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1. Introduction

One dimensional systems have been a very interesting field for a long time in condensed
matter physics. The first theoretical approaches to treat these systems were performed in
the fifties by Luttinger and Tomonaga [25, 35], who introduced the well known Luttinger
Liquid, and by Mattis and Lieb [27]. Their work showed that one dimensional systems
exhibit some very special properties which cannot be seen in higher dimensions. These
results led to a strong interest of theoretical physicists in this field and nowadays a lot of
good reviews are available [16, 18, 32].

Whereas the theory has existed since the 1950s, the experimentalists managed to catch
up in the last decades. Nowadays lots of realizations of one dimensional systems exist
like single-wall carbon nanotubes [7], cleaved-edge and V-groove semiconductor quantum
wires [5, 23], quantum Hall-edges [21] or metallic nanowires [33]. Especially single-wall
carbon nanotubes have received a lot of experimental attention. Different experiments
show Luttinger Liquid-like behaviour of single-wall carbon nanotubes, as expected for
strongly interacting electrons in one dimension.

One very interesting field in condensed matter physics is that of disordered systems. In
1958 Anderson stated that disorder can lead to localization of electrons [3], but it took
more than 20 years to develop the theory of localization [1]. This theory shows that
localization is very pronounced in one dimension. In fact, even arbitrarily weak disorder
leads to full localization in a noninteracting one dimensional system [28].

Although the clean, interacting case (leading to a Luttinger Liquid) and the disordered,
noninteracting case (leading to localization) are well understood, less is known about
disordered, interacting 1D systems. As seen in higher dimensional systems, interactions
give rise to a renormalization of impurities. This renormalization is again very special in
one dimension, since even a single (renormalized) impurity leads to a decoupling of an
infinite Luttinger Liquid into two independent parts at zero temperature [20]. However,
the case of many impurities turned out to be a lot more difficult. The first attempts to
treat the disordered Luttinger Liquid were done by Apel and Rice [4] and by Giamarchi
and Schulz [17], but recently progress has been made in understanding the single-channel
disordered Luttinger Liquid [6, 19].

An interesting effect caused by disorder is that of weak localization. Weak localization is a
quantum mechanical interference effect between different paths performing a loop, resulting
in quantum localization and in a decrease of conductivity. The strength of the localization
is determined by coherence, which can be destroyed by e.g. inelastic scattering events.
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2 1. Introduction

This effect is called dephasing and introduces an according dephasing time τφ, which is
connected to external parameters like interaction strength or temperature, but the way it
is connected depends strongly on the dimensionality of the system.

The goal of this thesis is to calculate the weak localization correction to the conductivity
of a spinless disordered 2-chain ladder. In this thesis we restrict ourselves to the case of
strong dephasing τφ/τ � 1. This assumption is valid for weakly disordered systems or
for high enough temperatures. The weak localization correction is interesting for several
reasons. First of all, the correction for a single chain has already been calculated [19, 37],
so it is instructive to go one level further and to look at the 2-chain ladder. Also, the
spinless 2-chain ladder is one of the simplest one dimensional systems which can exhibit
magnetoresistance (induced by weak localization). This cannot be seen in the spinless
single chain, since the magnetic field can be totally gauged out. However, the spinful
single chain can exhibit magnetoresistance, the underlying mechanism is in this case the
Zeeman splitting [36, 38].

Furthermore, single wall carbon nanotubes can be mapped onto the 2-chain ladder [24].
Experiments performed by Man and Morpurgo [26] show that carbon nanotubes exhibit
magnetoresistance induced by weak localization. Although the magnetic field acts differ-
ently on nanotubes than on a 2-chain ladder, this thesis is the first step in deriving the
weak localization correction of carbon nanotubes.

We will show in this thesis that the magnetic field enhances the weak localization in
the 2-chain ladder. This effect is unexpected, since the magnetic field usually decreases
weak localization. Furthermore, we will show that the magnetic field effectively decouples
the two chains and we identify this effect as the cause for the enhancement of the weak
localization. Eventually we will see that the expected behaviour of the weak localization
correction can be observed for small magnetic fields for a specific set of parameters.

Outline
This thesis is divided into two parts as follows:

Chapters 2-4 introduce the reader to the concepts used throughout the thesis. The content
of these chapters is well-known and can also be found in the cited textbooks and papers
in more detail.
In chapter 2 we give a brief introduction to the concepts of disordered solids and the quan-
tum mechanical approach to the conductivity. Especially the effect of weak localization
is presented in detail. Chapter 3 is devoted to interacting one dimensional systems. This
chapter is very general and covers the phenomenology of one dimensional systems and
sums up various methods which are used. The method we will use is called Functional
Bosonization, this method is explained in detail in chapter 4.

The second part of the thesis (chapter 5-7) is devoted to the work which has been done
during the thesis.
We introduce the underlying ladder model in chapter 5, especially the case of the ladder in a
magnetic field is accounted in this chapter. The actual calculation of the weak localization
correction is performed in chapter 6. The correction is calculated using two approaches:
a phenomenological one and a microscopic one. The former approach is quite qualitative
and yields an analytical result, whereas the latter one is more quantitative but leads to
complicated integrals. In the end of this chapter we compare both approaches in order
to check the validity of the phenomenological approach. Eventually, the weak localization
correction is discussed extensively in chapter 7.
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2. Conductivity

The main goal of this thesis is to calculate the conductivity for a specific model, so it is
instructive to start with conductivity in general. Conductivity is a measure for the quality
of electron transport. In a metal, the atoms are ordered in a crystalline lattice and we
know from Bloch’s theorem, that we can find an exact eigenstate for the electrons in a
periodic potential. In this state, the electrons don’t scatter off the potential and therefore
move undisturbed, so the resistivity is zero and the conductivity is infinite.

Experiment tells us that most systems exhibit a finite conductivity, so something cannot
be right with our picture. In fact, there are two causes of a finite conductivity: Interaction
and disorder. Electron-electron and electron-phonon interactions lead to scattering of the
electrons which consequently results in a finite conductivity. In this chapter we concen-
trate on the role of disorder. The lattice always contains some impurities or vacancies,
which destroy the periodicity of the lattice and the potential. So the Bloch state isn’t an
eigenstate anymore, electrons can scatter and one gets a finite conductivity.

