
Large scale simulation of wave-packet

propagation via Krylov subspace methods and

application to graphene

Simulation von Wellenpaketen mit

Krylov-Methoden und Anwendung auf

Graphen

Victor Häfner

Institut für Theorie der Kondensierten Materie

Institut für Nanotechnologie,

Karlsruhe Institute of Technology,

76131 Karlsruhe, Germany

E-mail: victor.haefner@gmail.com

Referent: Prof. Dr. (apl.) F. Evers

Korreferent: Prof. Dr. K. Busch

Prüfexemplar

November 11, 2011

2

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, November 11, 2011

3

Acknowledgments

An dieser Stelle will ich meiner Verlobten Polina Stoyanova danken die mich

das Jahr über immer unterstützt hat.

Ich danke Ferdinand Evers für die Geduld und hervorragende Betreuung,

dem wissenschaftlichem Umfeld in dem ich Arbeiten durfte und nicht zuletzt

für all das vermittelte Wissen.

Ich will auch Christian Seiler für die langen Diskusionen und vielen Ratschlägen

danken, sowie für das Korrekturlesen, und auch allen anderen der Arbeits-

gruppe um Ferdinand Evers.

4

Contents

1 Introduction 17

1.1 The method implemented in this thesis 20

1.2 Organization of this thesis . 22

2 Wave packet simulation 23

2.1 Tight binding formalism . 25

2.2 Graphene specific implementation of the Hamilton 26

3 Krylov subspace methods 29

3.1 Orthonormalization methods 31

3.2 Arnoldi methods . 32

3.3 Hamilton projection in the Krylov subspace 34

4 Observables and Krylov subspace methods 37

4.1 Density of states . 37

4.2 Diffusion . 40

5 Implementation 43

5.1 Core simulation, Krylov methods and time evolution 45

5.1.1 Density of states . 47

5.1.2 Diffusion . 48

5.1.3 Data-structures . 48

5.1.4 MPI wrapper, parallelization 49

5.2 Validation . 50

5.3 Visualization . 52

6 Application to graphene 55

6.1 Graphene, a honeycomb lattice 55

5

6.1.1 Electronic properties of clean graphene, the tight bind-

ing approach . 56

6.1.2 Long range disorder, vacancies and zero modes 58

6.1.3 Transport properties 60

6.2 Density of states, numerical results 62

6.2.1 Clean DoS . 63

6.2.2 DoS with vacancies in one sub lattice 66

6.2.3 Vacancies equally distributed in both sub lattices . . . 70

6.2.4 Disorder in both sub lattices 72

7 Outlook 79

A Appendix: validation 81

B Appendix: implementation 87

B.1 Appendix: Krylov method . 87

B.2 Appendix: MPI . 89

B.3 Appendix: diffusion . 93

C Appendix: Displacement shader 97

6

List of Figures

1.1 Clean honeycomb lattice . 18

2.1 Localized wave packet in disordered graphene 24

2.2 Brick wall representation of the graphene lattice 28

5.1 Workflow diagram for the DoS 44

5.2 Time line with simulation parameters 51

5.3 Single vacancy scattering on a square lattice, 2D visualization 52

5.4 Single vacancy scattering on a graphene lattice, 3D visualization 53

6.1 Electronic bands of clean graphene 55

6.2 Brillouin zone of clean graphene 56

6.3 Minimal conductivity in graphene measured experimentally . . 61

6.4 DoS of clean graphene, slope around the Dirac point 62

6.5 DoS with vacancies in one sub lattice only 65

6.6 Pseudo gap characteristics, peak weight and gap width over

vacancy concentration . 67

6.7 Flow of the eigenvalues around the Dirac point when increas-

ing disorder . 68

6.8 Vacancies in one sub lattice, behavior at the edge of the gap . 69

6.9 DoS with the same amounts of vacancies in both sub lattices . 70

6.10 Low energy spectrum for the compensated case 72

6.11 Level spacing of the low energy spectrum 73

6.12 DoS with different amounts of vacancies in both sub lattices . 74

6.13 Schematic description of the DoS around the Dirac point with

different amounts of vacancies in both sub lattices 75

6.15 Plateau and low asymptotic regime over uncompensation . . . 77

6.16 Phase diagram of the exponent of the DoS in the low energy

spectrum . 77

7

A.1 Simulation parameter, time step width 82

A.2 Simulation parameter, total simulation time 83

A.3 Simulation parameter, system size 84

A.4 Integrated DoS . 84

A.5 Delta peak slope . 85

8

Zusammenfassung

Die Zielsetzung dieser Diplomarbeit ist es, eine numerische Methode zu im-

plementieren, um quantenmechanische Wellenpakete zu propagieren. Dies

wollen wir für möglichst lange Zeiten und große Systeme ohne Beschränkungen

der zugrunde liegenden Geometrie durchführen. Dadurch würde ermöglicht,

die Dynamik von Quantenteilchen und somit Effekte von Bandstruktur, Rändern

oder Inhomogenitäten zu erforschen. Die eingesetzte Methode basiert auf der

so genannten Arnoldi -Methode, eine von mehreren Methoden, die zur Fam-

ilie der Krylov-Methoden gehört. Der Krylov-Raum ist ein um einen Quan-

tenzustand aufgebauter Unterraum, in den wir den Hamiltonian hineinpro-

jizieren. Dadurch können wir ohne Probleme diagonalisieren. Dies ermöglicht

es uns, den Zeitentwicklungsoperator zu berechnen, ohne die volle Matrix

des Hamiltonoperators diagonalisieren zu müssen. Dadurch müssen dass wir

nicht mit der vollen Matrix arbeiten und brauchen daher wesentlich weniger

Speicher. Wir erreichen so die nötigen Systemgrößen und die nötige En-

ergieauflösung, um quantenmechanische Lokalisierungseffekte zu berechnen.

Wir haben unseren auf Tight-binding-Gitter ausgelegten Code parallelisiert;

hierfür nutzen wir die MPI-Bibliothek. Wir konnten so für unsere Simulation

die Supercomputer der Region bzw. Deutschlands nutzen, wie den HC3 am

SCC in Karlsruhe oder den JUROPA am JSC in Jülich. Wir erreichen bis

dato unerreichte Systemgrößen von 16348× 16348 Gitterpunkten, mit einer

Million Zeitschritten in weniger als 12 Stunden auf JUROPA. Mit diesem

Erfolg haben wir den Weg bereitet für die Simulation der Quantendynamik

effektiver Einteilchentheorien von ungeordneten Metallen.

Wir nutzen die von uns entwickelte numerische Methode um Graphen

zu untersuchen. Die Kristallstruktur von Graphen ist zweidimensional und

bildet ein hexagonales Gitter mit einer zweiatomigen Basis. Wir haben uns

9

die Zustandsdichte angeschaut, insbesondere mit zufälliger Unordnung in

Form von unbesetzten Gitterplätzen. Solche Fehlstellen sind in der Realität

zwar selten, jedoch von großem Interesse, da in Experimenten Adatome lokal

die sp2-Hybridisierung brechen können, indem sie das Kohlenstoff Atome in

die sp3-Hybridisierung zwingen. Effektiv wird somit ein pz-Orbital aus dem

π-Band entfernt, was man gut durch einen unbesetzten Gitterplatz approx-

imieren kann.

Diese Art von Unordnung bricht gewisse Symmetrien des Dirac-Hamilton-

Operators vom reinen Graphen, jedoch nicht alle. Das Material entspricht

der Symmetrieklasse BDI, bei der Chiralität und Zeitumkehrinvarianz er-

halten sind. Ausgehend von früheren analytischen Ergebnissen erwarten

wir ein singulares Verhalten in der Nähe des Energienullpunktes dort, wo

die chirale Symmetrie zum tragen kommt. Ein Pseudogap öffnet sich in

dessem Mitte, Nullmoden erscheinen, die miteinander koppeln, das Pseudo-

gap füllt sich auf. Dieses Verhalten wurde schon in früheren numerischen

Arbeiten beobachtet, jedoch wurden die Details der Strukturen, die man für

verschiedene Unordnungskonfigurationen beobachtet, nicht eingehend disku-

tiert. Wir ermöglichen dies mit unserer Simulation durch eine verbesserte

Auflösung der Energie.

Anfangs haben wir Fehlstellen gleichmäßig in beide Graphen-Untergitter

eingebracht. Der Dirac-Kegel ist aufgefüllt und die Zustandssumme weist

eine integrable Divergenz auf. Die Form dieser Divergenz kann durchaus grob

durch das analytische Verhalten |E|−1 beschrieben werden. Jedoch scheinen

unsere Daten nicht ohne weiteres mit der Energie-Abhängigkeit des Vor-

faktors in Einklang zu bringen sein. Ein Grund dafür könnte sein das die

analytische Beschreibung für ein Regime niedrigerer Energien gilt, in dem

wir uns noch nicht befinden. Sollte dies der Fall sein, so haben wir eventuell

10

ein neues Übergangsregime in der Zustandsdichte entdeckt, das in den realen

Niederenergiebereich übergeht, im thermodynamischen Limes.

Die Entwicklung der Zustandsdichte haben wir auch für in beiden Unter-

gittern ungleich verteilten Fehlstellen studiert. Wir bestätigen bestehende

qualitative Ergebnisse für Unordnung in nur einem Untergitter. Zusätzlich

können wir auch niederenergetische Asymptoten mit |E|2-Verhalten identi-

fizieren, und ein Zwischenregime mit nicht universellem effektivem Expo-

nenten |E|1/z. Wie der asymptotische Bereich im Niederenergiebereich und

im Limes des voll unkompensierten Falls verschwindet bleibt offen. Wir

schlagen ein Phasendiagramm vor, dass das Verhalten vom Exponenten 1/z

beschreibt, insbesondere sein Vorzeichen.

11

12

Summary

The aim of this thesis is to implement a computational method that allows to

propagate a quantum mechanical wave packet for long times in large systems

with arbitrary geometries. In this way one can study the quantum dynamics

of particles and thus the effect of band structure, edges or inhomogeneities.

The technique is based on the Arnoldi method which belongs to the Krylov-

subspace methods. This method consists of spanning a sub space around

the current quantum state and projecting the Hamiltonian of the system

in it. In this way the time evolution operator of the system is computed

without diagonalizing the full Hamiltonian, which is absolutely essential for

the system sizes and energy resolution required to study quantum localization

effects. Our code is efficiently parallelized for tight-binding lattices with the

MPI library and runs on the biggest clusters of the SCC (Karlsruhe) and the

JSC (Jülich). We reach an unprecedented system size of 16348×16348 lattice

sites with a million time steps observation time in only 12 hours computer

time on the JUROPA cluster in Jülich. With this success, we have paved

the ground for future studies of quantum dynamics in very broad classes of

disordered tight binding models.

We have applied our method to the material graphene. The crystal struc-

ture of graphene is a 2D honeycomb lattice with a two atom unit cell. We

studied the density of states (DoS) of graphene in the presence of randomly

placed vacancies. This case is interesting to study because even though in

experiments carbon vacancies are rare, adatoms can break locally the sp2 hy-

bridization by forming sp3-bonds and thus effectively eliminate a pz-orbital

from the conjugated sheet. Thus, an approximate realization of vacancies is

found.

Vacancy disorder breaks some of the symmetries of the Dirac Hamiltonian

13

of clean graphene, but not all of them. With vacancies present the material

belongs to the symmetry group BDI, which respects a “chirality” symmetry

and time reversal invariance. Based on earlier analytical investigations one

expects that the DoS exhibits a singular shape near zero energy, where the

chiral symmetry becomes active. Zero modes are filling into the pseudo gap

of clean graphene which couple to each other thus filling the gap. Indeed, the

overall singular shape has been observed already in earlier numerics. How-

ever, the detailed sub gap-structure was not studied before. The improved

resolution of our code has made this possible.

We first have introduced the same amount of vacancies in both sub lat-

tices. The Dirac cone is filled and the DoS exhibits an integrable divergency.

While the strongest feature of this divergency is not inconsistent with an

analytical prediction, |E|−1, we find qualitative disagreement with the sub

leading energy dependency of the pre factor. The computational result does

not exhibit the analytically predicted scaling with the system size. In prin-

ciple, a possible reason could be that the analytical result becomes valid at

energy scales still too low to resolve with our approach. If this is the case,

then we have identified a new cross-over regime in the DoS that evolves into

the true low energy asymptotes in the thermodynamic limit.

The evolution of the DoS has also been studied with increasing mismatch

between the impurity concentrations in both sub lattices. We confirm earlier

qualitative findings about the evolution of the full gap at maximum mis-

match, where vacancies are in one sub lattice only. In addition, we can also

identify a low energy asymptotic with a |E|2 behavior of the DoS and an in-

termediate regime with a non-universal effective exponent |E|1/z. The fate of

the low energy asymptotic in the limit of zero sub lattice mismatch remains

a question open for future research. We have formulated a scenario in terms

14

of a phase diagram displaying the behavior of the effective exponent 1/z, in

particular its sign.

15

16

1 Introduction

Why computer simulations? A simulation is the imitation of a real

physical system or process. Some specific key characteristics are modeled

in an artificial environment. In computational sciences simulations are cul-

tivated in order to look into the complex processes of nature, which often

are not accessible by other means. Such simulations offer the advantage that

they take place in a controlled setting. In particular, one can change the

external factors at will, and explore even non-physical regimes. In this way,

dependencies of the system properties for many variables can be investigated.

Aim of this thesis. The aim of this thesis is twofold. First and foremost

a method was implemented and tested that allows to propagate a quantum

mechanical wave packet for long times in large systems with arbitrary ge-

ometries. With the code thus developed the quantum dynamics of particles

can be simulated and thus the effect of band structure, edges or large scale

inhomogeneities may be studied. The technique relies upon what is known

in the literature as Krylov-subspace method. Our specific implementation

is optimized for the treatment of tight-binding lattices, where an efficient

parallelization has been installed. As a scientifically relevant test case we

have applied our method to the graphene material. The system sizes that

we could efficiently deal with have already reached 16384×16384, a factor of

two larger that what has been possible before (to the best of our knowledge).

