q) δab (2π)2 δ (p + q) , (D.1)

where

Πa (q) =

{
8π

2(σ0(q2+m2)+tr1c0q2)
, if a = 0,

8π
2σ0(q2+m2)

, else.
(D.2)

Expectation value of single trace term

∫
d2xd2x′

〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉
.=

∫
(dp)

(
dp′
) −p · p′

4

〈
W−p
a Wp

b W
−p′
c Wp′

d

〉
tr
[[
ta, tb

] [
tc, td

]]
= Vol

8π
σ2

0

ln
Λ
m

∑
SM

tr
[
tatbtatb − ta2tb

2
]

= −Vol ln
Λ
m

8π
σ2

0

tr1dim [SM]


1 AIII,
1
2 BDI,
1
2 CII.

(D.3)

The dot above first equals sign indicates that terms with less than four W -fields are zero
(integral over one fast and one slow field).

Expectation value of term with two traces

∫
d2xd2x′

〈
tr
[(
Q−1∇Q)

x

]
tr
[(
Q−1∇Q)

x′

]〉
.=

∫
(dp)

(
dp′
) −p · p′

4

〈
W−p
a Wp

b W
−p′
c Wp′

d

〉
tr
[
ta, tb

]
tr
[
tc, td

]
= 0. (D.4)

Perturbative corrections to coupling constants

∆σpert = −tr1ln
Λ
m


1 AIII,
1
2 BDI,
1
2 CII.

(D.5)

∆cpert = ln
Λ
m


1 AIII,
1
2 BDI,
1
2 CII.

(D.6)
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E. Supersymmetric calculation of the perturbative corrections in AIII 95

E Supersymmetric calculation of the perturbative corrections
in AIII

It shall be demonstrated that one-loop perturbation theory is exact for the AIII-NLσM.
Consider the supersymmetric version of the bare action (5.1)

S0 [Q] =
∫
d2x

{
−σ0

8π
Str
[∇Q−1∇Q]− c0

8π
[
StrQ−1∇Q]2} .

The following parametrization of the field Q ∈ U (1|1) will be used:

Q =
(

1 0
ν 1

)(
1 µ
0 1

)(
ea 0
0 eib

)
=
(

1 0
ν 1

)(
ea 0
0 eib

)(
1 µ′

0 1

)
.

(µ′ = e−(a−ib)µ. a ∈ R, b ∈ [0, 2π), µ, ν, µ′ Grassmannians).
Direct computation yields

Str
[
dQdQ−1

]
= −

[
(da)2 + (db)2 + 2ea−ibdµ′dν

]

= − ( da db dµ dν
)

1 0 0 −µ
0 1 0 iµ
0 0 0 1
µ −iµ −1 0




da
db
dµ
dν

 .

Therefore, this parametrization has a trivial Jacobian. Defining ψ := a− ib, the action is

S =
∫
d2x

σ0

8π

[
|∇ψ|2 + 2∇µ∇ν − 2∇ψµ∇ν

]
− c

8π
(∇ψ)2 . (E.1)

This implies the Feynman rules depicted in fig. E.1 (for consistency, mass-term regulariza-
tion is used again). In particular, there exists only a single possible Feynman graph (fig.
E.2) to correct any of the two coupling constants σ0, c0.
The graph corrects c in the following way (the approximation of slow external momenta
is denoted by ”≈”):

1
2
〈SIA〉 =

1
2

( σ
4π

)2
∫
d2xd2x′ (∂αψ)x (∂βψ)x′

〈
(µ∂αν)x (µ∂βν)x′

〉
≈ 1

2

∫
(dp)

pαpβ
(p2 +m2)

∫
d2x (∂αψ) (∂βψ)

≈
∫
dp

p

p2 +m2

∫
d2x

(∇ψ)2

8π

= ln
Λ
m

∫
d2x

(∇ψ)2

8π
.

µ ν

ψ̄ ψ̄

ψ̄ ψ = 8π
σ(q2+m2)

= 32πc
σ2(q2+m2)

= 4π
σ(q2+m2)

= − σ
4π

µ ∇ν

∇ψ

Figure E.1: Feynman rules for the action (E.1)

∇ψ ∇ψ
∇νµ

∇ν µ

Figure E.2: The only possible Feyn-
man diagram.
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Eventually, the exact RG-equations are 12

− dσ
dlnm = 0,

− dc
dlnm = 1.