This picture was used by Drude to calculate the conductivity of a solid. He described
the electrons as a gas and used kinetic theory. Drude assumed that all electrons scatter
over and over again on randomly distributed ions, so electron transport can be treated as
diffusive transport. By this means, Drude introduced a relaxation time τ , which is the
time between 2 scattering events and ended up with his well known formula

σD =
ne2τ

m
, (2.1)

where n is the number of electrons per unit cell, e is the electric charge and m is the mass
of the electron. An equivalent form of the Drude formula can by given by means of the
Einstein relation

σD = e2νD (2.2)

with the density of states ν and the diffusion coefficient D = v2
fτ . The Einstein relation is

helpful in later chapters, when we turn to the case of 1D systems.

This rather simple formula has turned out to be very successful in the explanation of the
conductivity. Still, it is a classical theory, so it does not cover quantum mechanical effects.
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4 2. Conductivity

2.1. Disorder

We start by looking at the role of disorder in solids. This section is meant to give a brief
overview, the detailed calculation can be found in various textbooks like e.g. [8] and [11].

Suppose we have nimp impurities in our solid, each sitting on a rigid position Ri and
exhibiting a potential U(x), so the total potential reads

U(x) =
∑

j

U(x−Rj). (2.3)

The Fourier transform of the single potential is given by u(q) =
∫
d3xU(x)e−iqx. Now

suppose we have a given distribution of the impurities and electrons can scatter on ev-
ery single one. Omitting interaction one can write down the full Greens function in a
diagrammatic way:

= + + . . .

Crosses denote the impurities where the scattering takes place. Note that impurities can
change momentum, but conserve frequency. It is also worth mentioning that electrons
can scatter multiple times on the same impurity, so the crosses need not denote different
impurities.

The notation so far is valid when we know the distribution of the impurities. However,
the impurities are randomly distributed in the solid, so it is instructive to average over all
impurity positions. The simplest diagram

k k′

Rj

yields zero upon averaging over the impurity positions. However, when we look at the
double scattering event on one impurity

kk

k − q

q

,

we notice a magnificent fact: upon averaging over impurity positions momentum becomes
conserved. Disorder becomes comparable to a 2-particle interaction and one can write
down the full Greens function

4



2.1. Disorder 5

= + + . . .

= + Σ
.

With this definition of the self-energy Σ one finds

Σ(iωn) = −i 1

2τ
sgn(ωn). (2.4)

Note that the self-energy is purely imaginary and the sign depends only on the Matsubara
frequency. Using this self-energy we can write down the Matsubara Greens function

G(k, ωm) = (iωm − ε(k)− Σ(iωm))−1

=

(
iωm − ε(k) + i

1

2τ
sgn(ωn)

)−1

. (2.5)

The scattering time τ is given by

τ−1 = 2πnimpN(0)u2
0, (2.6)

where N(0) is the density of states at the Fermi energy and u2
0 is the angular average of

the impurity scattering potential

u2
0 =

∫
dΩk′

4π

∣∣u(k− k′)
∣∣2 =

1

2

∫ 1

−1
d cos Θ |u(Θ)|2 . (2.7)

This result is obtained by the simplest self-energy possible, but calculations show that
higher order contributions yield only small corrections to the self-energy.

As already mentioned disorder scattering acts as a 2-particle interaction after averaging
over all impurity positions. In this sense one can write down a scattering diagram

k

k −Q k′ +Q

k′
Q

with strength

1

Ld
〈
|u(q)|2

〉
=

1

2πρτ
. (2.8)

5



6 2. Conductivity

2.2. Quantum mechanical approach for the conductivity

We now want to derive the conductivity by using quantum field theory (details may be
found in [8] and [11]). Using this formal approach we are able to cover some properties
of the conductivity that were not accounted in Drudes theory. However, we will also see
that Drudes classical picture of diffusive motion is still correct.

To calculate the conductivity we use Linear Response Theory. In this theory, one calculates
the effect of a perturbation to an observable in linear order, the proportionality coefficient
is called the susceptibility. The conductivity can be calculated by looking at the correction
to the electric current when applying an external electromagnetic field. This leads us to
the well known Kubo-formula for the conductivity:

j(q) = σ(q)E(q), (2.9)

σαβ(q, ω) =
i

ω

{
ne2

m
δαβ − i

〈
Tjα(q)jβ(−q)

〉
,

}
(2.10)

where ω is the frequency and j is the current operator given by

jα(q) =
∑

k

e
kα

m
Ψ†k−q/2Ψk+q/2. (2.11)

The current-current-correlator can be written in a diagrammatic way as depicted in figure
2.1. The interaction lines in the diagrams are due to scattering of impurities. The diagrams
can be ordered in 2 general classes: The ones with no crossed impurity line (line 2 in figure
2.1) and the ones with fully crossed impurity lines (line 3). The fully crossed diagrams
are reduced by a factor of O((kf l)

−1) due to momentum restrictions. Of course there
exists a variety of other diagrams, but this categorization is very common since it captures
the essential ones. For example, some diagrams can be constructed using Diffuson vertex
corrections (this will follow in this section).

When one starts calculating the different diagrams, it turns out that the simplest diagram
with no impurity line is already sufficient to cover the Drude conductivity. The diagrams

〈
jα(q)jβ(−q)

〉
=

+ + + . . .

+ + + . . .

k, iωm

k + q, iωm + iνn

Figure 2.1.: Diagrammatic expansion of the current-current correlator. The left vertex is
accounted by a factor of ekα/m, the right one by a factor of ekβ/m

6



2.2. Quantum mechanical approach for the conductivity 7

with no crossed impurity lines cover the scattering behaviour of the impurities and lead to
a replacement of the scattering time τ with the transport time τtr. This renormalization
represents the fact that low angle scattering does not affect conductivity. This kind of
diagrams is well-known and the sum over all non-crossed diagrams is called Diffuson, we
will account that later. The last set of diagrams, the fully crossed ones, leads to a quantum
mechanical correction to the conductivity, the weak localization, which will be explained
in a separate section. The collection of the fully crossed diagrams is similar to the Diffuson
and is known as the Cooperon.

2.2.1. Drude Conductivity

We now look at the current-current correlator in detail. We already mentioned the dif-
ferent parts of the correlator and start with the simplest one, the simple bubble without
impurity lines, but with factors ekα/m attached to the vertices. After sending the external
momentum q→ 0, one finds after some calculation

=
ne2

m

1

τ−1 − iω , (2.12)

which is exactly the Drude conductivity for arbitrary frequency ω.