[24]

Why graphene? As first application of our simulation tool, we investi-

gated the time evolution of a single particle state on a 2D hexagonal lattice.

Such a lattice is well known, especially in the context of graphene, a single

17

Figure 1.1: A clean graphene honeycomb lattice. The trigonal planar struc-
ture comes from the sp2 hybridization.

sheet of graphite. Graphene is a carbon allotrope, it is a one-atomic thick

layer of carbon atoms arranged in a honeycomb lattice. The distance be-

tween two carbons is 0.142 nm. This allotrope of carbon has sp2-hybridized

orbitals which leads to the planar structure. The pz-orbital is perpendicular

to the plane and forms with the pz-orbitals from the other carbon atoms a

half filled π-band. Multiple layers stacked onto each other, coupled by weak

van der Waals forces, result in graphite, with a inter-planar spacing of 0.335

nm.

The Nobel prize 2010 was awarded to Andre Geim and Konstantin Novoselov

”for groundbreaking experiments regarding the two-dimensional material graphene”.

The awardees wrote a review on graphene in 2009 with the title The electronic

properties of graphene, where they cover most of the basics [5]. Graphene is

currently one of the most active research fields in condensed matter physics.

18

Studies of graphene have already revealed a lot of new physics and promising

applications. It is the first 2D material realized in an experiment; not so long

ago nobody did even believe such material could exist. Graphene is a mate-

rial with very interesting electronic properties due to its unusual electronic

spectrum. It could have significant impact in future technologies: graphene-

based electronics, composite materials. It has already been discussed that

graphene powder for batteries can be produced in mass-production, cheaper

than nanotubes [8].

Most interesting to many scientists is the Dirac cone shape in the band-

structure, resulting in “relativistic” behavior of particles even at room tem-

perature. 1 The transport properties of graphene are quite special due to

this relativistic behavior of the electrons. In experiments a minimal conduc-

tance has been measured of a quantum unit 4e2/h, discussed in numerous

papers [8, 5, 16]. More will be said on the electronic properties of graphene

in section 6. Here, we would like to briefly explain our specific interest in

the matter. Our focus is on graphene with disorder in the form of vacancies.

In other words, we imagine a hexagonal lattice where links have been inter-

rupted so a number of sites is totally disconnected from all the others. We

are motivated to do so for two reasons.

(1) In reality, vacancies are rare, also they can attract charge and even

spin and thus are not necessarily faithfully modeled by a vacancy in a tight

binding lattice; nevertheless, a first impression may be gained. More relevant

is the observation that some of the carbon atoms of a graphene sheet may

be taken out of their sp2-hybridization into an sp3-hybridization by chemical

reactants. Such situations may be a common encounter in real experiments,

and therefore to model their effect on transport and other properties is of

1For example, it was proposed that Klein tunneling can be observed in experiments [3].

19

interest.

(2) Vacancy disorder in a tight binding lattice is of great interest in itself.

Namely, vacancies leave some of the intrinsic symmetries of the hexagonal

lattice intact. Specifically, they do not break the so called chiral symmetry,

which in a sense reflects the fact that hopping is from one sub lattice to

an other, always. [14] Hence, one can investigate dynamical properties at

the point, where this symmetry is active, namely at the Dirac point at zero

energy. Indeed, it is well known that vacancies when added to one sub lattice

only, induce a mid gap state each (“zero mode”) into the electronic spectrum.

When vacancies are given into the second sub lattice also, the zero modes

hybridize and give rise to a singular structure of the density of states near

zero energy. In the tool developed in this thesis, we can achieve an energy

resolution that allows us to investigate the sub gap-structure of the density

of states in better detail than it was possible in previous attempts. [24]

1.1 The method implemented in this thesis

The method to propagate in time a wave packet on a lattice is an implemen-

tation of Krylov subspace methods. We further looked at various observables

and investigated them with our numerics in the presence of disorder. The

major achievement of this thesis is the implementation of this simulation

technique. The software has been entirely implemented from scratch. We

use subspace methods to avoid the full Hamilton matrix diagonalization. We

also use standard tools like Lapack [1] functions for diagonalization. The den-

sity of states is accessible via a spectral method which requires the Fourier

transformation of the correlation function 〈Ψ(t0)|Ψ(t)〉. For this task we use

the FFTW library [6].

The method is capable of simulating a quantum mechanical single particle

20

state in a discrete space. We do this by computing the direct numerical

solution of the time-dependent Schrödinger equation. The wave function is

defined on a set of sites in the Hilbert space, the dynamics being governed

by the Hamilton of the system. For a specific physical system its Hamilton

operator is needed, the rest of our simulation is independent of the system to

study. The numerical propagation method is to compute the time evolution

operator for every time-step to iteratively propagate the system with small

time-steps.

Parallelization: We tackle the computational difficulties by parallelizing

our code. The underlying numerical methods, Krylov subspace method with

the GramSchmidt orthonormalization, have the advantage to scale very good

in an parallel environment which allows very big system sizes. We distribute

the work by splitting the lattice, we would like to to simulate our quantum

state on, in multiple chunks. Every process simulates a piece of the system,

communicating with its four neighbors to ensure the coherence of the lattice.

Taking into account the computational resources at our disposal (e.g. Jülich,

EUROPA cluster, 4096 cores, 12h computation time) this allows us to reach

unprecedented systems sizes of 16384×16384 sites with an energy resolution

better than 10−4 in terms of the non-interacting bandwidth. 2

2Alternative method. Split operator method: The split-operator spectral method
([13, 10]) computes the propagated state vector in time. One starts with the Schrödinger
equation i∂tΨ = − 1

2M∇
2Ψ + VΨ and approximates the solution to,

Ψ(t0 + ∆t) = e
i∆t
4M ∇

2

· e−i∆tV · e i∆t
4M ∇

2

Ψ(t0) +O(∆t3) (1.1)

In photonics this method is used to approximate the solution to the Maxwell’s wave
equation which has the same form as the Schrödinger equation. We avoid application
of this method here, since it relies on the representation of the continuum dynamics in
terms of a dispersion ε(p), where eigenfunctions of p are plane waves. To easily represent
vacancies, we prefer to work with lattice-dynamics.

21

1.2 Organization of this thesis

The thesis is structured in 8 parts. After the introduction comes the first

theoretical part which eludes the physical backgrounds of this simulation.

Then follows an extensive part about the simulation method The part on

the implementation reveals more details how exactly we translate the theory

in algorithms, what milestones we passed, the improvements we made over

time. Finally, we present the application to graphene, the model we use to

describe the physics, our results concerning the density of states and our

conclusions. The last section, summarizes our results, evaluates our method

and discusses methodological improvements and other applications where the

wave packet propagation might be useful.

Recursive Green’s function method: Another method used is the recursive Green’s func-
tion method [9, 15]. The Green’s function on an atomic site has a recursive form,

G00(E) =
1

E −
5h2

E −
37
5 h

2

E − . . .

(1.2)

Such an expansion is cut off at some point which results for example in a sum over delta
functions for the local density of states at a specific atomic site.

22

2 Wave packet simulation

In condensed matter physics, surface science and photonics, the simulation of

wave packet propagation is widely used. It can provide information about the

system dynamics over short and intermediate time scales and thus probes the

the full energy spectrum at relatively high but also at lower energies. Hence

the method is attractive especially in those situations, where an overview

about all the spectrum is required. The energy resolution is limited by two

time scales, the observation time, tobs, and the time interval, ∆t, for the

discretized time boosts. As usual, the band width in energy is limited by ∆t−1

while the energy resolution is fixed by t−1
obs. Obviously, in order to study low

energy excitations one should be able to afford very long observation times.

As a first attempt on time propagation of an initial state, Ψ0, one might

consider to start head on with the time dependent Schrödinger equation,

i
∂

∂t
Ψ(t) = HΨ(t). (2.1)

The initial state, Ψ0(r), could be chosen as a sharply peaked Gaussian wave

packet so as to simulate motion of a quantum particle that has been relieved

at t = 0 at the origin. The wave packet describes the distribution of the

probability amplitude of position and momentum for a quantum mechanical

time evolution; If one were to discretize (2.1) and hence follow a finite dif-

ference time evolution difficulties would be encountered at long observation

times. One problem is, that the unitary time evolution is realized only in an

approximate way, so that in the long run particle number is not conserved.

In general, approximation schemes are preferable that replace the exact

unitary time evolution by another unitary time evolution, that can be repre-

23

Figure 2.1: An initial state Gaussian wave packet, propagated for a few time
steps on a graphene honeycomb lattice with 256x256 sites and 5% vacancy
concentration. The initial state was a Gaussian wave packet strongly local-
ized in the center of the lattice. We show how strong the interference effects
deforms the wave packet in the presence of strong scatterers like vacancies.

sented in the computer. To see how this work we rewrite Eq. (2.1):

Ψ(t+ ∆t) = U(t+ ∆t, t)Ψ(t) (2.2)

where we have introduced the time evolution operator U(t, t′).

U(t, t′) = e−iH(t−t′) (2.3)

We have now for the time evolution over the small time interval ∆t the boost

operator

dU = e−iH∆t (2.4)

24

To evaluate this operator exactly, e.g. via full diagonalization of H, is not

easier then calculating the full time evolution operator U(t). However, pow-

erful schemes may be used, that evaluate the matrix exponential approxi-

mately while respecting unitarity. One of them, the split operator method,

has already been mentioned in the introduction. A particularly scheme op-

timized for the very large but sparse matrices we are interested in is based

on Krylov-subspace techniques. It will be explained in the next section.

In passing, we mention that propagating a quantum mechanical state in

time, allows to calculate many system properties. We will mostly focus on

the DoS, but e.g. the diffusion constant or the conductivity can also be

obtained straight forwardly

2.1 Tight binding formalism

We would like to propagate a wave packet in time. How exactly the Hamilton

operator driving the dynamics looks like depends on the nature of the lattice

and the physics we would like to to describe. In our case we use tight binding

models, designed to model the electronic structure of a real material near the

Fermi energy. In second quantization we can write:

H = −t
∑
<i,j>

(c†icj + h.c.) (2.5)

The operators c†i and ci are the fermion creation and annihilation operators

on the lattice site i, the brackets under the sum mean a summation over

the nearest neighbors. In our case, the hopping parameter t is the only

microscopic parameter – apart from the disorder concentration(s) to be in-

troduced later. It dictates the energy scale, in particular the bandwidth, of

25

the dispersion relation (here only 1d result)

ε(k) = −2t cos(ka) (2.6)

where a is the lattice constant.

2.2 Graphene specific implementation of the Hamilton

As graphene is the most important application of our numerics we now for-

mulate the corresponding tight binding Hamiltonian. From every site one

can hop to exactly three other sites from the other sub-lattice, at least in a

clean lattice. Of course it is impossible to simulate an infinite lattice, the

behavior at the edges of the lattice needs to be defined. One possibility is

to choose hard edges where the wave is reflected into the bulk, the particle

would be confined in a box. This approach easily suffers from artifacts re-

lated to edge induced Friedel oscillations, however. Another approach would

be absorbing edges: the wave would propagate out, disappearing from the

lattice. This approach does not conserve particle number and energy. Hence,

it is more troublesome to properly implement. In our case we follow standard

practice and use periodic boundary conditions. Thus the effective topology

of our system becomes torus-like.

We first present and explain the matrices one would need if one were

to do explicit matrix operations. However as discussed above, the Krylov

methods have the advantage that only the action of the matrix on a vector

is needed. Thus the matrices written here are never explicitly represented in

our computer code.

The tight binding Hamilton for graphene is as follows :

26

H =



A B 0 . . . 0 C

B
. 0

0
.

...
...

. 0

0
. B

C 0 . . . 0 B A


(2.7)

The Hamilton is constructed from 3 different types of blocks, A, B and C :

A =



0 t 0 . . . 0 t

t
. 0

0
.

...
...

. 0

0
. t

t 0 . . . 0 t 0


(2.8)

B =


t 0 . . .

0 t′
. . .

...
.

 , C =


t′ 0 . . .

0 t
. . .

...
.

 (2.9)

A, B, and C are of size L× L, with L the system size. H is of size L2 × L2.

The block A is for the hopping between the sites from the same row. Both

next diagonals are the hopping to the left and right, the blocks B and C

are for the inter row hopping, if t′ = t we have a square lattice, to have a

honeycomb lattice one only has to set t’ to zero.

With theses preliminaries it is easy to define a routine to compute H|ψ〉 .

27

Figure 2.2: Graphene lattice represented as a brick wall, this is how the state
is abstracted for the machine, the amplitude at every site is stored row wise
in a one dimensional array. Green and red are the different sub-lattices.

We feed the source vector vs and the destination vector vd, every element of

the destination vector is a sum over three terms corresponding to the three

neighbors, Fig. 2.2.

vd,i = vs,i−1 + vs,i+1 + vs,i±L (2.10)

The sign in the third term depends on which sub-lattice vd,i sits. With this

routine we can now span the Krylov subspace (see next chapter). It is quite

expensive as it operates on the full length of the state vector, but it is still

much faster than a naive approach like storing the Hamilton matrix and

implementing a generic matrix vector multiplication. This routine will be

called m − 1 times, m being the dimension of the Krylov subspace. Our

implementation of the Krylov subspace is presented and discussed in Sec. 3.