F Z2-Instanton in class CII

First replace the topologically trivial saddle point Q = 1 by an instanton solution: Here a
simple rotation of the generalized O(3)-instanton (skyrmion) used by Pruisken [Pru87a]
will be considered:

QZ2 =
(
Q̃Z2

~0T
~0 1(2N−2)×(2N−2)

)
,

where

Q̃Z2 =
1

λ2 + ‖x− x0‖
( ‖x− x0‖2 − λ2 + i2λ (x− x0) i2λ (y − y0)

i2λ (y − y0) ‖x− x0‖2 − λ2 − i2λ (x− x0)

)
= a312 + ia2σx + ia1σz,

and a = 1
λ2+‖x−x0‖

(
2λ (x− x0) , 2λ (y − y0) , ‖x− x0‖2 − λ2

)T represents theO(3)-instanton
of size λ and at position x0.
The solution chosen precisely corresponds to Pruisken’s version of the instantons for the
QHE, only the boundary condition here is different: QZ2

r→∞−−−→ 1 for chiral systems, as
there is no advanced/retarded space. Therefore, the version given above is simply

QZ2 = U−1σ3QQHEU where U =
1√
2

(1− iσx) .

Action with instanton configuration

As QZ2 ∈ SU(N) the Gade-term does not contribute to the instanton action:

tr
[
Q−1∂µQ

]
= a · ∂µa = 0 as ‖a‖ = 1. (F.1)

Hence, only the kinetic term contributes to the action

SZ2 = 2σ0 + iπ,

consistent with [Pru87b].

Volume of space of possible projections

As with vortices, the instanton can be inserted equivalently in any other pair of replicas.
Rotating the instanton by all O(N) yields an overcounting of same configurations. To
understand the space of projections write

QZ2 = a3

(
12 ~0T
~0 0(2N−2)×(2N−2)

)
+ ia2

(
σx ~0T
~0 0(2N−2)×(2N−2)

)
+ ia1

(
σz ~0T
~0 0(2N−2)×(2N−2)

)
+

(
02×2 ~0T
~0 1(2N−2)×(2N−2)

)
.

12This matches eq.s (5.5).
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G. Estimate of the core energy of a vortex 97

In order to determine the stabilizer look for the subgroup of O(N) of matrices commuting
with QZ2 . Because of the first and the last term, the stabilizer has to be a subgroup of
O(2) × O(N − 2). Among the O(2)-matrices, all except {±1} do not commute with σx
and σy.
Therefore the volume of the space covered by projections of the instanton is

VolP̂inst = Vol
O(N)

Z2 ×O(N − 2)
= Vol

O(N)
Z2 ×O(N − 1)

O(N − 1)
O(N − 2)

= 2
πN−

1
2

Γ
(
N
2

)
Γ
(
N−1

2

) .
Other degrees of freedom of the instanton

The instanton can further be shifted in space and turned around its center without chang-
ing the value of the action. As the corrections to the coupling constants are also invariant
under these transformations (see (F.2)), they will be multiplied by 2πVol. Note that the
non-vanishing expectation value is not λ-independent, it will hence be integrated using the
following measure: ∫

dλ

λ3
〈...〉 .

For a derivation, see [Pru87b].

Expectation values with instanton configuration

As stated above (F.1), only the single trace term has a non-vanishing expectation value.
As the instanton is precisely the same as Pruisken’s, here his result [Pru87a] p.77 formula
(6.10a) is copied ∫

d2xd2x′
〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉
Z2

= −16π2λ2. (F.2)

Instanton induced corrections

Collecting the results from above and of equations (C.5) and (C.6) the corrections to the
coupling constants are:

∆σZ2 = N4π2σ2
0e
−2σ0

V olP̂

NdimSU(N)
O(N)

ln
Λ
m
, (F.3)

∆cZ2 = −4π2σ2
0e
−2σ0

V olP̂

NdimSU(N)
O(N)

ln
Λ
m
, (F.4)

where V olP̂
Ndim

SU(N)
O(N)

= 4πN√
πN(N+2)(N−1)Γ(N2 )Γ(N−1

2 ) = πN√
π(N+2)Γ(N2 +1)Γ(N+1

2 ) →
1

2π . The arrow

indicates replica limit

G Estimate of the core energy of a vortex

The core energy is defined

Score = Vinside (sinside − soutside) , (G.1)
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where s indicates the action per unit volume. For the AIII-model considered in sec. 7.2.2
the difference of action per unit volume is

sinside − soutside =
nγ2

πα
(N − 1)− n (N − 1)