2.2.2. Diffuson

The second part of the diagrammatic expansion are the bubbles including non-crossed
impurity lines. These very general diagrams are known as Diffuson and can be calculated
in a self-consistent way:

+=

= + + + . . .D

D

p1

p1 +Q

p2

p2 +Q

(2.13)

This equation can also be written as

Dp1,p2,q = 1 +
∑

p

Gp+qGpDp,p2,q, (2.14)

assuming the disorder potential is unity. One can solve this self consistent equation and
gets

D(ω, q) =
1

−iω +Dq2
(2.15)

7



8 2. Conductivity

with the diffusion coefficient for 3 dimensions D = 1
3v

2
fτtr. (2.15) is also the solution of

the diffusion equation (−∂τ + D∇2)D(r, τ) = δd(r)δ(τ), therefore the name Diffuson. In
closed loops, the Diffuson can be treated as a vertex correction by closing the legs of it at
one side

=D D
Λ

, (2.16)

which yields a renormalized vertex

Λα =
−iω + τ−1

−iω + τ−1
tr

(2.17)

with a renormalized relaxation time, namely the transport time τtr,

τ−1
tr = 2πnimpN(0)|u(Θ)|2(1− cos Θ). (2.18)

The transport time takes the anisotropic scattering off the impurities into account, for
isotropic scattering τ = τtr holds. The vertex Λ leads just to a renormalization of the
relaxation time τ in the Drude conductivity,

=
ne2

m

1

τ−1
tr − iω

. (2.19)

Eq. (2.18) shows that low-angle scattering is suppressed in τtr, so conductivity is domi-
nated by high-angle scattering.

2.2.3. Cooperon

We now have a short look at the maximally crossed diagrams in the third line of figure
2.1. These diagrams are also very general and the whole set is called Cooperon.

= + + . . .C

(2.20)

In order to write down the Cooperon, one has to perform a little trick: switching the
direction of the lower lines leads to a ’decrossing’ of the diagrams:

=

p1

p2 −p1 +Q

−p2 +Q p1 −p2 +Q

p2−p1 +Q
(2.21)

8



2.2. Quantum mechanical approach for the conductivity 9

Using the uncrossed diagrams, one can write down a self-consistent equation similar to eq.
(2.13) and gets

C(ω, q) =
1

−i|ω|+Dq2
. (2.22)

These diagrams also contribute to the conductivity, but due to momentum restrictions
these diagrams are smaller by a factor of O((kf l)

−1). The calculation of this correction
is quite difficult (as explained in [2]), but one ends up with some interesting physical
behaviour: These diagrams tend to decrease conductivity, but due to the small factor of
order O((kf l)

−1) this effect is only seen at low enough temperatures. A phenomenological
explanation of this effect (which is called weak localization) can be given, this is done in
the next section.

9



10 2. Conductivity

2.3. Weak Localization

Including disorder in a system can also be seen as including a new type of interaction,
and like every interaction, disorder can lead to new kinds of collective phenomena. Let’s
suppose that an electron scatters on different impurity sites and after some time it returns
to the starting point. On his way from impurity i to impurity i + 1 the wavefunction of
the electron collects a phase of exp[ik(Ri+1 −Ri)], where the Rj are the positions of the
impurities. The total phase the electron acquires is exp[iφ1]. However, the electron can
also perform a different path, scattering on different impurities. After returning to the
starting point, this path would yield a phase of exp[iφ2]. We can now calculate the return
probability to the starting point using the two paths:

|A1 +A2|2 = |A1|2 + |A2|2 + 2|A1A2| cos(φ1 − φ2) (2.23)

The return probability consists of the two single amplitudes and an interference term.
Now suppose we take every possible closed way into account, yielding a lot of interference
terms. Since these interference terms depend strongly on the path, the sum over all of
them yields zero on the average. This means that the return probability is just given by
the single amplitudes.

Now imagine 2 paths as depicted in fig. 2.2. The 2 paths follow the same impurities, but
in different order. In this sense, the second path is just the time-reversed first path. It is
clear that both paths acquire the same phase, so the phase difference vanishes φ1−φ2 = 0.
Since this relation holds for every impurity configuration, these paths survive the averaging
over impurity positions. In consequence, such configurations lead to an enhanced return
probability and the electrons become more localized.

The time-reversed path visits the impurities in opposite order than the electron on the
regular path, so processes like the one in fig. 2.2 are described by diagrams like fig. 2.3.
These kind of diagrams have been discussed in the last section and the whole set of them
is called Cooperon.

Figure 2.2.: Illustration of two paths scattering off the same impurities. Blue path is the
time-reversed red path.

10



2.3. Weak Localization 11

Figure 2.3.: Conductivity bubble containing 4 crossed impurity lines. Processes like the
one in fig. 2.2 are described by such diagrams.

The loops like in fig. 2.2 can in general become arbitrarily large, which leads full local-
ization at any temperature in low dimensional systems. This is not true anymore when
other couplings like electron-electron or electron-phonon interactions are included. These
additional couplings lead to inelastic scattering effects and destroy coherence, this effect is
called dephasing. The dephasing is accounted in a phenomenological way by introducing a
new length lφ, which acts as a cutoff in the integrals. After traveling a length of lφ, coher-
ence is destroyed by inelastic scattering and the electron cannot interfere constructively
anymore with the one on the time reversed path.

Since this effect tends to localize electrons, it also decreases conductivity. When tem-
peratures are high enough, one can safely neglect the effect of weak localization, but on
lower temperatures it becomes relevant. There are two ways to modify the strength of
weak localization: The dephasing length lφ can be modified by tuning the temperature
or by applying a magnetic field. Magnetic fields break time reversal symmetry, so the
two paths do not collect the same phase anymore and the effect of weak localization dis-
appears. Since weak localization is directly connected to the conductivity, one observes
magnetoresistance.

The phenomenon of localization strongly depends on the dimensionality of the system.
In a 3D system, a specific amount of disorder is needed to get localization at all. The
situation is profoundly different in lower dimensional systems. In 2D as well as in 1D
systems electrons become localized as long as an arbitrary small amount of disorder is
included in the system. For 1D systems the localization is even more pronounced than in
2D. This was a result of the scaling theory, introduced by the “Gang of Four”, Abrahams,
Anderson, Licciardello and Ramakrishnan [1].