28

3 Krylov subspace methods

Our motivation is to propagate a quantum state in time. To compute the

solution one can compute the time evolution operator, which is essentially

computing a matrix exponent (the matrix being the Hamilton operator) and

applying it to the state,

U(t, t′) = e−iH(t−t′) (3.1)

There are various methods to achieve this, called ”matrix exponential meth-

ods”, most require to diagonalize a matrix Ref. [15]. The most intuitive

method is the exact diagonalization where the full matrix is diagonalized,

it works for small systems and yields good results. Doing this for relatively

big systems beyond 104 sites becomes increasingly difficult even with today’s

computational resources, not to mention that we would like to to work with

more than 107 sites. Another method is the Taylor expansion,

eA = I + A+ A2/2! + . . . (3.2)

This method is one of the most expensive as it takes long to converge, where

converging means adding the next order term does not bring much closer

to the result. The problem with this method is the big amplitude of the

fluctuations of the expansion. One optimization is to scale the exponent

down,

eA = e(A/m)∗m (3.3)

with m a power of two. m is chosen so that ||A||/m < 1, after the Taylor ex-

pansion the result needs to be squared until the result for the initial problem

29

is obtained. There are other similar methods, based also on others than the

Taylor expansion, but they all have in common to store at least the whole

matrix to perform matrix matrix operations. This is a major limitation for

big systems, for n sites one needs a Hamilton matrix of size n× n, this does

not only use up a lot of memory but also matrix-matrix operations are costly.

Often one does not need the matrix exponent eA but only the product

with a vector eAv. This is exactly our case as we would like to to apply the

time evolution operator to the state vector. This allows us do use Krylov

methods. They essentially consist of building a low dimensional subspace

which we use to project the Hamilton into it. This way only a small matrix

has to be diagonalized, in our numerics a 4 × 4 matrix. That subspace is

build around the quantum state, in a way it approximates the time evolution

just in the vicinity of the state. The resulting time evolution operator is an

approximation, only valid within a small time step. After applying the time

evolution operator, the subspace needs to be spanned again around the new

state vector.

Krylov subspace methods are very effective numerical methods to diago-

nalize large (sparse-) matrices or solve large linear systems. First published

by and named after Alexei Krylov in 1931, a Krylov subspace of dimension

m, generated from a vector v with size s and a s-by-s matrix A, is the linear

subspace spanned by Aiv with i from 0 to m,

{v,Av,Av, . . . , Am−1v} (3.4)

The size m of the subspace is one key parameter of the numerics and chosen

depending on the numerical accuracy needed. To span such a subspace in

this specific way has the obvious advantage of avoiding matrix-matrix mul-

tiplications. Also one can avoid storing the full matrix with an appropriate

30

subroutine if possible. 3

3.1 Orthonormalization methods

When constructing a subspace, one has to make sure the basis vectors are

orthogonal and normalized. This is important because working with a non-

orthogonal basis is complicated. The implementation of the orthonormaliza-

tion is crucial, the methods might be formally equivalent, but some are more

stable as others.

Lets define the matrix M with columns the vectors Aiv. Orthonormaliz-

ing the vectors is formally equivalent to the decomposition M = Q ·R, where

R is a triangular matrix and Q an orthogonal matrix. Q is the Matrix which

columns are the orthonormalized vectors we seek.

Popular methods are for example the Householder transformation and the

Givens rotation. The Householder transformation sequentially transforms M

column by column in the triangular matrix R. The Givens rotation can be

constructed in a way to zero any element of M , but only one at a time. It is

obvious that this method is only suitable for sparse matrices, but easier to

parallelize than the householder transformation.

The method we used in our numerics is the Gram-Schmidt orthonormal-

ization, it has the advantage to yield a numerical bonus. The Gram-Schmidt

3It is interesting to note that to compute the eigenvectors of a matrix A, a simple
way is to compute Amv for large m, the vector Amv converges with the power m to the
eigenvector of A with the largest eigenvalue. To obtain the next biggest eigenvalue one
repeats the procedure, but now the vector is chosen orthogonal to the eigenvectors already
computed. This is also called the ”power method” for finding eigenvalues. This method is
numerically not very stable, since round-off errors induce parts from previous eigenvectors
which greatly reduce accuracy. It is also a waste of computational effort as all intermediate
results are discarded, only the last order of Amv is kept. This is not the case for the Krylov
methods where all power of m enter the approximation.

31

formalism is as follows,

vi = Aiv −
i−1∑
k=0

(ekA
iv)ek ei =

vi
||vi||

(3.5)

For every basis vector any linear dependency to the other basis vectors is

taken out. We will show that the term ekA
iv can be reused for the compu-

tation of the Hamiltonian, projected into the Krylov sub-space.

3.2 Arnoldi methods

Arnoldi with normal Gram-Schmidt: In our numerics we span the

Krylov basis and orthonormalize them with the Gram-Schmidt algorithm

from above. This method is called the Arnoldi method. It is easy to imple-

ment, but numerically not very stable [2].

v0 is random and normalized

for i from 0 to m-2

vi+1 = Hvi

for k from 0 to i

r = vi+1 − (ekvi+1)ek

ei+1 = r
||r||

We use a Krylov basis with a size of 4, going beyond makes the simulation

unstable. A small Krylov spaces means we have to use small time steps. The

observables we would like to to compute like the DoS are quite sensible to

numerical instability, big asymmetrical artifacts appear. We show in the

appendix how the artifacts look like induced by too big time steps.

An alternative method which is formally equivalent to the method above

is the Arnoldi method with modified Gram-Schmidt. It is more stable which

32

means the Krylov basis can be bigger, this means the computation of one

time step gets much more expensive, but the time steps can also increase.

The trade off between Krylov dimension and time step is important. Also one

needs to consider if the Hamilton routine is the bottleneck or the orthonor-

malization. If the Hamilton routine is more expensive, then a bigger time step

can be rewarding, but if the Gram-Schmidt is more expensive then a bigger

Krylov space gets to costly. This is why, as for us the Gram-Schmidt is quite

expensive, we stick with the Arnoldi method with normal Gram-Schmidt.

Another important point is the parallelization which is much easier to im-

plement for the normal Gram-Schmidt. We will still present the modified

Gram-Schmidt version for completeness, as for a different physical applica-

tion, meaning another Hamiltonian, the bottleneck might shift towards the

Hamilton routine.

Arnoldi with modified Gram-Schmidt: We present the method based

on ref. [2, chap. 9]. Instead of computing all the vi = H iv and then orthog-

onalizing them, the Hamiltonian multiplication is operated on an already

orthogonal vector vi+1 = Hei which is then orthogonalized.

vi =
i∑

k=0

βkek (3.6)

= H iv = HH i−1v = H(
i−1∑
k=0

βkek) (3.7)

The only part that is kept is the orthogonal part ri = βiei. So instead

of orthogonalizing vi+1 = Hvi one can orthogonalize Hβiei or even Hei to

33

obtain ei+1.

βi+1ei+1 = Hei −
i∑

k=0

ek(ekHei) (3.8)

The algorithm looks like this :

v0 is random and normalized

for i from 0 to m-2

r = Hei

for k from 0 to i

r = r − (ekr)ek

ei+1 = r
||r||

The difference to the previous method is that the matrix multiplication is

performed on a vector that has already been orthonormalized in the previous

iteration, this makes it very stable.

3.3 Hamilton projection in the Krylov subspace

The orthonormalized Krylov basis vector (with normal Gram-Schmidt) looks

like,

|k〉 = Hj|0〉 −
j−1∑
k′=0

|k′〉〈k′|Hj|0〉 (3.9)

We are at a point where they have been computed, we now analytically pre-

pare the Hamilton operator projection onto the Krylov subspace. To compute

the time evolution operator, the Hamilton operator has to be diagonalized.

For this purpose we project it onto our low dimensional Krylov basis. The

34

matrix elements we seek are simply :

(Hk)ij = 〈Ψi|H|Ψj〉 (3.10)

The naive approach would be to directly compute them, which is extremely

slow and a big waste of computational effort. To optimize this we first

combine 3.10 and 3.9 to,

〈i|H|j〉 =

(
〈0|H i −

i−1∑
k=0

〈0|H i|k〉〈k|

)
H

(
Hj|0〉 −

j−1∑
k′=0

|k′〉〈k′|Hj|0〉

)
= 〈0|H i+j+1|0〉

−
j−1∑
k′=0

〈0|H i+1|k′〉〈k′|Hj|0〉

−
i−1∑
k=0

〈0|H i|k〉〈k|Hj+1|0〉

+
i−1∑
k=0

j−1∑
k′=0

〈0|H i|k〉〈k|H|k′〉〈k′|Hj|0〉 (3.11)

〈i|Hj|0〉 = 〈0|H i+j|0〉 −
i−1∑
k=0

〈0|H i|k〉〈k|Hj|0〉 (3.12)

It is important to see that all the factors can be computed from 〈0|H i|0〉

in a recursive manner. Only those are expensive to compute. We use the

vectors of the preliminary basis H i|0〉, they are only accessible right before

the Gram-Schmidt process. An important optimization was also to realize

that the factor 〈i|Hj|0〉 also appear in the Gram-Schmidt process. Now that

all important factors are computed, we can assemble the Hamilton matrix in

the Krylov basis. In the next section we diagonalize this matrix and compute

the time evolution operator, and then we can calculate observables.

35

36

4 Observables and Krylov subspace methods

In this section, we will discuss what observables we calculate with Krylov

subspace methods. The last section explained what the Krylov methods are,

here we will show how to use them. First we compute the time evolution

operator,

U(t+ ∆t, t) = e−iHk∆t (4.1)

Hk is the Hamilton operator in the Krylov basis, with a size m×m usually

where m = 4, which is trivial to diagonalize. Notice that the state vector

|Ψt〉 is the first basis vector of the Krylov basis, this means that the state

vector in Krylov space is simply (1, 0, 0, ...)T . We operate the time evolution

operator on this, the resulting vector is then reconverted to real space, which

results in one iteration.

We now have the possibility to propagate the quantum state vector in

time. The whole dynamic of the system is contained therein. With the time

propagated state vector, one can compute all kind of different observables.

We will discuss only a few of them like the density of states. We computed

them for different configurations of graphene, with and without disorder, the

results are shown in Sec. 6.

4.1 Density of states

The density of states D(E) is the number of available states for electrons

per unit volume per unit energy of a solid D(E) = dZ
dE

, with Z(E) the total

number of states up to the energy E.

The analytical expression for the DoS can be derived from the dispersion

37

relation ε(k). We derive it for the example of a free electron,

ε(k) =
~2k2

2m
(4.2)

we obtain for different dimensions,

1D : D(ε) = 1
π

√
2m
~ε

2D : D(ε) = m
π~2

(4.3)

Discrete DoS The density of states is only a continuous function of energy

if the system is infinite. This is never the case for a physical system, but for

reasonable big systems we are in the continuum limit, meaning the number

of states becomes so large that the distance between two delta peaks of the

spectral density is very small, compared to the resolution with which we look

at the data.

The discrete nature of the spectrum of the DoS is one of the reasons

to go to large system sizes, to reach the continuum limit with increasing

resolution. Due to the Fourier transformation from real space to energy space,

the longer the propagation time, the bigger the energy resolution. When

approaching the resolution of the mean level spacing it will start resolving

the delta peaks of the discrete spectrum of finite size systems. To avoid this

one can either reduce the propagation time, or go to bigger system sizes,

which means reducing the mean level spacing.

To obtain the formula for the DoS we use for our numerics, we start with

the general definition, making use of the Fourier transformation of the delta

38

function (~ = 1),

δ̂(t) = FT (δ(ε)) = 1

=> δ(ε) =
1

2π

∫ ∞
−∞

eitεdt

=
1

2π

(∫ 0

−∞
eitεdt+

∫ ∞
0

eitεdt

)
=

1

2π

∫ ∞
0

(
e−itε + eitε

)
dt

=
1

π

∫ ∞
0

cos(tε)dt

=
1

π
Re

∫ ∞
0

eitεdt (4.4)

D(ε) := tr δ(ε−H) =
∑
α

δ(ε− Eα)

=
∑
α

1

π
Re

∫ ∞
0

eitεe−itEαdt (4.5)

where
∑

α is over all the eigenstates of H. The trace of the Hamilton operator

is expressed in the basis of the eigenstates, but it can also be expressed with

any random states. This is exact only if all eigenstates contribute, this is the

case if summing over an infinite number of random states [24],

|ψp〉 =
∑
α

cαψα , cα ∈ C (4.6)

The DoS then becomes,

D(ε) =
1

π
Re

∫ ∞
0

eitε tr e−itHdt

= lim
s→∞

1

s

s∑
p=1

1

π
Re

∫ ∞
0

eitε〈ψp|e−itH |ψp〉dt (4.7)

In practice one only need one state s = 1, at least when the system is big

39

enough,

D(ε) =
1

π
Re

∫ ∞
0

eitε〈ψ0|e−itH |ψ0〉dt

=
1

π
Re

∫ ∞
0

eitεC(t)dt (4.8)

with the correlation function C(t) = 〈ψ0|e−itH |ψ0〉. Big systems have very

good self averaging, for small systems one needs averaging over multiple

random starting vectors |ψ0〉. As we will show in more details later on,

the computation of the DoS is done in two steps. First the most expensive

computation of the correlation function, and second the much faster discrete

Fourier transformation.

4.2 Diffusion

Another observable we look into is the diffusion constant D of the system.

The reason we are interested in the diffusion constant is that we were search-

ing for a way to compute transport properties of the system 4. The Einstein

formula relates D with the conductivity [12],

σ = e2D · D (4.9)

with D the density of states, e the elementary charge and D the diffusion

constant. We already have the possibility to obtain the density of states for

any disorder configuration, what is left is to compute the diffusion constant.

The diffusion of particles is related to the time evolution of wave packets.

4Other approaches use eigenstates, but eigenstates are not directly available with the
Krylov method we implemented, one possibility is to compute so called quasi eigen-
states [24]. But it was soon clear that this would be beyond the scope of this diploma
thesis.

40

To compute the diffusion constant we start with a Gaussian wave packet.