∫
(dp) ln

(
p2 + γ2

)− n ∫ (dp) ln
(
p2
)

−nγ
2

πα
N + nN

∫
(dp) ln

(
p2 + γ2

)
SCBA= −n

∫
(dp)

γ2

p2 + γ2
+ ln

(
1− γ2

p2 + γ2

)
γ2

p2+γ2
∈(0,1]

= n

∫
(dp)

∞∑
n=2

1
n

(
γ2

p2 + γ2

)n
k:=p2+γ2

γ2=
nγ2

4π

∞∑
n=2

1
n (n− 1)

k−n+1
∣∣∞
k=1

=
nγ2

4π

( ∞∑
n=2

− 1
n

+
1

n− 1

)
=
nγ2

4π
. (G.2)

Multiplying this result with the volume of the vortex core yields

Score =
n

4
. (G.3)

H Vortex-induced corrections

In order to calculate the effect of the vortices, the ordinary saddle point QSP = 1 will be
replaced by a field configuration including one vortex-antivortex pair. This corresponds to
the situation of a dilute gas of vortex dipoles, which are of small extension.

QSP = QV−AV = ei[φx1 (x)−φx2 (x)]P̂ +
(
1− P̂

)
. (H.1)

The fact that the function φxi (x) describes a vortex at position x = xi is encoded in its
(analytical) property

∇µφxi (x) = rotµln
‖x− xi‖
γ−1

(γ−1 is the vortex core diameter).

The projection operator P̂ maps onto a single-replica subspace, for example

P̂ =


(

1 ~0T
~0 0N−1

)
for classes AIII and CII,(

12 ~0T
~0 02N−2

)
for class BDI.

Below, the integration over all possible projections will be performed.

Action for vortex-antivortex pair

Introducing the vortex-dipole (H.1) into the bare action (3.3) one obtains

SV−AV = 2Score + trP̂
σ0 + trP̂ c0

2
ln
‖x1 − x2‖

γ−1
+ Sm. (H.2)

The mass term provides the regularization (see section 5.1.2) for dividing fast and slow
fields. For simplicity it will have the following approximate effect: e−Sm ≈ θ (m−1 − ‖x1 − x2‖

)
.
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H. Vortex-induced corrections 99

Expectation value of current-current-correlators considering vortices

1
trP̂

∫
d2xd2x′

〈
tr
[(
Q−1∇Q)

x

(
Q−1∇Q)

x′

]〉
=

1

(trP̂)2

∫
d2xd2x′

〈
tr
[(
Q−1∇Q)

x

]
tr
[(
Q−1∇Q)

x′

]〉 ∼
− VolP̂

∫
d2xd2x′

∫
d2x1d

2x2

γ−4
rotµ

(
ln
‖x− x1‖
γ−1

− ln
‖x− x2‖
γ−1

)
rot′µ

(
ln‖x′ − x1‖

γ−1
− ln
‖x′ − x2‖
γ−1

)
e−SV−AV =

VolP̂ γ4

∫
d2xd2x′

∫
1
γ

d2ξ

[
2ln
‖x′ − x‖
γ−1

− ln
‖x′ − x− ξ‖

γ−1
− ln
‖x′ − x + ξ‖

γ−1

]
×y2

0πe
−trP̂

σ0+trP̂ c0
2

ln
‖ξ‖
γ−1 ≈

− VolP̂ Vol
γ4π2y2

0

2
Iξ. (H.3)

∆ln (x) = 2πδ (x) has been used both in the third and fourth line. “∼” hints that the
volume of zero modes also includes a factor of order one. Furthermore, the relative position
vector ξ = x1 − x2 was introduced in the fourth row and “≈” indicates expansion in small
‖ξ‖.
Iξ (ξ = ‖ξ‖) denotes the following integral (which is divergent for small trP̂ σ0+trP̂ c0

2 )

Iξ = 2π
∫

1
γ

dξ ξ3e
−trP̂

σ0+trP̂ c0
2

ln ξ

γ−1 .