11





3. 1D-systems

One dimensional systems are a fascinating field of physics. They exhibit exotic effects
which cannot be seen in higher dimensional system, but furthermore they have led to very
sophisticated theoretical methods. In this chapter we introduce some of these phenomenons
and discuss the basic methods which are used to tackle these problems. This chapter
intends to give a brief overview, the interested reader might consider [16], [12] and [18]
(This chapter is based on [16] as long as no other source is given).

Talking about system with one spatial dimension naturally gives rise to the question:
How can these systems be realized in experiment? Even an atom has an extension in all 3
dimensions, so how can something one dimensional be constructed? The answer is that one
has to use a trick, namely, quantum mechanics. When the lateral extension of an object is
so small that it only exhibits few eigenstates in this direction, the object can be treated as
effectively one-dimensional. Examples for effective 1D systems are quantum wires [5, 23,
33] and carbon nanotubes [7]. There also exist materials with strong anisotropic hopping
(e.g. PrBa2Cu4O8 [14, 29]). These materials exhibit strong hopping in one direction and
weak hopping in the other directions, so electrons are also confined to a quasi 1D-system.

13



14 3. 1D-systems

3.1. Phenomenology of 1D-systems

When one starts treating a specific problem in quantum physics, it is mostly quite easy
to solve it neglecting any interaction. Upon turning on interaction, the problem becomes
usually much more difficult. In the low-energy-limit, interaction excites an electron sitting
just below the Fermi surface, so afterwards it’s just above the Fermi surface and a hole
remains inside. These excitations are dressed by density fluctuations, and it was Landau’s
idea to treat the fermionic excitations plus the fluctuations as single quasiparticles. These
quasiparticles can be considered as essentially free, so we are back at the noninteracting
problem.

This picture is only correct as long as the excitations can be described as quasiparticles,
that is, when the lifetime of the excitations is long enough. Landau showed that the
lifetime can be estimated by a simple phase space argument: excitations just above the
Fermi surface do not have much phase space to scatter in, so the closer to the Fermi surface
one gets, the more divergent becomes the lifetime:

τ−1 ∝ (ε− Ef )2. (3.1)

This whole construct of noninteracting quasiparticles is known as Fermi Liquid. A more
quantitative discussion of this model is given e.g. in [32]. One can show that interactions
lead to a renormalized mass in the kinetic energy, m∗, and most physical quantities can
be obtained by the replacement m→ m∗. Since the estimate of the lifetime of the quasi-
particles was performed by a simple phase space argument, we are not even restricted to
weak interaction. The great strength of Fermi Liquid theory is, that it is still valid at very
strong couplings.

Let’s now turn to the situation in one dimension. Suppose interaction pushes an electron
towards a specific direction. As seen in fig. 3.1, interactions in 2 or higher dimensions
can lead to single particle excitations. In one dimension, however, excited electrons try
to push neighbouring electrons away simply because they cannot evade each other. It is
obvious that single particle excitations cannot exist and only collective modes can emerge
from interaction. As a consequence, Fermi Liquid theory is no longer applicable and we
have to introduce a new concept called Luttinger Liquid. Luttinger Liquid was designed
to deal with the collective interactions in 1D and will be explained in the next section.

(a) (b)

Figure 3.1.: (a) Interaction in 2 or 3 dimensions. The excitation can be seen as single
particle excitation. (b) Interaction in 1 dimension. The electrons cannot
evade each other, so only collective excitations are possible.

14



3.2. Methods in one dimension 15

3.2. Methods in one dimension

We already know that we cannot use Fermi Liquid theory anymore, so we need a new way
to treat problems in one dimension. We start by restricting ourselves to low energy physics,
that is, to excitations in the vicinity of the Fermi surface. This assumption is reasonable
because the Fermi energy is about 10000K for normal metals, whereas one typically works
at temperatures of order 1− 100K. For this reason the spectrum is approximated linearly
in the vicinity of the Fermi points, as presented in fig. 3.2. This linearization is extended
over the whole k-space for mathematical reasons, the resulting model is called Tomonaga-
Luttinger-model. A linear spectrum is equivalent to a constant density of states, which
is a pretty common approximation. Note that the linearization is done at two points, at
+kf and −kf . We therefore get 2 branches in the spectrum, one linear band with Fermi
velocity +vf and one with −vf . In consequence, we introduce a new quantum number, the
chirality, which tells us on which branch of the spectrum we are. Electrons with positive
Fermi velocity are called right-movers (chirality R), the ones with negative Fermi velocity
are called left-movers (chirality L).

Let’s now turn to the interaction in the Tomonaga-Luttinger-model. In second quantiza-
tion one can write the two-particle interaction as

Hint =
1

2Ω

∑

k,k′,q

V (q)c†k+qc
†
k′−qck′ck. (3.2)

In the linearized spectrum the interaction can be categorized into 3 different interaction
types (see fig. 3.2): g1, g2 and g4. This categorization is also known as g-ology. g2 and
g4-processes leave the electrons on their branch, this kind of interaction is called forward
scattering. The g1-process switches the chirality of the electrons, this behaviour is called
backscattering. Note that in the absence of spin g1- and g2-processes are the same because
the particles are identical.

The g2 and g4-processes are coupled to the q ∼ 0 matrix element, whereas the g1 term
is coupled to the one with q ∼ 2kf . It is a common approximation to neglect the
q ∼ 2kf -term, because the matrix element is usually much smaller. This means that
we omit backscattering in the interaction and keep only the forward scattering processes.
This model (omitting backscattering) is called Luttinger Liquid, the model with relevant
backscattering is called Luther-Emery Liquid (this results in a gap opening in the spin
channel). Omitting backscattering leads also to much simpler calculations and results
are obtained in a very straightforward way. One crucial result is, that all fermion bubbles
with more than two interaction lines vanish, this means that RPA has become exact in this
model (see [13]). When looking at the Fermi velocity, one notes that it becomes renormal-
ized by interaction and, more remarkably, separates into 2 different velocities when spin

- Π
a 0

Π
a

k

Ε

Ε f

k

Ε

Ε f

Figure 3.2.: Linearization of the spectrum in the vicinity of the Fermi points.
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16 3. 1D-systems

ǫf

E

k

g4

ǫf

E

k

g2

ǫf

E

k

g1

Figure 3.3.: g-ology-based interaction in band space. g4 and g2 processes leave the elec-
trons on their branch (forward scattering), g1 process switches the branches
(backscattering)

is included. This means that spin excitations move with a different velocity than charge
excitations, this phenomenon is called spin-charge-separation.