We construct it with following formula,

Ψ(r, r0,k, s) = Ne
−(x−x0)2

2s eik(x−x0)2

(4.10)

with N a normalization coefficient, r0 the center of the wave packet. x,x0

are coordinates in the 2D array the carbon sites are stored such that,

(r − r0)2 =
3

4
(x− x0)2 + (

3

2
(y − y0)± 1

2
)2 (4.11)

The diffusion constant can be calculated from,

〈r2(t)〉 =

∫
drr2|Ψt(r)|2 (4.12)

If a wave packet is strongly localized, meaning it does not propagate much

for long times, then we have an insulating system,

〈r2(t)〉 ≈ const (4.13)

If the wave packet travels diffusely through the system then we have a finite

conductivity,

〈r2(t)〉 ≈ Dt (4.14)

If a wave packet is localized or not depends on the disorder strength. The so

called Anderson transition, the transition between a system with insulating

and a system with metal characteristics, does not only depend on the amount

of disorder but also on the dimensionality of the system. E.g. 1D system

becomes insulating with any disorder strength.

41

42

5 Implementation

In this diploma thesis, one major aspect is the implementation of the wave

packet propagation code. The initial idea in our group to implement a Krylov

method for the computation of propagating wave packets came up during

the PhD thesis of a colleague, Soumya Bera [4]. He was working on the zero

modes introduced by vacancies in graphene, in this context he needed a tool

to study the DoS of graphene.

In this section we will describe in detail how we implemented the simu-

lation. Explain the workflow of the different logical modules, like the core

simulation or the data structures. An important point is the validation of

the simulation, the parameter we monitor. We also show how we compute

the DoS and other observables.

The requirements of the simulation evolved with time. First a Krylov

subspace method should be used to propagate wave packets in time. After

this first milestone was achieved, we expanded the simulation to compute

the density of states. This took the biggest amount of time, mainly due

to the need for big system sizes to get first results. Considerable amount

of time was also spend on the parallelization of the code, and running it on

different clusters. The last phase of development was to analyze the diffusion

of Gaussian wave packets. The development of the diffusion code is on going

and at this point no physical results are available.

Workflow: The workflow is typical for simulations in physics. First pa-

rameters for the simulation are defined and loaded via config file or command

line. The simulation is launched, a main routine is called sequentially until

the desired number of steps is achieved. The number of steps depends on the

experiment, one has to make a trade-off between the accuracy and the CPU

43

time needed. Data is extracted every time-step, stored in a buffer which is

flushed to a binary file when it is full. In a second step, after completion of

the time evolution, the extracted data must be post processed to obtain the

final results. An example workflow is depicted in Fig. 5.1.

Figure 5.1: The workflow diagram for the computation of the DoS. First the
simulation is started with the job parameter c. After completion we start the
simulation again with job = d

Modules: In this software, one can distinguish 3 types of logical mod-

ules. The data handling, with the IO operations and the MPI wrapper, are

quite important regarding parallelization. Then we have the core simulator

consisting of the Krylov methods and the time evolution operator which are

necessary for one iteration of time propagation. Finally some auxiliary mod-

ules for the different observables, like the DoS and the diffusion code, or the

recording module for 3D visualization of the propagating wave packets.

44

5.1 Core simulation, Krylov methods and time evolu-

tion

The core simulation process is the propagation of the system state vector for

one time-step. To do this, the Krylov subspace needs to be spanned every

time-step from the Hamilton operator and the current state. This is the most

expensive part of the simulation, and as such quite optimized. The workflow

of the process is a as follows.

- span basis

- compute Hamilton in Krylov space

- diagonalize the Hamilton (Lapack method)

- compute time propagation operator

- apply the operator to the state,

thous propagating it one time step further.

Computing the Krylov basis To span the Krylov basis one needs to

define the matrix vector multiplication. Knowing the matrix elements is

sufficient to work directly on the arrays and avoids to store the full matrix of

the Hamilton operator. This is the reason we have a routine for the specific

matrix in use, instead of using a matrix object and a generalized matrix

vector multiplication. For our Hamilton routine and the implementation of

the Krylov subspace see Appendix A.

With this method one can now span the Krylov basis iteratively. The

current system state being the first basis state one needs to store m-1 addi-

tional vectors with m the desired dimension of the Krylov space. First again

a quick overview of the work-flow of the algorithm.

- compute the preliminary basis

45

- compute the factors 〈0|H i|0〉,

important for the computation

of the Hamilton in Krylov space

- Gram Schmidt orthonormalization

- compute the factors 〈k|H i|0〉

- compute the Hamilton in Krylov space

The theoretical background to most of those functions has been discussed

in previous sections. The preliminary basis is like discussed above simply

Bp,m = {Ψ0, HΨ0, H
2Ψ0, . . . , H

mΨ0}. To compute the Hamilton operator in

Krylov space, the factors 〈0|H i|0〉 for i from 0 to 2m have to be computed

before the gram-smith orthonormalization, because we need the original vec-

tors from the preliminary basis H i|Ψ0〉 . Tho other factors 〈k|H i|0〉 do only

need the factors 〈0|H i|0〉 computed the step above. To finally compute the

Hamilton in Krylov space is quite simple, all terms are already there.

The Hamilton matrix must now be diagonalized. This is done by the

LAPACK method zheev [1] which computes the eigenvalues and eigenvectors

which are used for the time evolution. The final time evolution operator is

still a matrix in Krylov space, thous we apply it to the state vector in Krylov

space which is simply (1, 0, 0, 0...)T , this vector must be multiplied with the

time evolution matrix. The resulting vector is converted back in the original

space by,

Ψ(t) =
m∑
k=0

Ψkrylov(t) [k] ·Bm [k] (5.1)

46

5.1.1 Density of states

To compute the DoS of the system we use the methods described above to

propagate the state in time. Every time step ti we compute the correlation

C(ti) between the initial and the current state. The obtained discrete and

finite function has to be Fourier transformed to get the density of states. The

initial state is constructed with random complex double precision numbers,

|ψ0〉 =
∑
α

cαψα , cα ∈ C (5.2)

with cα ∈ [−0.5, 0.5], and then normalized.

We apply some transformations to C(ti) before the Fourier transforma-

tion,

Ĉ(ti) = (−1)i · fHW ·
∆t

π
· C(ti) (5.3)

with i the time step and ∆t the width of the time step. The integral in (4.8)

goes up to infinity, but our correlation function is finite. To alleviate the

effects and reduce the artifacts due to the abrupt cut off, we multiply the

correlation function with a window function fHW = 0.5(1+cos(pi∗i/N)). To

multiply C(ti) by (−1)i is a trick of discrete Fourier transformations which

centers the DoS around zero, else the negative values of the DoS would appear

after the positive ones. The normalization ∆t

π
comes from (4.8).

The Fourier transformation is done by the FFTW 5 library [6]. The

5FFTW is designed to try to compute any input function of arbitrary length in a most
optimized way possible. To achieve this, it has an object called a ”plan”, which contains all
needed information for the transformation. To initialize such a plan is relatively expensive
because it does quite some optimizations. Once generated, this plan can be reused, even
for other input and output arrays if they are similar to the ones the plan was generated for.
This can be very important if the Fourier transformation must be done every time-step,
but this is not our case.

47

Fourier transformation we need is only the last step to our final result and

takes only a few seconds. The results are stored in ASCII format on disk,

easy for every plot program like Gnuplot or XMGrace to visualize.

5.1.2 Diffusion

Instead of choosing a random state, we choose now to build a Gaussian wave

packet with zero average velocity. One can deduce the diffusion constant D

with,

〈r2(t)〉 ≈ Dt (5.4)

with 〈r2(t)〉 =
∫

drr2|Ψt(r)|2 where r = 0 at the center of the wave packet.

We compute 〈r2(t)〉 and store it. Further development of the diffusion code

and the processing of the collected data is done in the diploma thesis of

Johannes Schindler [21].

5.1.3 Data-structures

Primarily we store the basis vectors of the Krylov subspace, the first of them

being the system state vector itself. For those vectors we have a separate

class called state, which includes all IO operations, binary and ASCII, that

we need to store and load them. The state class comes also with basic math

methods like mult() and normalize().

Another important class is called storage. It contains the Krylov basis

state vectors as well as a copy of the original state needed for the correlation

function, and the correlation function itself. The amount a of memory needed

48

is mainly,

a = 16(m+ 1)k2 (5.5)

with m the size of the Krylov space, k2 the system size and 16 the size in

bytes of the complex data type with double precision.

The simulation parameters are stored in a simple class ’head’, it comes

with some basic IO operations to write and load itself to a binary file. There

is also defined the naming convention for external files. To pass options to

the application we use the boost options library. It parses the command line

and a config file sim.cfg.

5.1.4 MPI wrapper, parallelization

The first design was not parallelized, and it was not clear in the beginning if

this would change. Only during the implementation of the DoS computation

the need arose for bigger system sizes. But it was not yet the CPU capacity

what capped the system size on a normal workstation, it was the virtual

memory needed for the Krylov basis. The average workstation has between

1 and 4 GB of virtual memory. The system size we can simulate with this is

around 3600× 3600 sites per GB. (calculated with 5.5).

To parallelize the software not only gives a significant boost in speed but

also reduces greatly the amount of memory needed per node, making the

CPU the new bottleneck. Others limiting factors are specific to the cluster

we can use. Obviously the number of nodes is limited depending on the size

of the cluster. Also the wall time, the maximum time span allowed for the

application to run, is limited. The biggest systems (16384×16384 sites) were

computed on the JUROPA cluster in Jülich, with one million time steps in

49

less than 12 hours.

MPI: The workload of the application has to be distributed on multiple

nodes. For this one needs a framework, to launch the application and to take

care of the communication between the processes. In the example above on

the JUROPA cluster we used 512 nodes with 8 CPUs per node. One of such

a framework is MPI (Message Passing Interface) [7]. We give a detailed

description on how we wrap the MPI calls in the appendix B.2.

The system is split in equal chunks, each chunk will be the responsibility of

one process/core in the cluster. For this trick to be effective the simulation of

the bulk should be self sufficient, this means the communication with other

processes should be reduced to a minimum. The processes which require

some communication between nodes are the exchange of the boundaries at

the beginning of each time step, and vector operations like the dot product.

The example studied with this application is a 2D lattice. A graphene

patch divided in N ×M sub patches with k× k sites like a chessboard. The

resulting grid (thus the naming of the class) of patches needs to exchange

the 1D boundary of each patch with his 4 neighbors.

5.2 Validation

Before computing observables, one has to validate the numerics. It is also

important to find the parameter regime for which the simulation works best.

Often one has to accept a trade-off between accuracy and time needed for

the computation. A last validation is to compute different observables which

are easy to obtain and to compare them with literature and other published

numerical results, this is done later on for graphene.

50

Time-line: To validate the simulation, the first step was to plot simulation

parameter on a time-line, Fig. 5.2. The quality of the simulated state (in red)

is computed from the propagated state in the m dimensional Krylov space.

We sum over the last element of the Ritz vector, for the last three time-steps,

which should be near zero if the Krylov space approximation is good enough.

We also compute the quality of the diagonalization (in green). Diagonalizing

Figure 5.2: We show an example how we plot important parameter on a time
line to monitor the simulation. From left to right the time steps and from
top to bottom the value of the parameters on a log scale 10−p with p the
number of pixels from the top gray line. The green dots are all around 10−30.
In red the quality of the approximation for the propagated state vector, in
green the quality of the diagonalization of the Hamilton matrix in Krylov
space.

a matrix A means decomposing the matrix in three matrices A = SDS−1

. To check the quality of the diagonalization performed by the LAPACK

library, we compute ||A− SDS−1|| ≈ 0. This parameter mostly was around

10−30.

51

5.3 Visualization

Initially the visualization of the wave packets was only two dimensional.

It was a simple pixelated visualization with CImg for debugging purposes,

Fig. 5.3. The purpose of the visualization was to validate the propagation of

the Gaussian wave packets, and thous of the Krylov method. Seeing a quite

realistic propagation of the wave packet was a major milestone.

Figure 5.3: Snapshot of a Gaussian wave packet scattering on a single im-
purity in the middle of a patch of a square lattice. The initial setup was a
Gaussian wave packet with a width of 2 and an initial momentum from left
to right.

3D Visualization: The nature of our simulation makes it predestined

for adding a visualization. Most suitable for a wave packet in graphene is

a 3D representation, two dimensions for the lattice and the third dimension

for the state amplitude at each site as shown in Fig. 5.4. The simulation was

already running well on clusters, adding dependencies like OpenGL would

have been detrimental to the portability. This is why we implemented the

52

Figure 5.4: Gaussian wave packet, propagated for a few time-steps on a clean
graphene honeycomb lattice 256x256 with a single impurity in the middle of
the patch, the picture shows the wave packet from behind right after the
scattering process.

visualization as a separate tool. The visualization is based on OpenGL, using

the OpenGL toolkit GLUT as a window system and OpenSG as a scene-

graph. The shader we implemented consists of a classical Phong shader,

augmented by a displacement shader, normal recomputing and the coloring

of the state depending on the amplitude. This makes it possible to visualize

the data in real-time, allowing an easy manipulation of the view perspective

for systems up to 512 × 512 sites. We also added the capability to capture

and output frames for animations. The shader code can be found in the

Appendix. Prior to the visualization, the data is gathered. We propagate

the quantum state with our simulation and store it every N time-steps. The

data is visualized afterward in real-time. We made animations for various

setups like scattering and double split, using vacancies to build the structures.

The aim of this feature is to get a better understanding of the wave packet

propagation. Other possibilities are to compare the differences of propagation

53

on a square lattice, a honeycomb lattice and others. It is also conceivable

to visualize exotic effects in graphene like the Klein tunneling. We also took

the opportunity to use the virtual reality environment at our disposal which

consists of a ”cave”, an immersive three walls projection system. It allows a

profound experience of the wave packet propagation, like being at the shore

of some alien beach.