However, during this RG-step, only little (fast) dipoles ξ < 1
m are integrated out (in order

to cure the divergence):

Ifast
ξ = 2π

∫ 1
m

1
γ

dξ ξ3e
−trP̂

σ0+trP̂ c0
2

ln ξ

γ−1

=
2π

γ4
(

4− trP̂ σ0+trP̂ c0
2

) [( γ
m

)4−trP̂
σ0+trP̂ c0

2 − 1

]

≈ 2π
γ4

ln
γ

m
+O

((
ln
γ

m

)2
)
. (H.4)

Larger dipoles are still present (during this RG-step). Their influence is incorporated in

Islow
ξ = 2π

∫
1
m

dξ ξ3e
−trP̂

σ0+trP̂ c0
2

ln ξ

γ−1

=
( γ
m

)4−trP̂
σ0+trP̂ c0

2 Iξ. (H.5)

Via rescaling, the initial lower bound for the integral is reobtained. The prefactor will be
incorporated into the rescaled fugacity y2 [JKKN77].

Volume of space of possible projections

The action with one vortex-antivortex pair (H.2) is invariant, if one rotates the projector
P̂ to another projector (trP̂ invariant), shifts the dipole center or rotates the dipole in the
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two-dimensional plane.
The precise way to rotate P̂ depends on the symmetry class: The requirement

QV−AV (x) x→∞−−−→ 1

constricts the rotating matrices to subsets of U(N), Sp(2N) and O(N) for AIII, BDI and
CII respectively:

{
P̂
}

=



{
V −1P̂ V

}
V ∈U(N)

= U(N)
U(1)×U(N−1) = CPN−1 AIII,{

V −1P̂ V
}
V ∈Sp(2N)

= Sp(2N)
Sp(2)×Sp(2N−2) = HPN−1 BDI,{

V −1P̂ V
}
V ∈O(N)

= O(N)
O(1)×O(N−1) = RPN−1 CII.

Here
{
P̂
}

stands for the space covered by projectors to be considered, the stabilizer

reflects, that in QV−AV both p̂ and 1− P̂ are rotated.
Vortices are hence introduced on the complex, quaternionic and real projective space
respectively. The volume of the manifold covered can be calculated explicitly (by rotating
P̂ = p⊗p∗, p∗p = 1, p lives on CN , HN or RN and p∗ on the corresponding dual space):

VolP̂ =


S2N−1

S1 = πN

πΓ(N) AIII,
S4N−1

S3 = π2N

π2Γ(2N)
BDI,

SN−1

S0 = π
N
2

Γ(N2 ) CII.

(H.6)

Vortex-induced corrections to coupling constants

The equations (C.5), (C.6), (H.3) - (H.6) describe the correction to the coupling constants
due to dipoles. Summing and multiplying up, the vortex induced corrections (also given
in the main text, sec. 7.3.4) are obtained.

AIII


∆σV = − πN

Γ(N+2)σ
2
0y

2
0ln γ

m +O
((

ln γ
m

)2)
,

∆cV = −
[
σ2

0
πN

Γ(N+2) + 2σ0c0
πN

Γ(N+1) + c2
0
πN

Γ(N)

]
y2

0ln γ
m +O

((
ln γ
m

)2)
,

y = y0

( γ
m

)2−trP̂
σ0+trP̂ c0

4 ,

BDI


∆σV = − π2N

Γ(2N+2)σ
2
0y

2
0ln γ

m +O
((

ln γ
m

)2)
,

∆cV = −
[
σ2

0
π2N

Γ(2N+2) + 2σ0c0
π2N

Γ(2N+1) + c2
0
π2N

Γ(2N)

]
y2

0ln γ
m +O

((
ln γ
m

)2)
,

y = y0

( γ
m

)2−trP̂
σ0+trP̂ c0

4 ,

CII


∆σV = − 2π

N
2

(N+2)Γ(N2 +1)σ
2
0y

2
0ln γ

m +O
((

ln γ
m

)2)
,

∆cV = −
[
σ2

0
π
N
2

(N+2)Γ(N2 +1) + 2σ0c0
π
N
2

Γ(N2 +1) + 2c2
0
π
N
2

Γ(N2 )

]
y2

0ln γ
m +O

((
ln γ
m

)2)
,

y = y0

( γ
m

)2−trP̂
σ0+trP̂ c0

4 .

(H.7)
For the different symmetry classes, different prefactors have been incorporated into y0:

AIII y0 → y0

√
2π
4

BDI y0 → y0
1√
2

CII y0 → y0
π
4
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