The calculations so far have been done in the very beginning by Dzyaloshinskii and Larkin
[13] in the standard fermion language. We have already discussed, that one dimensional
systems don’t exhibit single particle excitations, but only collective modes. These modes
can be seen as density fluctuations, therefore they behave as bosons. Having said this,
fermionic language isn’t the best one to suit one dimensional problems. Indeed, a mapping
of the form

Ψ(x) ∼ ei
∫ x dx′ρ(x′) (3.3)

can be found to transform the Hamiltonian from fermionic to bosonic language. Ψ is a
fermionic operator, ρ is the particle density. This transformation leads to a Hamiltonian
of the form

H '
∑

p 6=0

vf |p|b†pbp, (3.4)

where bp is a bosonic operator. The given formulas aren’t exact ones, they are just pre-
sented to give an impression of the technique, which is called Bosonization. The full
derivation is quite difficult, but in the end one gets formulas which can be used easily.
Bosonization recovers previous results like spin-charge-separation, but furthermore it ex-
hibits interesting features like a power-law behaviour of the correlation functions.
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4. Functional Bosonization

We already know that we have to use special techniques to treat one-dimensional problems.
In the last chapter we introduced a technique called bosonization, which accounts the col-
lective behaviour of interactions. In this chapter we introduce a slightly different approach
called Functional Bosonization. This approach is more flexible than standard bosonization
since one bosonizes only by part. This section is meant to give a short derivation of this
method, the first part contains a general derivation, in the second part we introduce a
diagrammatic technique to treat interaction.

4.1. General Derivation

Functional Bosonization was derived by different groups, it was suggested in 1976 by
Fogedby [15] and fully elaborated by Lee and Chen [22] twelve years later. We follow the
method of Yurkevich [39], who used a Hubbard-Stratonovich-Transformation to treat the
interaction.

We start with a general Hamiltonian in one dimension:

H =
1

2m

∫
dx∂xΨ†(x)∂xΨ(x) +

1

2

∫
dxdx′Ψ†(x)Ψ†(x′)V0(x− x′)Ψ(x′)Ψ(x), (4.1)

where V0 is the electron-electron interaction, usually one uses the screened Coulomb in-
teraction. It is known that the Greens function can be written in terms of a functional
integral:

G(x, τ ;x′, τ ′) =

∫
DψDψ∗ψ(x, τ)ψ∗(x′, τ ′) exp{−S[ψ,ψ∗]}∫

DψDψ∗ exp{−S[ψ,ψ∗]} . (4.2)

The action S[ψ,ψ∗] is given by

S[ψ,ψ∗] =

∫
dxdτψ∗(x, τ)[∂τ + ξ]ψ(x, τ)

+
1

2

∫
dxdx′dτψ∗(x, τ)ψ∗(x′, τ)V0(x− x′)ψ(x′, τ)ψ(x, τ) (4.3)

=Skin[ψ,ψ∗] + Sint[ψ,ψ∗],

17



18 4. Functional Bosonization

where ξ = −(2m)−1∂2
x − µ is the kinetic energy operator, renormalized by the chemical

potential µ. The ψ’s are Grassmann functions, which are anti-periodic in τ with period
β = T−1:

ψ(τ + β) = −ψ(τ). (4.4)

As mentioned before interactions between the electrons result in collective modes, which
have bosonic character. So it is straightforward to introduce a bosonic field in the interac-
tion and to get rid of the four-fermion-interaction. This is done by means of a Hubbard-
Stratonovich transformation [34], which leads us to

exp[−Sint] =

∫
Dφ exp[−1

2φV
−1

0 φ+ iφψ∗ψ]∫
Dφ exp[−1

2φV
−1

0 φ]
, (4.5)

where we used the short handed notation

φV −1
0 φ =

∫
dxdx′dτφ(x, τ)V −1

0 (x− x′)φ(x′, τ), (4.6a)

φψ∗ψ =

∫
dxdτφ(x, τ)ψ∗(x, τ)ψ(x, τ). (4.6b)

The advantage is that we are only left with a bilinear combination of the fermionic ψ-
fields, whereas the interaction V0 is now coupled to a auxiliary φ-field. But there is also an
obvious disadvantage, namely the additional integration over the φ-field. One can easily
check that the φ-fields ’replaced’ products of two fermionic fields ψ∗(x, τ)ψ(x, τ), therefore
the φ-fields should be bosonic. Inserting Gaussian integrals over the fermionic Grassmann
fields leads to a new representation of the Greens function. The full Greens function can
now be written as an average over the auxiliary φ-field:

G(x, τ ;x′, τ ′) =
〈
G̃(x, τ ;x′, τ ′; [φ])

〉
φ

=

∫
DφG̃(x, τ ;x′, τ ′; [φ]) exp[−S[φ]])∫

Dφ exp[−S[φ]]
, (4.7)

where the action is given by

S[φ] =
1

2
φV −1

0 φ− Tr ln[∂τ + ξ − iφ] (4.8)

and the auxiliary Greens function G̃ is obtained from the equation

(∂τ + ξ − iφ(x, τ)) G̃(x, τ ;x′, τ ′; [φ]) = δ(x− x′)δ(τ − τ ′). (4.9)

With this given framework we can generally compute the Greens function for an arbitrary
bosonic field φ, the interaction V0 is still included in the action S and therefore taken into
account in the averaging over the φ field.

In order to simplify the equations above we turn to the case of a linearized spectrum.
Neglecting backscattering by electron-electron interaction leads to two Greens functions,
one for right movers and one for left movers. The important difference to the general
model is that the kinetic energy can be written in terms of a single derivative:

ξ = ∓ivf∂x, (4.10)
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4.1. General Derivation 19

where the different signs denote different branches. So the equation for the auxiliary
Greens function reads

(∂τ ∓ ivf∂x − iφ(x, τ)) G̃±(x, τ ;x′, τ ′; [φ]) = δ(x− x′)δ(τ − τ ′). (4.11)

Since one is only left with a single derivative, the noninteracting and the interacting part
in the Greens function can be split by introducing a new field Θ(x, τ)

G̃R(x, τ ;x′, τ ′; [φ]) = gR(x− x′, τ − τ ′)eiΘ(x,τ)−iΘ(x′,τ ′), (4.12)