54

6 Application to graphene

In this section we present our results regarding the application of our numer-

ics to the two dimensional carbon allotrope graphene.

Figure 6.1: Electronic bands of the clean graphene, (courtesy from M. Schütt,
Diplomarbeit, Institut für Theorie der Kondensierten Materie, KIT, 2009)

6.1 Graphene, a honeycomb lattice

The 2D hexagonal lattice is the origin of the Dirac cones in the band structure

(Fig. 6.1). They allow to observe relativistic effects like the Klein paradox,

at room temperature. To investigate how those intriguing effects carry over

to transport in the presence of vacancies in graphene. Introducing vacancies

is known to dramatically change the shape of the density of states around the

Dirac point; zero modes appear exactly at zero energy. To investigate this

for various configurations of disorder is the most important physical topic of

this thesis. There have been already publications on this topic [4, 20, 19, 23,

11, 22, 24], but with our energy resolution we hope to resolve finer structures

and the asymptotic low energy behavior induced by zero mode physics.

55

6.1.1 Electronic properties of clean graphene, the tight binding

approach

As described above in Sec. 2, we use the tight binding approach to describe

the electronic lattice model of graphene. The TB Hamiltonian looks like this.

H = −t
∑
i,j

(c†icj + h.c.) (6.1)

We neglect the spin of the electrons, and the hopping to the next nearest

neighbors. From this Hamiltonian one can derive the energy bands [5],

E±(k) = ±t
√

3 + f(k) (6.2)

f(k) = 2 cos(
√

3kya) + 4 cos(
√

3/2kya) cos(3/2kxa) (6.3)

If one expands this formula near the Dirac points with k = K + q and

Figure 6.2: Brillouin zone of the clean graphene lattice, adapted from [5], K
and K′ are the locations of the Dirac cones

|q| << |K| as seen on Fig. 6.2, one gets E±(q) ≈ ±vf |q|, with vf = 3ta/2 the

Fermi velocity, t the hopping parameter, and a the lattice constant. This is

56

a big difference to the usual case where E(q) = q2

2m
and v = k/m =

√
2E/m.

The electronic properties of graphene are quite remarkable as even for

room temperatures they exhibit relativistic behavior. This is due to the

shape of the band structure around two points in the Brillouin zone K and

K′, called Dirac points. Centered on each of those two points is a Dirac

cone. This means the slope of the energy dispersion around the Dirac point

is linear. This corresponds to the solution of the mass less Dirac equation of

relativistic particles [5].

With the spinor Ψ = (Ψ1,Ψ2) in proximity of the Dirac points, the Dirac

equation for mass-less fermions is,

vpσΨ(r) = εΨ(r) (6.4)

with the velocity v of the fermion of energy ε, the momentum operator p =

−i~∂/∂r and the σi the Pauli matrices with σ = {σx, σy}. The Hamilton

operator near the K point is,

HK = ~vFσp = −i~vF

 0 ∂x − i∂y
∂x + i∂y 0

 (6.5)

with vF the Fermi velocity. σ acts on the AB space of the hexagonal lattice,

it corresponds to the pseudo-spin. The wave-function ΨK around the Dirac

point is,

Ψ±,K(k) =
1√
2

 e−iθK/2

±eiθK/2

 (6.6)

the signs corresponds to the π and π∗ bands with the Energies E = ±vFk

and the angle θK is the angle of the momentum k in momentum space. One

57

can see different characteristics of mass-less particles. When rotating the

phase by 2π the wave-function changes sign. This indicates a Berry’s phase

of π which means that the wave-function is a two component spinor. ΨK is

also an eigenstate of the helicity ĥ = σp/p,

ĥΨK(r) = ±1

2
ΨK(r) . (6.7)

The eigenvalues correspond to the eigenvalues of the pseudo-spin σ. This

means that electrons have positive and holes negative helicity. It is a good

quantum number near the Dirac points. The equations for the Dirac point

K ′ can be obtained by applying the time reversal symmetry k → −k. The

helicity is also the cause that eigenvalues from HK come in pair, this can be

seen when rewriting the Schrödinger equation, 0 p−

p+ 0

 Φ1

Ψ2

 = E

 Φ1

Ψ2

 (6.8)

with p± = ∂x − i∂y. This can be multiplied out to,

p−Ψ2 = EΨ1

p+Ψ1 = EΨ2

 ⇒ p−p+Ψ1 = E2Ψ1 (6.9)

This shows that all eigenvalues come in pairs, with equal amplitude and

opposite sign. This is an important conclusion, that the helicity of the Dirac

fermions conserves particle-hole symmetry, see also ref. [4, p. 59].

6.1.2 Long range disorder, vacancies and zero modes

There exist different kind of disorder as one can see from table 6.1.

58

Table 6.1: Different types of disorder in graphene. The rows are the dif-
ferent classes, either conserving Cz chirality leading to Gade-Wegner-type
criticality, C0 chirality, or Λz where the disorder is of long-range nature (the
valleys are decoupled). In our numerics we use vacancies which conserves
time invariance and chirality, which is the origin for zero modes. Adapted
from Ref. [14].

Disorder Symmetries Class Criticality
Vacancies, strong potential impurities Cz, T0 BDI Gaede

Vacancies + RMF Cz AIII Gaede
σ3, τ1,2 disorder Cz, T0 CII Gaede

Dislocations C0, T0 CI WZW
Dislocations + RMF C0 AIII WZW

Ripples, RMF Λz, C0 2 × AIII WZW
Charged impurities Λz, T⊥ 2 × AII θ = π

Random Dirac mass: σ3τ0, σ3τ3 Λz, CT⊥ 2 × D θ = π
Charge impurities + (RMF, ripples) Λz 2 × A θ = π

For our simulations we introduce vacancies by cutting all links to a “vacant”

site. Vacancies are quite common in real experiments and can be realized

(approximately) not only by making a hole in the lattice, but also approxi-

mated by breaking the sp2− hybridization at one atomic site, for example by

adding a hydrogen to the carbon atom. Vacancies are in the BDI symmetry

class, they preserve chiral and time reversal symmetry. The preservation of

the chiral symmetry means that for the missing mode due to the vacancy,

there must be a symmetric mode appearing, as the modes can only leave

the Hilbert space pairwise. The missing mode from the vacancy can also be

thought of as being a mode with zero energy sitting on the atomic cite of the

vacancy, thus somewhere else needs to appear another zero mode, an extra

zero-energy electronic state exactly at the boundary of valence and conduc-

tion band. At least this holds when all vacancies are in one sub-lattice. In

this case each vacancy introduces an additional mode at zero energy. When

introducing vacancies in both sub-lattices this is not the case anymore. It

59

has been shown that the number of zero modes is equivalent to the differ-

ence of vacancies in both sub-lattices NB − NA, using a theorem in linear

algebra called index theorem [20]. In reference [19, 20] is explained why the

induced zero modes of the vacancies of the same sub-lattice do not mix. The

wave-function of zero modes look like this,

Ψ(x, y) ∝ eiK
′r

x+ iy

eiKr

x− iy
(6.10)

it is localized around the vacancy and decays around it with r−1. Those

modes sits always on the sub-lattice with less defects. In addition to the zero

modes, vacancies also introduce structure into the DoS away from E = 0.

This sub gap-structure is what we would like to investigate closer in this

thesis.

6.1.3 Transport properties

Graphene has some special transport properties due to the relativistic be-

havior of charge carriers. The usual setup to measure the conductivity is to

place a sample between two doped leads, the graphene flake can be pinned

at the Dirac point or doped to change the Fermi energy. Experiments have

shown a minimal conductance for clean graphene of a quantum unit 4e2/h

in the limit of zero charge carriers, Fig. 6.3.

With a view on the Einstein relation,

σ = e2D(E)D (6.11)

it is somewhat surprising, perhaps, that graphene’s conductivity takes a finite

value to begin with. Indeed, in clean systems D(E) is of the order 1/Volume

and hence the finite value of σ could be understood as a consequence of

60

Figure 6.3: Minimal conductivity measured in experiments, the green dot
marks the changed conductivity after heating up the sample to reduce macro-
scopic inhomogeneities. The results are independent of the carrier mobility
and show approximately a conductivity of 4e2/h. Figure taken from [8]

D ∼ Volume, divergent.

In the presence of disorder, D(E) can be vanishing or diverging dependent

on the distribution of vacancies over the sub lattice. In the compensated case,

as we shall see, D(E) ∼ 1/E and again σ can stay finite only, if D effectively

compensates the singularity by effectively D(E) ∼ E, i.e. vanishing. Thus

there should be a subtle interplay between D(E) and the diffusion process.

We will focus on detailed behavior of D(E) in the following and relegate the

analysis of diffusion dynamics to a forthcoming project.

61

-3 -2 -1 0 1 2 3
E/t

0

0.2

0.4

0.6

D
(E

)

-0.4 -0.2 0 0.2 0.4
E/t

0

0.05

0.1

D
(E

)

Figure 6.4: DoS of a clean graphene lattice with 8192×8192 sites. The energy
resolution is about 3.8 · 10−3 in units of t. Left: the full DoS. The important
features are the van Hove singularities at E = ±t and the signature of the
Dirac point at zero energy where the DoS goes linear in |E|. Right: a close
up on the Dirac point. The slope of the DoS around the Dirac point is related
to the Fermi velocity, E.g 6.16. The linear function in black is the analytical
low energy asymptotic which has the slope 1√

3π
as seen in the text.

6.2 Density of states, numerical results

The observables we would like to to compute with our numerics have been

introduced in Sec. 4, but some aspects are specific to graphene and thus

will also be covered here. The most notable features of the Density of states

of clean graphene can be seen in Fig. 6.4. At zero energy the DoS vanishes.

This so called Dirac point is induced by the Dirac cone of the electronic band

structure. The slope of the DoS around the Dirac point is linear D(E) ∝ |E|

which reflects the relativistic behavior of particles. The DoS is symmetric

around the Dirac point, particle hole symmetry is conserved. This shows

again that all eigenvalues come in pairs and result from the chiral nature of

62

the particles. We present our results for the clean case. The DoS of clean

graphene is well understood. We use it to further validate the results of the

simulation. We looked at the slope around the Dirac point, which is related

to the Fermi velocity. Most aspects related to the implementation and the

numerical method like the influence of the total simulation time or the system

size are covered in the appendix. We confirm the relation of simulation time

to energy resolution, and trace back the origin of our numerical artifacts to

the time step and Krylov dimension. In particular we checked the norm of

the DoS for the clean and the disordered case (this is important to make sure

the normalization factors of the Fourier transformation are correct).

In this section after dealing with the clean case we introduce defects,

in particular vacancies, and then present our results for various disorder

configurations. We summarize our findings in a ”phase diagram” with the

total vacancy concentration on one axis and the compensation on the other

(the compensation of the lattice is related to the difference in concentrations

between the sub-lattices A and B of the system). The phase diagram shows

the dependency of the exponent of the power law behavior of the slope around

the Dirac point for different disorder configurations.

6.2.1 Clean DoS

The density of states of the hexagonal lattice has quite a few remarkable

features. Around zero energy the DoS goes linear to zero from both sides.

This is the Dirac singularity, the signature of the Dirac cone. At zero energy

D(E) is exactly zero, confirming the semi-metallic behavior of graphene. The

band we get from the tight binding model has a spectrum which goes from

−3t to 3t. Deriving an analytical expression for the DoS of clean graphene

has already been done in 1953 by Hobson and Nierenberg, we present the

63

formula from [5, p. 6].

D(E) =
4|E|

π2t
√
Z0

F

(
π

2
,

√
Z1

Z0

)
(6.12)

with the complete elliptical integral of first kind F (π/2, x) and Z0, Z1 :

Z0 =


(
1 +

∣∣E
t

∣∣)2 −
(
(Et)

2
−1

)2

4
; −t ≤ E ≤ t

4
∣∣E
t

∣∣ ; −3t ≤ E ≤ −t ∨ t ≤ E ≤ 3t

(6.13)

Z1 =


4
∣∣E
t

∣∣ ; −t ≤ E ≤ t

(
1 +

∣∣E
t

∣∣)2 −
(
(Et)

2
−1

)2

4
; −3t ≤ E ≤ −t ∨ t ≤ E ≤ 3t

(6.14)

F (π/2, x) =

∫ π/2

0

dΘ√
1− k2sin2Θ

(6.15)

The elliptical integral is important to understand the structure of the DoS.

It goes to infinity for x = t and to π/2 for x = 0. We can now connect the

linear dispersion E(k) ≈ vF · |k| + O(k2) with |E| < t to the linear slope

in the DoS around E = 0. With only linear terms of |E| we have Z0 = 3/4

and Z1 = 0 , the elliptical integral becomes F (π/2, 0) = π/2. Summarizing

we obtain the following expression for the DoS of graphene around the Dirac

64

point,

D(E) =
4|E|

π2t
√

3/4
F
(π

2
, 0
)

=
4|E|
πt
√

3

=
2Ac|E|
πv2

F

(6.16)

with Ac = 3
√

(3)a2/2 the area of the unit cell of the graphene lattice and

the Fermi velocity vF = 3t/2. For |E| = t we have Z0 = Z1 = 4 the

elliptical integral F (π/2, 1) becomes infinite. There we expect two van Hove

singularities in the DoS. They are indeed present as can be seen in Fig. 6.4.

The slope around the Dirac point becomes then t√
3π
≈ 0.184t. We plot

the low energy asymptotic in Fig. 6.4. The analytical value for the slope

describes the data well.

-3 -2 -1 0 1 2 3
E/t

0

0.1

0.2

0.3

0.4

0.5

D
(E

)

-0.1 -0.05 0 0.05 0.1 0.15
E/t

0

0.01

0.02

0.03

D
(E

)

0.05%
0.1%
0.25%
0.5%
1%
2%

Figure 6.5: DoS of graphene with the vacancies in only one sub lattice. The
system size is 2048 × 2048 with en energy resolution of 2.4e−3. On the left
we show a close up on the Dirac point.