G̃L(x, τ ;x′, τ ′; [φ]) = gL(x− x′, τ − τ ′)eiΘ∗(x,τ)−iΘ∗(x′,τ ′),

where the Θ-field should be derived from

(∂τ − ivF∂x)Θ(x, τ) = φ(x, τ) (4.13)

and the gR/L(x, τ) are the free Greens functions

gR/L(x, τ) = ∓ iT

2vf
sinh−1

[
πT

(
x

vf
± iτ

)]
. (4.14)

Since the free Greens functions do not contain any φ fields, the averaging from equation
(4.7) affects only the exponentials containing the Θ functions. The averaging can be done
using the equation

〈
ei

∑
j Ajφ(xj)

〉
φ

= e
− 1

2

〈
[
∑
j Ajφ(xj)]

2
〉
φ . (4.15)

This equation holds for a quadratic Hamiltonian and can be found for instance in [16].
Using this expression we find for the right moving Greens function

〈
G̃R(x, τ ; [φ])

〉
φ

= gR(x, τ) exp

[
−1

2

〈
[Θ(x, τ)−Θ(0, 0)]2

〉
φ

]
(4.16)

= gR(x, τ) exp[−BRR(x, τ)].

The explicit form of the Bµ,ν-correlators can be looked up in Appendix C.
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20 4. Functional Bosonization

4.2. Diagrammatic Technique

In the previous section we treated the single-particle Greens function in the functional
bosonization approach, but the quantities we want to calculate are observables, or in our
case, closed fermionic loops. This loops can contain scattering off disorder, interaction is
already accounted in the Θ-fields. This question was treated by Gornyi, Mirlin, Polyakov
and Yashenkin in [19] and [37]. This section is meant to give a brief introduction in their
way of treating the problem, the detailed calculation can be found in the cited articles.

The idea of their work is the following: One starts with the general definition of the free
Greens function as the average over a bilinearform of the free fermion field Ψ(x, τ):

G(x− x′, τ − τ ′) = −
〈
TτΨ(x, τ)Ψ†(x′, τ ′)

〉
. (4.17)

The interaction is included by performing the gauge transformation

Ψµ(x, τ) −→ Ψµ(x, τ)eiΘµ(x,τ), (4.18)

where µ is chirality. This gives immediately the same result as in (4.12). Since the fermionic
Ψ-operators denote somehow the start- and endpoints of the propagator, interaction is now
included in these via a phase factor. These phase factors can be written as interaction
lines attached to the vertices and the lines are getting connected by averaging over the Θ
field (see fig. 4.1). The averaging yields a correlation function

Bµν(x, τ) = 〈[Θµ(0, 0)−Θµ(x, τ)]Θν(0, 0)〉 , (4.19)

which restores eq. (4.16). Inserting all parameters yields for the spinless case

GR(x, τ) = − i

2πu

πT

sinh [πT (x/u+ iτ)]

{
πT/Λ

sinh [πT (x/u+ iτ)]

πT/Λ

sinh [πT (x/u− iτ)]

}ỹ/2

(4.20)

R

1
2

e−iΘR(1) eiΘR(2)

R

1 2

e−BRR(2,1)

Figure 4.1.: Greens function for a right mover; 1=(x1, τ1), 2=(x2, τ2); left: Propagator
with phase factors attached on vertices; right: Propagator with averaged over
Θ which results in connecting the two phase factors, B(2, 1) is understood as
B(x2 − x1, τ2 − τ1).
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4.2. Diagrammatic Technique 21

R

1
2

L

3

e−iΘR(1) ei[ΘR(2)−ΘL(2)] eiΘL(3)

Figure 4.2.: Backscattering of a right moving electron. Each Greens function gets attached
by 2 phase factors, one at each space-time-point.

and for the spinful case

GR(x, τ) = − i

2π
√
uvf

{
πT

sinh [πT (x/vf + iτ)]

πT

sinh [πT (x/u+ iτ)]

}1/2

×
{

πT/Λ

sinh [πT (x/u+ iτ)]

πT/Λ

sinh [πT (x/u− iτ)]

}ỹ/4
, (4.21)

where y = g/2πvf is the dimensionless interaction strength, u = vf
√

1 + 4y is the renor-
malized Fermi velocity, Λ is some high-energy cutoff and the exponent ỹ is given in eq.
(C.7). These equations are given in more detail in Appendix C, the whole calculation is
found in [19] and [37].

Until now we have just treated the problem of a single propagator, but we are interested
in more complicated expressions, especially closed fermionic loops containing scattering
off disorder. The diagrammatic technique presented in this section is a convenient method
to treat this problem.

Note that in principle interaction and disorder both can scatter forwards and backwards.
Interaction is taken into account via the g-ology approach explained in 3.2, we already
noted there that backscattering is neglected. However, this only holds for interaction-
induced scattering, disorder can still scatter forwards and backwards. Since low-angle
scattering doesn’t affect conductivity, we only consider backward scattering in disorder in
our calculations.

For the beginning let’s just look at one backscattering vertex (fig. 4.2). In contrast to
the Greens function we are left with 4 phase factors to be averaged, so it is not clear how
the averaging has to be done. It turns out that the averaging can be done in a quite
straightforward way: Every wavy line has to be connected with every other one, yielding
several Bµν-correlators, which have to be added up. In the diagrammatic scheme, this
results in a slightly complicated picture depicted in fig. 4.3.

Of course the diagrams become more complicated the more impurity scattering vertices
are included. Fortunately it turns out that the averaging can be simplified a lot. In closed
loops, the correlators Bµν(x, τ) (also given in Appendix C) appear only in one combination:

M(x, τ) = BRR(x, τ) +BLL(x, τ)− 2BRL(x, τ). (4.22)

Knowing this factor, the averaging in a closed fermionic loop can be done in a very formal
way: For every pair of backscattering vertices at (xN , τN ) and (xN ′ , τN ′) one takes a factor
of

Q(x, τ) = exp [M(x, τ)] (4.23)
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22 4. Functional Bosonization

R

1

2 L

3

BRL(3, 1)

BRR(2, 1) BLL(3, 2)

BRL(2, 1) BRL(3, 2)

BRL(2, 2)

Figure 4.3.: Backscattering of a right moving electron. The averaging over the Θ fields is
performed, so the phase factors are connected in every possible way.

into account, where x = xN − xN ′ and τ = τN − τN ′ or a factor of Q−1(x, τ). The factor
depends on the chirality of the incident electrons at the backscattering vertices: If the
chiralities are the same, one has to take a factor of Q(x, τ), if they are different, one has
to take a factor of Q−1(x, τ), respectively. Note that every pair of backscattering vertices
contributes. In the case of 4 impurities, for example, the impurity vertex at x1 has to be
averaged with the ones at x2, x3 and x4.

Let’s summarize the results of this section. In the beginning we used Functional Bosoniza-
tion to treat the interaction and we managed to move the electron-electron interaction
into an additional phase factor attached to the free Greens function, seen in eq. (4.12).
This approach can be used to calculate closed fermionic loops by just averaging over all
possible combinations of the phase factors. This results in a factor of Q(x, τ) or Q−1(x, τ)
(given in eq. (4.23)), depending on chirality. So in the very end one is left with free Greens
functions and a bunch of Q- and Q−1-functions.
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5. Ladder Model

In this section we introduce the spinless disordered 2-chain ladder model used in this work.
We will calculate the dispersion relation of the ladder, as well as the effect of a magnetic
field. Moreover, a mapping between the Greens functions in chain space and the ones in
band space will be found.

5.1. Ladder without magnetic field

We first start without the magnetic field and use the following model:

x

y

Figure 5.1.: 2-chain-ladder in real space. 1 and 2 denote chain index, i denotes atom site.

The dots represent atom sites and the lines show the ways the electrons can hop. The
ladder is in real space, so we have a length ay, the distance between chain 1 and chain 2,
and another length ax which is the distance between two neighbouring sites on one chain.
We can now write down the Hamiltonian

H = Hkin +Hdis +Hint (5.1)

with

Hkin =
∑

i

[
−t‖

(
c†1,ic1,i+1 + h.c.

)
− t‖

(
c†2,ic2,i+1 + h.c.

)
− t⊥

(
c†1,ic2,i + h.c.

)]
, (5.2a)

Hdis =
∑

l,i

V dis
l,i nl,i, (5.2b)
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24 5. Ladder Model

Hint =
1

2

∑

l,l′,i,i′

V e-e
l,l′,i,i′nl,inl′,i′ . (5.2c)

Summation indices i, i′ = 1, 2 denote chain indices, l, l′ denote atom sites in x-direction.
t‖ and t⊥ are the hopping parameters for intra- and inter-chain hopping, respectively, V dis

is a randomly distributed impurity scattering potential and V e-e is the electron-electron
interaction. Disorder and interaction both couple to the particle density nl,i = c†l,icl,i.

The kinetic Hamiltonian can be diagonalized with a linear transformation, namely

c±,i =
1√
2

(c1,i ± c2,i). (5.3)

The new operators c±,i obey the standard fermion anticommutator relations:

{ca,i, ca′,i′} = 0, {c†a,i, c
†
a′,i′} = 0, {ca,i, c†a′,i′} = δa,a′δi,i′ . (5.4)

After this transformation the kinetic Hamiltonian splits up in two parts

Hkin = H+ +H− (5.5)

with

H± =
∑

i

[
−t‖

(
c†±,ic±,i+1 + h.c.

)
∓ t⊥c†±,ic±,i

]
. (5.6)

This transformation eliminates the hopping between the two chains and separates the prob-
lem into two independent parts. To get the band structure, we can now easily transform
the Hamiltonian into momentum space using a Fourier transformation:

H± =
∑

k

[
−t‖c†±,kc±,k

(
eikax + e−ikax

)
∓ t⊥c†±,kc±,k

]

=
∑

k

[
−2t‖c

†
±,kc±,k cos(kax)∓ t⊥c†±,kc±,k

]

=
∑

k

ε±,kc
†
±,kc±,k, (5.7)

with the given dispersion

ε±,k = −2t‖ cos(ka)∓ t⊥. (5.8)

We have shown that the band structure of the 2-chain ladder consists of two cosine-formed
bands spit by ∆ε = 2t⊥ (depicted in fig. 5.2). Since the physics happens only in the
vicinity of the Fermi energy, we approximate the two bands by a linear model. Although
the Fermi velocities of the two bands are in general different, we choose them to be the
same in the linear model (fig. 5.3). This assumption is good as long as the Fermi energy
does not approach a band minimum. Note that the two bands +/− are solely defined
by their respective Fermi momentum kf,±. An alternative model which also yields linear
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5.1. Ladder without magnetic field 25

-
Π

a
0

Π

a

k

Ε

Ε +

Ε -

DΕ

Figure 5.2.: Band structure of the 2 chain model.

bands is that of the continuous ladder. In this specific model, the lattice in x-direction has
been omitted, which leads to continuous chains.

We can now write down the retarded Greens function in band space for the linearized
model:

GRj (k) =
1

ω − vf (k − kf,j) + i0
,

GLj (k) =
1

ω − vf (−k − kf,j) + i0
. (5.9)

The upper index denotes the right-/left-moving character of the fermions, the lower index
j = ± denotes band index. The advanced Greens functions are given by the complex

conjugate of the retarded ones
(
G
R/L
j

)∗
.

As discussed in section 2.1, disorder leads to a relaxation time τ . We expect this behaviour
also in the ladder model, so we account disorder by adding a relaxation time τ to the
retarded Greens functions:

- Π
a 0

Π
a

k

Ε

Ε f

k

Ε

Ε + Ε -

Ε f

Figure 5.3.: Linearizing the band structure: We use one Fermi velocity for both bands, the
only difference between the two bands is then kf,±.
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26 5. Ladder Model

GRj (k) =
1

ω − vf (k − kf,j) + i/2τ
,

GLj (k) =
1

ω − vf (−k − kf,j) + i/2τ
. (5.10)

The advanced Greens functions are still given by the complex conjugate of the retarded

ones
(
G
R/L
j

)∗
. We have chosen the relaxation times of the two bands to be the same

because we expect that the scattering length l = vfτ should be the same in both bands.

The transformation from band to chain basis is known from equation (5.3), inverting the
equation leads to the inverse transformation (note that we start directly in momentum
space)

c1,k =
1√
2

(c+,k + c−,k), c2,k =
1√
2

(c+,k − c−,k), (5.11)

which leads to the relations

G
R/L
1,1 (k) = G

R/L
2,2 (k) = G

R/L
‖ (k) =

1

2

(
G
R/L
+ (k) +G

R/L
− (k)

)
,

G
R/L
1,2 (k) = G

R/L
2,1 (k) = G

R/L
⊥ (k) =

1

2

(
G
R/L
+ (k)−GR/L− (k)

)
. (5.12)

Eq. (5.12) presents a mapping between the Greens functions in chain space and the
ones in band space. G‖ is the intra-chain propagator and G⊥ the inter-chain propagator,
respectively.