65

6.2.2 DoS with vacancies in one sub lattice

Introducing vacancies The algorithm which distributes the vacancies

places them at random atomic sites up to a given percentage in the first

and up to another percentage in the second sub-lattice. Our method avoids

to place two vacancies on the same site. As we will see later, it is important

to know exactly if the sub-lattices are compensated or not, this means if they

have the same number of defects.

When introducing vacancies we distinguish between different special cases.

The first two extreme cases can be seen in Fig. 6.5. The defects can be

equally distributed in both sub-lattices, this is the ”compensated” case. Al-

ternatively, all vacancies can be put only in one sub-lattice, this is the ”fully

uncompensated” case. Everything in between is also possible and indeed

very interesting.

Pseudo-gap We studied how the DoS evolves when augmenting the im-

purity concentration in one sub-lattice only. We observe how the delta peak

forms at the Dirac point. A pseudo gap opens around it with gap width Eg.

This has already been discussed in Ref. [4, 20, 24] and is confirmed here.

At zero energy, in the middle of the gap, we see a sharp peak rising,

D(E) ideally NA · δ(E). The weight under the delta peak corresponds to

the concentration of vacancies, which means it corresponds to the number

of zero modes per area as seen on the left panel of Fig. 6.6. This confirms

what has been discussed above. Every vacancy introduces a zero mode.

More generally speaking the weight under the peak equals the difference of

vacancies, NZM = NB−NA, in both sub-lattices. The numerical data indeed

shows NZM =
∫ ε
−ε dE D(E), as presented in the appendix.

We also investigated the method induced broadening of the peak which

66

10
-4

10
-3

10
-2

C

10
-2

10
-1

E
g

Gap Eg
Fit : y ~ x^0.52
Theory : y = x^0.5

10
-4

10
-3

10
-2

C

10
-4

10
-3

10
-2

Pe
ak

 w
ei

gh
t

weight under the peak
y = x

Figure 6.6: On the left panel we show that the weight under the delta peak
corresponds to the disorder concentration C, with vacancies in one sub lattice
only. We obtained these results by integrating over the whole gap from −Eg
to Eg. Right we show how the gap opens up with the increasing concentration
of vacancies, we plot the width of the gap over the corresponding vacancy
concentration.

is D(E) ∝ |E|−2. We investigated all simulation parameters to find out the

relevant ones. It turned out that the only relevant parameter is the time

step used for the time evolution. Reducing the time step also reduces the

broadening of the peak, the full discussion regarding the time step and other

simulation parameter can be found in the appendix.

The width of the gap gets larger with increasing disorder concentration.

The presence of vacancies induce a new energy scale l, the average distance

between vacancies.

ε ∝ vF
l
∝ vF

√
nimp (6.17)

One expects the gap to open up proportional to the square-root of the con-

centration of defects [20]. This is indeed the case as can be seen on the right

67

panel of Fig. 6.6. The numerics fits quite well to the theory. One first inter-

Figure 6.7: The flow of the eigenvalues close to the Dirac point at zero
energy when increasing the number of vacancies. Instead of going into the
peak with increasing disorder they go away. The zero modes must come from
somewhere else. Adapted from the work of Soumya Bera [4, p. 67].

pretation of the formation of the pseudo-gap, was that the eigenvalues close

to the Fermi energy flow into the peak. As shown in Fig. 6.7 it appears that

this is not the case. Instead of flowing into the central peak they move away

with increasing disorder.

The behavior at the gap edge Eg is,

D(E) = A0 ·D0(E) · e−
(

∆g
E−Eg

)2

, |E| > Eg (6.18)

with D0(E) ∝ E the DoS for the clean system near the Dirac point, A0 an

amplitude, ∆g a length scale and Eg the energy for which D(E) → 0 for

E → Eg, E > Eg , equivalent to the gap width.

68

10
-2

10
-1

E/t

-7

-6

-5

-4

-3

-2

-1

ln
(D

(E
)/

E
)

0.1%
0.25%
0.5%
1%
2%

Disorder A0 ·D0/E Eg ∆g

0.1% −1.69 0.0171 0.0034
0.25% −1.69 0.0270 0.0068
0.5% −1.70 0.0374 0.0121
1% −1.69 0.0518 0.0213
2% −1.67 0.0704 0.0393

Figure 6.8: We plot the gap for different concentrations in one sub lattice
(100% disorder in one sub lattice means 50% disorder for the whole lattice).
We fit the edge behavior with Eq. (6.18). The fitted parameter are presented
in the table.

69

-3 -2 -1 0 1 2 3
E/t

0

0.2

0.4

D
(E

)

C = 0.05 %
C = 0.1 %
C = 0.2 %
C = 0.5 %
C = 1.0 %
C = 2.0 %
C = 4.0 %

-0.2 -0.1 0 0.1 0.2 0.3
E/t

0

0.05

0.1

D
(E

)

Figure 6.9: DoS of graphene with the same vacancy concentration in both
sub lattices. The system size is 2048 × 2048 with en energy resolution of
10−4. On the left we show a close up on the Dirac point.

6.2.3 Vacancies equally distributed in both sub lattices

In the previous section we put vacancies only in one sub lattice. Here, we

have the same concentration of vacancies in both sub lattices. The most

important difference is the absence of the gap. Another intriguing observa-

tion is the presence of the central peak, now with an intrinsic broadening

that is perfectly physical. In the previous case the peak is proportional to

the number of zero modes which themselves came from the uncompensation

between the sub lattices. When putting the same number of defects on both

sub lattices, the delta-peak vanishes because all zero modes hybridize with

each other. But as can be seen in Fig. 6.9, another singular structure near

zero energy reappears, which originates from the mixing of zero modes in

both sub lattices. An analytical approach with strong-coupling effects [14]

propose an equation for the low energy spectrum of the DoS in the presence

70

of disorder of the the symmetry class BDI:

D(E) ∝ E−1e−
1
2

(3·g−1
m | ln(E/∆)|)2/3

(6.19)

with gm the random chiral mass. We fit the equation to our data for different

system sizes and vacancy concentrations. We transform the equation for the

fit,

ln(E ·D(E)) = A0 −
1

2
(

3

gm
| ln(E/∆)|)2/3 (6.20)

where A0 fixes the amplitude. We tried the free fit (the exponent 2/3 replaced

by a free parameter) but the fit is not stable.

As seen from Fig. 6.10a, the numerical data fit the sublinear dependency

of the exponent on lnE/t well. Note, however, that according to the theo-

retical formula (6.20), the traces should exhibit a shift along the E-axis with

increasing the system size, since ∆ denotes the single particle level spacing,

∆ ∼ 1/Area. This is not what we observe. Instead, with us the DoS in the

reported energy range is not sensitive to the system size. Hence, application

of (6.20) for fitting our data is to be taken with a grain of salt. Conceivably,

we are not yet in the low energy regime, where the only relevant length scale

left is ∆.

We then show how the effective disorder parameter gm goes to zero with

the disorder concentration in Fig. 6.11a.

71

10
-2

E/t

-7

-6

-5

ln
(E

*D
(E

))

AxBx 4% 2048x2048
AxBx 4% 4096x4096
fit

y = A0 - 0.5*(3/A1*abs(ln(x/A2)))^(A3)

System Disorder A0 gm ∆
20482 4% −4.74 0.90 0.12
40962 4% −4.43 0.81 0.16

Figure 6.10: We plot ln(E ·D(E)) over E for two different system sizes and
compensated disorder, ∆t = 0.05 for the small system and 0.01 otherwise.
Analytical results are fitted with a non linear fit (6.20).

6.2.4 Disorder in both sub lattices

Now we slowly raise the defect concentration in one sub-lattice, Fig. 6.12.

The gap begins to close, filling up from the edge. While the qualitative

behavior has been reported by earlier authors already, the detailed sub gap-

structure of the DoS has not been resolved before – to the best of our knowl-

edge.

We introduce the compensation parameter η,

η =
cA − cB

cA + cB

c =
cA + cB

2
(6.21)

η ∈ [0, 1] parametrizes the amount of uncompensation between both sub-

72

10
-3

10
-2

E/t

-10

-9

-8

-7

-6

ln
(E

*D
(E

))

0.1%
0.2%
0.5%
1%
2%
4%

0 1 2 3 4
C [%]

0

0.02

0.04

0.06

0.08

0.1

∆

∆

0 1 2 3 4
C [%]

0.6

0.8

1

1.2

1.4

g m

g
m

System Disorder A0 gm ∆
20482 0.1% −8.334 0.945 0.014
20482 0.2% −7.858 1.085 0.018
20482 0.5% −6.960 1.046 0.030
20482 1% −6.151 0.988 0.053
20482 2% −5.418 0.942 0.081
20482 4% −5.011 1.009 0.093

Figure 6.11: We plot ln(E ·D(E)) over E like in Fig. 6.10a, for compensated
disorder with different vacancy concentrations. On the other plots we show
the fitting parameters, the level spacing ∆ and the coupling constant gm.

lattices A and B, c is the total vacancy concentration in the graphene flake.

The evolution with η gets quite complicated now. We will indicate some

characteristic energy scales, represented also on Fig. 6.13. We still have a

peak near E = 0. The energy of the full gap is Eg (fig 6.8a). In between we

distinguish three different regimes.

Low energy regime: The low energy regime D(E) ∝ |E|2 is only visible

for very uncompensated lattices, η << 1, as shown in Fig. 6.13. The |E|2

regime terminates at an upper scale Et where it gives way to a transient

regime with an intermediate effective power law. Et is indicated in Fig. 6.13

73

-3 -2 -1 0 1 2 3
E/t

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4
E/t

0

0.05

0.1

D
(E

)

A 4% B 0.01%
A 4% B 0.25%
A 4% B 1%
A 4% B 2.5%
A 4% B 3.5%

Figure 6.12: DoS of graphene with disorder, filling up with vacancies from
the uncompensated to the compensated case. The system size is 4096×4096
with en energy resolution of 6 · 10−4. On the left we show a close up on the
Dirac point.

right by a small circle.

Power law regime: The next regime shows an intermediate power law

behavior |E|1/z as we show in Fig. 6.13, right. We fit the exponent 1/z for

different disorder mismatch η and present the results in a phase diagram 6.16

below. The axes are η and the total disorder concentration c, the amplitude

is the color coded exponent 1/z. We notice that the exponent changes sign

around 50%− 60% compensation.

Our data do not allow to clearly determine where this intermediate power

law starts for all η. In other words, it is difficult to nail own Et(η, c). An

attempt has been made Fig. 6.15b, right. It is not clear, whether or not the

|E|2 behavior at lowest energies remains as η becomes smaller than η ≈ 0.72.

74

10
-4

10
-3

10
-2

10
-1

10
0

E/t

10
-5

10
-4

10
-3

10
-2

10
-1

D
(E

)

A 4% B 0.250% (4k)²
A 4% B 0.250% (16k)²
A 4% B 0.125% (16k)²

10
-3

10
-2

10
-1

E/t

10
-5

10
-4

10
-3

10
-2

10
-1

D
(E

)

A 4% B 0.250% (16k)²
A 4% B 0.125% (16k)²
Fit : y = 189.55 x^4.04
Fit : y = 0.24 x^1.89
Fit : y = 0.01 x^-0.04
A 4% B 0.5% 1% 3% (4k)²

Figure 6.13: Left: the behavior around the delta peak. The raw data for
4096× 4096displays a behavior at lower energies (strong power law increase)
that reflects the δ-peak broadening of our method. This is an artifact that
must be removed for interpreting physical data. We did two big systems (blue
and red) with 16384× 16384 sites and were able to resolve much better the
behavior around the delta peak. Right: we propose a schematic description,
for a low vacancy concentration we observe two power laws which is not the
case for bigger concentrations. It seams that for a given energy the power
laws go into a plateau (Grey area).

Plateau regime: The third regime is a local maximum, a “plateau”. We

show how the height of the plateau depends on the compensation η in

Fig. 6.15a. As can be seen in Fig. 6.13 the point Ep where the DoS changes

into the plateau regime does not strongly depend on the amount of uncom-

pensation. This point also coincides with the band gap Eg as shown in

Fig. 6.14. After the plateau the DoS resumes the clean behavior with the

van Hove singularity at |E| = t.

75

0 0.05 0.1 0.2 0.2
E/t

0

0.01

0.02

0.03

0.04

D
(E

)

A 2% B 0%
A 2% B 0.25%

Figure 6.14: We plot the edge of the gap for the uncompensated case with
2% vacancies in one sublattice, the vertical line corresponds to the gap width
Eg = 0.0704 from tab. 6.8b. The energy scale Ep where the plateau begins
coincide well with Eg.

76

0 0.2 0.4 0.6 0.8 1
η

0

0.2

0.4

0.6

0.8

1

p(
η)

/p
(0

)

plateau A 4% B x
plateau A 2% B x
plateau A 1% B x
Fit : y = 1 - x ^a0 , a0 = 1.38207

0.7 0.75 0.8 0.85 0.9 0.95 1
η

0

0.05

0.1

E
∆

Figure 6.15: Left: Height of the “plateau” (seen in the data Fig. 6.13, right
near E ≈ 0.1t) over the compensation parameter η. The height is nor-
malized to the height of the compensated lattice p4%(0) = 0.0566, p2%(0) =
0.0436, p1%(0) = 0.0325. As shown on the right, we expect the regime with
the asymptotic behavior of E2 to vanish with compensation η < 0.72, this
means that in the sub lattice B are at least 28% of the amount of vacancies
of sub lattice A. This regime is important for the lower energy physics.

 0

 0.5 1 1.5 2 2.5 3 3.5 4

C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

n

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0.5 1 1.5 2 2.5 3 3.5 4

C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

n

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

Figure 6.16: The DoS follows a power law, we plot the exponent 1/z in a
phase diagram over the total concentration of vacancies and the compensa-
tion parameter η = cA−cB

cA+cB
and the total concentration c = cA+cB

2
. The dotted

line is the interpolated exponent value corresponding to a slope of zero. The
colored disks with the black dots are the data the surface is fitted on.

77

78

7 Outlook

The application of the Krylov method to wave function propagation as it has

been implemented in this work has been showing the excellent performance

that we have been hoping for: To compute the density of states (Dos) for

one disorder configuration on a 4096× 4096 lattice, takes less than 24 hours

using the 64 cores per job on a local cluster in Karlsruhe, the HC3. However,

our system size is not limited to this. Namely, due to the good scalability

of our code, we achieved on another cluster, the JUROPA cluster in Jülich,

considerably bigger system sizes, 16384×16384 using 4096 cores in moderate

12h.

Due to the fact that (1) the Hamiltonian is never explicitly represented,

and (2) the wave package storage is distributed over many nodes, calculations

are not limited by computer storage. Instead, the limiting factor is computer

time: Large system sizes need more computer time in order for the time

evolution to reach the observation time, typically tobs ∼ 106 time steps,

needed for a good energy resolution. The computer time in turn is limited by

the “wall time” defined the by the Rechenzentren, e.g., SCC (Karlsruhe) has

a wall time of 72h for 64 nodes. Obviously, a future step in code development

will be to install a “restart” for the parallel jobs, so that longer observation

times much longer than the wall time are possible. A “restart” option at

JUROPA together with the necessary total computer time budget opens up

possibilities for the treatment of system sizes of the order of 50.000× 50.000,

we believe. This corresponds to a graphene flake with a lateral extension of

6 µm, which is a scale approaching almost macroscopic dimensions.

In this thesis we have been focusing on the density of states in graphene

with vacancy disorder as the observable of the first application of our code.

We have been able to resolve a sub gap structure in the DoS near zero energy

79

and find regimes, that (to the best of our knowledge) have not been discussed

in the literature so far.

Here, we would like to emphasize that wave function propagation is also a

natural tool to inquire into the quantum dynamics. Therefore, first attempts

have been made already within this work to study the diffusion dynamics of

the wave package in graphene with vacancies.

This work on diffusion dynamics is to be continued, however, in future

endeavors. It has a particular charm in the sense, that it has been shown [17,

18] that the conductivity of the graphene sheet with vacancies is finite, while

our work as well as others shows that the DoS of states is singular. Hence,

according to the Einstein relation, the diffusion constant must compensate

the singularity of the DoS in a sense, and it will be interesting to see, how

this works in detail.

Finally, we also note that anomalous structures, like non-analyticities in

time (energy), usually also translate into very interesting spatial properties.

Indeed, our method can be used to probe the diffusion constant D(t, r) and

thus perhaps discover intermediate length scales which signalize anomalous

fluctuation properties that the wave function statistics usually exhibits in

two-dimensional systems that do not undergo a localization transition.

80

A Appendix: validation

Simulation parameters: In our simulation we have three parameters

which affect the quality of the data: the time step ∆t, the total observation

time tobs and the system size L×L. ∆t describes the coarse graining in time.

Thus, it controls the integration stability of the system and, in particular, also

the broadening of sharp spectral features, like the delta peak in graphene’s

DoS near zero energy. This broadening is a simulational artifact without

physical meaning. It has the shape ∼ ∆t3/E2 as seen from Fig. A.1, right.

It effects vanishes in the continuum limit ∆t → 0, Fig. A.1, left. Typical

values for ∆t in our simulations have been 0.01 < ∆t < 0.05 in units of 1/t.

The total simulation time is inversely proportional to the energy resolu-

tion due to the Fourier transformation. For too large simulation times the

discrete nature of the spectrum of the finite size system becomes visible and

sharp peaks appear. This trend manifests itself as ”noise” on the DoS traces.

Apart from this, tobs does not have any obvious impact on the behavior of

the DoS as seen in Fig. A.2. Typically, the observation time used in our

simulation was tobs/∆t = 106.

The system size, L, is important when we would like to augment the

energy resolution. A bigger system means a smaller mean level spacing.

This in turn implies, that we can resolve finer spectral structures and thus

less ”noise” for the same observation time. Apart from the energy resolution,

the DoS does not change in a systematic way with L, as far as we can see on

Fig. A.3, left.

Norm of the DoS: The area under the DoS should always be unity. We

have checked unitarity of our time evolution with and without defects. Fig.

A.4 on page 84 shows that the area is in both cases one.

81

10
-3

10
-2

10
-1

E/t

10
-1

D
(E

)

A : 1% (dt = 0.05)

A : 2%
A : 4%
A : 1% (dt = 0.01)

A : 2%
A : 4%

10
-4

10
-3

10
-2

E/t

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

D
(E

)

dt = 0.01
dt = 0.03
dt = 0.05

better resolution : dt = 0.05

Figure A.1: We check how the width of the time step influence the data. Left
we have two kind of data plotted onto each other. A system size 2048×2048
with time step ∆t = 0.05 and 4096 × 4096 with a time step ∆t = 0.01.
The energy resolution for the smaller system is much higher because the
total simulation time is longer due to the bigger time step. Up to the last
point the data coincides well, the time step does not matter much for the
compensated case. Right we show the data for the fully uncompensated case.
The system size is 2048 × 2048 with 0.25% vacancies in sub lattice A and
0% in B. The delta peak is clearly an artifact of our numerics and seams to
vanish for smaller time steps.

Broadening of the delta peak at zero energy: As already indicated

above, the delta peak acquires a power-law (Lorenzian type) broadening of

∼ E−2. This fact is emphasized once more in Fig. A.5, where the power law

is displayed for different disorder concentrations. The amplitude reproduces

correctly the number of zero modes, given by the sub lattice mismatch. It

does not change with disorder configuration or any other parameter of the

simulation, but the width of the delta peak does change with the total disor-

der concentration. The width does also change with the length of the time-

step, with smaller time-steps the width of the peak gets smaller, the peak

as such is an artifact of our numerics, we expect to get a real delta-peak for

82

0.05 0.1 0.15

E/t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

D
(E

)

crop 1

crop 0.75

crop 0.5

0.094 0.096 0.098

10
-3

Figure A.2: We check for the uncompensated case how the total simulation
time tobs influence the data. The system size is 2048×2048 with 2% vacancies
in sub lattice A and 0% in B. We plot the data for three different tobs, we
compute the correlation function for a long tobs and than Fourier transform
it to obtain the DoS. We do this three times, first with the full correlation
function, then we crop it and use 75% and 50% which corresponds to 0.75tobs
and 0.5tobs. We conclude that the total observation time does not have any
impact on the DoS of graphene.

infinitely small time-steps.

83

10
-4

10
-3

10
-2

10
-1

E/t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

D
(E

)

A 0.25% B 0.00% , 1024x1024

A 0.25% B 0.25% , 1024x1024

A 0.25% B 0.00% , 4096x4096

A 0.25% B 0.25% , 4096x4096

Figure A.3: We check for how the system size L× L influence the data. We
compare two system sizes 1024 × 1024 and 4096 × 4096. Data for different
system sizes coincide very well. In particular, even the smallest system size
is already big enough for the DoS to be self averaging.

-3 -2 -1 0 1 2 3
E/t

0

0.5

1

D
(E

)

clean graphene 8192x8192
integrated clean DoS
4096x4096 with disorder, 4% in A and 2.5% in B
integrated DoS with disorder

Graphene Density of States

Figure A.4: We check if the DoS is properly normalized. The area under the
DoS for clean and disordered graphene is in both cases one.

84

0.001 0.01 0.1
E/t

0.0001

0.001

0.01

0.1

1

D
(E

)

0.01%
0.05%
0.1%
0.25%
0.5%
1%
2%
Fit : ~x^-1.99

Graphene DOS
2048x2048 Ax B0%

Figure A.5: Peak of the DoS for different disorder concentrations, fully un-
compensated case. The power-law dependency E−2 of the numerical peak
broadening is indicated. (∆t = 0.05 in this simulation.)

85

86

B Appendix: implementation

B.1 Appendix: Krylov method

The simulation can propagate systems without any restriction on the geome-
try. Below our implementation of the tight binding Hamilton routine for our
application to graphene.

void HPsi_mpi(state& src , state& res) {

src.apply_mask(s->defects_mask);

getBoundsFrom(src);

gr->getBounds(s->k, s->northbound , s->southbound , s->westbound , s->eastbound);

for (int i=0;i<k2;i++) {

res[i] = 0;

int x = i%s->k;

int y = i/s->k;

int g = x + y;

if (x != 0) res[i] += src[i-1]; // Innerhalb einer Zeile -------------------

if (x != s->k-1) res[i] += src[i+1];

// zwischen den Zeilen ------------------------------------

if (g%2 == 0) if (i < k2 -s->k) res[i] += src[i+s->k];

if (g%2 == 1) if (i >= s->k) res[i] += src[i-s->k];

if (x == 0) res[i] += s->westbound[y]; // periodizitaet horizontal -------

if (x == s->k-1) res[i] += s->eastbound[y];

// periodizitaet vertikal -------

if (g%2 == 0) if (i >= k2 -s->k) res[i] += s->southbound[x];

if (g%2 == 1) if (i < s->k) res[i] += s->northbound[x];

}

res.apply_mask(s->defects_mask);

}

At the beginning and at the end the defects mask is applied to the states.

87

It is an array filled with one and zero, zero for vacancies. When the mask

is applied to the state, every element from the mask is multiplied to the

corresponding element from the state. The vacancies take effect in the con-

sequence of the above, by artificially maintaining the amplitude on those

sites at zero we prevent them from contributing to the hoping.

Parallelization: The lattice is split in multiple patches like a chessboard.

The bounds have to be exchanged for every patch of the graphene lattice.

If there is no parallelization the single patch uses his own edges to satisfy

the periodic boundary conditions. At last each element of the new state is

computed from 3 terms (the 3 next neighbors). And now the whole routine:

88

double computeBasis () {

normC [0]=1; //norm of the current state

for (int i=0;i<s->m-1;i++) HPsi_mpi(s->krylov_basis[i], s->krylov_basis[i+1]);

for (int i=0;i<s->m;i++) {//vor gram schmidt!

o_hh_o[i] = s->krylov_basis[i].mult(s->krylov_basis [0]);

o_hh_o[i+s->m-1] = s->krylov_basis[i].mult(s->krylov_basis[s->m -1]);

}

//gram schmidt: b(i) = H i> - |j><j Hi 0> = w(i) - ...

cplx c; int i1,i2 ,i3;

for (i1=1; i1<s->m; i1++) {// calc b(i)

for (i2=0; i2 <i1; i2++) {

c = khio(i2, i1);

for (i3=0; i3 <k2; i3++)

s->krylov_basis[i1][i3] -= s->krylov_basis[i2][i3] * c;//|i> -= c|j>

}

normC[i1] = s->krylov_basis[i1]. normalize ();

}

for (int i=0; i<=s->m; i++) {

for (int j=0; j<s->m; j++) {//k

k_h_o[i*s->m+j] = khio(j, i);

}

}

return 0;

}

B.2 Appendix: MPI

Nearly all MPI calls are wrapped in the ”mpi grid” class.

MPI Initialization

89

MPI_Init (&opt ->argc , &opt ->argv);

MPI_Comm_size(MPI_COMM_WORLD , &process_N);

MPI_Comm_rank(MPI_COMM_WORLD , &process_i);

MPI_Get_processor_name(processor_name , &name_len);

MPI Init must be called before any other MPI calls, the other three calls

get the values for the total number of processes, the id of the current process,

and the name of the current node.

MPI Finalization

MPI_Finalize ();

This must be the last MPI call.

Barrier

MPI_Barrier(MPI_COMM_WORLD);

This call is an effective barrier, its purpose is to synchronize all processes.

This function is used in different places in the application, not just in the

MPI wrapper.

Communication

90

cplx gatherSum(cplx& c) {

cplx rbuf[process_N];

MPI_Gather (&c, 1, type , rbuf , 1,type ,0, MPI_COMM_WORLD);

cplx c_sum = 0;

if (process_i == 0) for (int i=0;i<process_N;i++) c_sum += rbuf[i];

MPI_Bcast (&c_sum , 1, type , 0, MPI_COMM_WORLD);

return c_sum;

}

This is one of the most important functions. Its purpose is to gather one

complex number from every process at a certain point, add all together and

distribute it again to everyone. This is for example used when computing

the norm of a state, or for the correlation function.

Implementation

91

int tag = 0;

MPI_Status status;

MPI_Request request [4];

tag = 1;

MPI_Isend (westbound+k, k, type , east , tag , MPI_COMM_WORLD , &request [0]);

MPI_Recv (eastbound , k, type , west , tag , MPI_COMM_WORLD , &status);

tag = 2;

MPI_Isend (eastbound+k, k, type , west , tag , MPI_COMM_WORLD , &request [1]);

MPI_Recv (westbound , k, type , east , tag , MPI_COMM_WORLD , &status);

tag = 3;

MPI_Isend (northbound+k, k, type , south , tag , MPI_COMM_WORLD , &request [2]);

MPI_Recv (southbound , k, type , north , tag , MPI_COMM_WORLD , &status);

tag = 4;

MPI_Isend (southbound+k, k, type , north , tag , MPI_COMM_WORLD , &request [3]);

MPI_Recv (northbound , k, type , south , tag , MPI_COMM_WORLD , &status);

//check the request objects to free internal memory ,

//else there is a big memory leak !!!

MPI_Waitall (4, request , MPI_STATUSES_IGNORE);

The MPI calls used here are MPI Isend and MPI Recv. MPI Isend sends

an array of complex numbers to a specific node, this call is non blocking! This

means the sending process will not wait for the send operation to complete.

The MPI Recv call receives the array of data, this call is blocking! It waits

until it has terminated. The idea of all this is quite simple. All processes

send their surface data to the ’west’ and wait for the data coming from the

’east’. When this is done they send their data to the ’east’ and wait for

data from the ’west’, and so on.. The boundary conditions enters during

the initialization in the list of neighbors which depends on the index of the

92

process.

B.3 Appendix: diffusion

First the distances(radius) of every site to the central site are computed and

stored

void fillRmap () {//all possible R values

for (int i=-rmax; i<=rmax; i++) {

for (int j=-rmax; j<=rmax; j++) {

int r = getIntegerDistance(i+x0,j+y0);

if(find(Rmap.begin(), Rmap.end(), r) == Rmap.end())

Rmap.push_back(r);

}

}

sort(Rmap.begin(), Rmap.end ());

}

The next method goes through all the sites again and match every site

with its radius.

93

void fillPmap () {

fillRmap ();

Pmap.resize(Rmap.size(), vector <int* >());

for (int i=-rmax; i<=rmax; i++) {

for (int j=-rmax; j<=rmax; j++) {

int r = getIntegerDistance(i+x0,j+y0);

int id = int(find(Rmap.begin(), Rmap.end(), r) - Rmap.begin ());

int* pos = new int [2];

pos [0] = i+x0; pos [1] = j+y0;

Pmap[id]. push_back(pos);

} } }

This is used every time step to sum over the sites with the same radius.

That way we already get some averaging.

void process(int t) {

for (int i=0; i<Pmap.size (); i++) {

for (int j=0; j<Pmap[i].size (); j++) {

int id = Pmap[i][j][0] + Pmap[i][j][1]*s->k;

cplx c = s->krylov_basis [0][id];

prt[t + i*s->T] += norm(c)/Pmap[i].size ();

} } }

The data is stored in a separate object P rt.

The data is stored in binary format, the following routine converts it in

ASCII format and can average over different files.

94

void average(string path) {

cout << "\ naverage over diffusion data\n";

vector <string > paths = getPaths(path);

int N = paths.size ();

if (N == 0) {

cout << "\nNo files found\n";

return;

}

prt.load(paths [0]);

prt.setRads(Rmap);

P_rt tmp;

for (int i=1; i<N; i++) {

tmp.load(paths[i]);

for (int j=0; j<prt.size ();j++) prt[j] += tmp[j];

}

// generate path string

string ptmp = "avg_";

string dir = paths [0];

size_t pos_slash = dir.find_last_of (’/’);

dir = dir.substr(pos_slash+1, 1000);

ptmp.append(dir);

//prt.save(ptmp);

if (opt ->order == ’t’) prt.sort(true);

if (opt ->order == ’r’) prt.sort(false);

prt.writeAscii(ptmp);

}

95

96

C Appendix: Displacement shader

To accelerate the 3D visualization, we used following shader.

// vertex shader program (Phong)

string dcShader :: vs_program = //color shader ist jetzt hier dabei!!

"uniform sampler2D displacementMap ;\n"

"uniform float dtc;\n"// texel size

"uniform float Dtc;\n"// texture size

"vec4 c_p0 = vec4 (0.0, 0.0, 0.5, 1.0);\n"

"vec4 c_p1 = vec4 (1.0, 1.0, 0.0, 1.0);\n"

"vec4 c_p2 = vec4 (0.0, 1.0, 0.0, 1.0);\n"

"vec4 c_p3 = vec4 (1.0, 0.0, 0.0, 1.0);\n"

"varying vec3 ViewDirection ;\n"

"varying vec3 fvObjectPosition ;\n"

"varying vec3 Normal ;\n"

"float s;\n"// scale

//for debugging

"varying vec2 tc;\n"

//---texture2D_bilinear

"vec4 texture2D_bilinear(sampler2D tex , vec2 uv) {\n"

" vec2 f = fract(uv.xy * Dtc);\n"

" vec4 t00 = texture2D(tex , uv);\n"

" vec4 t10 = texture2D(tex , uv + vec2(dtc , 0.0));\n"

" vec4 tA = mix(t00 , t10 , f.x);\n"

" vec4 t01 = texture2D(tex , uv + vec2(0.0, dtc));\n"

" vec4 t11 = texture2D(tex , uv + vec2(dtc , dtc));\n"

" vec4 tB = mix(t01 , t11 , f.x);\n"

" return mix(tA, tB, f.y);\n"

"}\n"

97

//---DISPLACEMENT FKT

"vec4 getDisplacementFromMap(vec2 tc) {\n"

" vec4 v;\n"

" vec4 c;\n"

" float df;\n"// displacement

//" c = texture2D_bilinear(displacementMap , tc * dtc);\n"

" c = texture2D(displacementMap , tc * dtc);\n"

" s = 1000.0*c[3];\n"

" df = c.x*s + c.y*s*0.00392156862745 + c.z*s*1.53787004998e-05;\n"

" v = vec4 (0.0, df, 0.0, 0.0);\n"

" return v;\n"

"}\n"

//--MAIN --VP

"void main(void) {\n"

// displacement shader -----------------

" tc = gl_MultiTexCoord0.xy;\n"

" vec4 disp0 = getDisplacementFromMap(tc);\n"

" vec4 new_v_pos = disp0 + gl_Vertex ;\n"

" gl_Position = gl_ModelViewProjectionMatrix * new_v_pos ;\n"

98

//NORMALS ----------------------

" vec4 dispx1 = vec4 (0.0, 0.0, 0.0, 0.0);\n"

" vec4 dispx2 = dispx1 ;\n"

" vec4 dispy1 = dispx1 ;\n"

" vec4 dispy2 = dispx1 ;\n"

" dispx1 = getDisplacementFromMap(tc + vec2 (1.0, 0.0));\n"

" dispx2 = getDisplacementFromMap(tc + vec2(-1.0, 0.0));\n"

" dispy1 = getDisplacementFromMap(tc + vec2 (0.0, 1.0));\n"

" dispy2 = getDisplacementFromMap(tc + vec2 (0.0, -1.0));\n"

" vec3 tanx1 = vec3(dispx1 - disp0) + vec3 (1.0, 0.0, 0.0);\n"

" vec3 tanx2 = vec3(dispx2 - disp0) + vec3(-1.0, 0.0, 0.0);\n"

" vec3 tany1 = vec3(dispy1 - disp0) + vec3 (0.0, 0.0, 1.0);\n"

" vec3 tany2 = vec3(dispy2 - disp0) + vec3 (0.0, 0.0, -1.0);\n"

" vec3 normal1 = cross(tany1 , tanx1);\n"

" vec3 normal2 = cross(tany2 , tanx2);\n"

" vec3 normal3 = cross(tanx2 , tany1);\n"

" vec3 normal4 = cross(tanx1 , tany2);\n"

" vec3 normal = normal1 *0.5 + normal2 *0.5 + normal3 *0.5 + normal4 *0.5;\n"

//" vec3 normal = gl_Normal ;\n"

// PHONG -----------------

" fvObjectPosition = vec3(gl_ModelViewMatrix * new_v_pos);\n"

" ViewDirection = - fvObjectPosition.xyz;\n"

" Normal = gl_NormalMatrix * normal ;\n"

//" Normal = gl_NormalMatrix * gl_Normal ;\n"

//color ---------------------

// define the base color depending on vertex height using bezier

" float t = 32.0* new_v_pos.y/s;\n"

//" gl_FrontColor = t*t*t*(-c_p0 + 3.0* c_p1 - 3.0* c_p2 + c_p3)

+ t*t*3.0*(c_p0 - 2.0* c_p1 + c_p2) + t*3.0*(c_p1 - c_p0) + c_p0;\n"

" gl_FrontColor = c_p0 + t*c_p1 - t*c_p0;\n"

"}\n";

99

//---MAIN --FP

// fragment shader program for bump mapping in surface local coordinates (Phong)

string dcShader :: fs_program =

"uniform sampler2D displacementMap ;\n"

"vec4 fvAmbient = vec4 (0.36 , 0.36, 0.36, 1.0);\n"

"vec4 fvSpecular = vec4 (0.7, 0.7, 0.7, 1.0);\n"

"vec4 fvDiffuse = vec4 (0.5, 0.5, 0.5, 1.0);\n"

"float fSpecularPower = 25.0;\n"

"\n"

"uniform sampler2D baseMap ;\n"

"uniform int useTexture ;\n"

"\n"

"varying vec2 tc;\n"

"varying vec3 ViewDirection ;\n"

"varying vec3 fvObjectPosition ;\n"

"varying vec3 Normal ;\n"

"\n"

100

"void main(void)\n"

"{\n"

" vec3 fvLightDirection = normalize(gl_LightSource [0]. position.xyz

- fvObjectPosition.xyz);\n"

" vec3 fvNormal = normalize(Normal);\n"

" float fNDotL = dot(fvNormal , fvLightDirection); \n"

" \n"

" vec3 fvReflection = normalize(((2.0 * fvNormal) * fNDotL)

- fvLightDirection); \n"

" vec3 fvViewDirection = normalize(ViewDirection);\n"

" float fRDotV = max(0.0, dot(fvReflection , fvViewDirection));\n"

" \n"

" vec4 fvBaseColor = gl_Color ;\n"

" \n"

" vec4 fvTotalAmbient = fvAmbient * fvBaseColor; \n"

" vec4 fvTotalDiffuse = fvDiffuse * fNDotL * fvBaseColor; \n"

" vec4 fvTotalSpecular = fvSpecular * (pow(fRDotV , fSpecularPower));\n"

" \n"

" gl_FragColor = (fvTotalAmbient + fvTotalDiffuse + fvTotalSpecular);\n"

//" gl_FragColor = gl_Color ;\n"

//" gl_FragColor = texture2D(displacementMap , tc);\n"

"}\n";

101

102

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-

garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and

D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied

Mathematics, Philadelphia, PA, third edition, 1999.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for

the Solution of Linear Systems: Building Blocks for Iterative Methods,

2nd Edition. SIAM, Philadelphia, PA, 1994.

[3] C. W. J. Beenakker. Colloquium: Andreev reflection and Klein tunnel-

ing in graphene. Reviews of Modern Physics, 80:1337–1354, Oct. 2008.

[4] M. S. Bera. Graphene: Elastic properties, signatures of criticality in-

duced by zero modes and multifractality near a quantum Hall transition.

PhD thesis, Karlsruhe Institute of Technology, June 2011.

[5] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and

A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys.,

81:109–162, Jan 2009.

[6] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.

Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program

Generation, Optimization, and Platform Adaptation”.

[7] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-

tain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open MPI:

Goals, concept, and design of a next generation MPI implementation.

103

In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages

97–104, Budapest, Hungary, September 2004.

[8] A. Geim and K. Novoselov. The rise of graphene. Nat Mater, 6(3):183–

91, 2007.

[9] R. Haydock, V. Heine, and M. J. Kelly. Electronic structure based on the

local atomic environment for tight-binding bands. Journal of Physics

C: Solid State Physics, 5(20):2845, 1972.

[10] M. R. Hermann and J. A. Fleck. Split-operator spectral method for solv-

ing the time-dependent schrödinger equation in spherical coordinates.

Phys. Rev. A, 38:6000–6012, Dec 1988.

[11] W.-M. Huang, J.-M. Tang, and H.-H. Lin. Power-law singularity in the

local density of states due to the point defect in graphene. Phys. Rev.

B, 80(12):121404, Sep 2009.

[12] B. Huckestein and R. Klesse. Wave-packet dynamics at the mobility edge

in two- and three-dimensional systems. Phys. Rev. B, 59:9714–9717, Apr

1999.

[13] A. S. M.D Feit, J.A Fleck Jr. Solution of the schrdinger equation by a

spectral method. J. Comput. Phys., 47:412–433, 1982.

[14] A. D. Mirlin, F. Evers, I. V. Gornyi, and P. M. Ostrovsky. Ander-

son Transitions:. Criticality, Symmetries and Topologies. International

Journal of Modern Physics B, 24:1577–1620, 2010.

[15] C. Moler and C. V. Loan. Nineteen dubious ways to compute the expo-

nential of a matrix, twenty-five years later. SIAM Review, 45(1):3–49,

2003.

104

[16] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin. Electron transport in

disordered graphene. Phys. Rev. B, 74:235443, Dec 2006.

[17] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin. Quantum criticality

and minimal conductivity in graphene with long-range disorder. Phys.

Rev. Lett., 98:256801, Jun 2007.

[18] P. M. Ostrovsky, M. Titov, S. Bera, I. V. Gornyi, and A. D. Mirlin.

Diffusion and criticality in undoped graphene with resonant scatterers.

Phys. Rev. Lett., 105:266803, Dec 2010.

[19] V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres,

and A. H. Castro Neto. Disorder induced localized states in graphene.

Phys. Rev. Lett., 96(3):036801, Jan 2006.

[20] V. M. Pereira, J. M. B. Lopes dos Santos, and A. H. Castro Neto.

Modeling disorder in graphene. Phys. Rev. B, 77(11):115109, Mar 2008.

[21] J. Schindler. Numerische wellenfunktionspropagationsmethoden in un-

geordneten medien. Diploma thesis, Karlsruhe Institute of Technology,

2012.

[22] L. Schweitzer. Narrow depression in the density of states at the dirac

point in disordered graphene. Phys. Rev. B, 80(24):245430, Dec 2009.

[23] S. Wu, L. Jing, Q. Li, Q. W. Shi, J. Chen, H. Su, X. Wang, and J. Yang.

Average density of states in disordered graphene systems. Phys. Rev. B,

77(19):195411, May 2008.

[24] S. Yuan, H. De Raedt, and M. I. Katsnelson. Modeling electronic struc-

ture and transport properties of graphene with resonant scattering cen-

ters. Phys. Rev. B, 82:115448, Sep 2010.

105