26



5.2. Ladder with a magnetic field 27

5.2. Ladder with a magnetic field

We now want to include magnetic field in our model. The problem of a ladder in a magnetic
field has been discussed in [9] (but without disorder), they show that large magnetic fields
modify the band structure in a relevant way, even a gap can open. In order to use a
linearized model we restrict ourselves to low magnetic fields.

We start directly with the linearized kinetic Hamiltonian:

Hkin =

∫
dx

[
ivf
∑

n

(
R†n(x)∂xRn(x)− L†n(x)∂xLn(x)

)
+ t⊥

(
R†1R2 + L†1L2 + h.c.

)]
.

(5.13)

R- and L-operators denote chirality, n denotes chain index. Note that disorder has already
been neglected in this expression, disorder is introduced as before by inserting a lifetime
to the resulting Greens functions.

Magnetic field is now included by the minimal substitution

∂x → ∂x + i
e

~
Ax (5.14)

and the Peierls substitution [31]

t⊥ → t⊥e
−i e~

∫
Adl. (5.15)

The Peierls substitution takes into account that an electron picks up some phase when
hopping to another site. So the integral has to be performed on the way the electron takes
on hopping, in our case, this is going from one chain to the other. The integral is therefore
performed in y-direction from 0 to ay, but one still has to care about the direction of
hopping: hopping in the opposite direction leads to switching of the integral limits and
therefore yields an additional minus sign.

Since the integral in (5.15) is performed in y-direction it only contains the y component of
the vector potential A, so Ax is accounted in (5.14), Ay in (5.15). However, due to gauge
invariance we can choose the vector potential in a way that either Ax or Ay is zero, in this
way we only have to perform one substitution.

We apply the magnetic field perpendicular to the chain and we choose the vector potential
to be

A = Bxey, (5.16)

which leads us to

t⊥ → t⊥ exp
[
∓i e

~
Bxay

]
= t⊥ exp

[
∓i2π B

Φ0

ay
2
x

]
= t⊥ exp [∓i2πfx] , (5.17)

with the flux quantum Φ0 = h/2e and the “magnetic flux”

f =
Bay
2Φ0

. (5.18)
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28 5. Ladder Model

Our definition of flux has the dimension
[
length−1

]
, whereas flux in principle should be

dimensionless. The reason is that we omitted ax and are therefore left with only one
length scale, namely ay. Nevertheless we use the quantity f throughout the thesis just as
a function of the magnetic field. The different signs in (5.17) denote hopping in different
directions. With the Peierls substitution the hopping terms in the Hamiltonian can be
rewritten

t⊥e
−i2πfxR†1R2 = t⊥

(
eiπfxR1

)† (
e−iπfxR2

)
, (5.19a)

t⊥e
i2πfxR†2R1 = t⊥

(
e−iπfxR2

)† (
eiπfxR1

)
. (5.19b)

We get analogous equations for the left-moving operators L1,2. In order to get rid of the
phase factors in the hopping term we perform a transformation

R1 = e−iπfxR̃1, R2 = eiπfxR̃2, (5.20a)

L1 = e−iπfxL̃1, L2 = eiπfxL̃2. (5.20b)

Now the Hamiltonian reads

Hkin =

∫
dx
[
ivf

(
R̃†1(x)∂xR̃1(x)− iπfR̃†1(x)R̃1(x)− L̃†1(x)∂xL̃1(x) + iπfL̃†1(x)L̃1(x)

+ R̃†2(x)∂xR̃2(x) + iπfR̃†2(x)R̃2(x)− L̃†2(x)∂xL̃2(x)− iπfL̃†2(x)L̃2(x)
)

+ t⊥

(
R̃†1(x)R̃2(x) + L̃†1(x)L̃2(x) + h.c.

)]
. (5.21)

This result can also be achieved using the minimal substitution. The Hamilton reads in
momentum space

Hkin =

∫
dk

2π

[
vf

(
(k + πf)(R†1(k)R1(k)− L†1(k)L1(k))

+ (k − πf)(R†2(k)R2(x)− L†2(k)L2(k))
)

+ t⊥

(
R†1(k)R2(k) + L†1(k)L2(k) + h.c.

) ]
. (5.22)

We now want to diagonalize this Hamiltonian. We start with an expression

R1 = uRR+ + vRR−, R2 = vRR+ − uRR−, (5.23)

and an analogous one for the left-movers. Note that the only difference between right- and
left-movers is the sign of vf . We find for the coherence factors u and v

u2
R =

1

2


1 +

vπf√
(vπf)2 + t2⊥


 =

1

2
[1 + α] , (5.24a)

v2
R =

1

2


1− vπf√

(vπf)2 + t2⊥


 =

1

2
[1− α] , (5.24b)
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and for the left movers

u2
L =

1

2
[1− α] , v2

L =
1

2
[1 + α] , (5.25)

where α is given by

α =
vfπf√

(vfπf)2 + t2⊥

∈ [0, 1]. (5.26)

This diagonalization leads to the dispersions

εR±(k) = vfk ±
√

(vfπf)2 + t2⊥, (5.27a)

εL±(k) = −vfk ±
√

(vfπf)2 + t2⊥. (5.27b)

Obviously, the band splitting is influenced by magnetic field. This splitting can also be
found in ∆k

∆k =
2

vf

√
(vfπf)2 + t2⊥, (5.28)

so magnetic field enhances the splitting of the two bands. Fig. 5.4 shows again a plot of
the linearized spectrum where ∆k is inserted. The retarded Greens-function in band space
is then given by

G
R/L
± (ω, k) =

1

ω − εR/L± (k) + i/2τ
. (5.29)

Disorder has been taken into account by a finite relaxation time τ , in analogy to the former
section. The Greens functions in chain space are given by

k

Ε

Ε + Ε -

Ε f

Dk

Figure 5.4.: Linearized band spectrum. ∆k is shown in this plot for the sake of clarity.
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30 5. Ladder Model

GR1,1 =
1

2

(
GR+ +GR−

)
− 1

2
α
(
GR+ −GR−

)
, (5.30a)

GR2,2 =
1

2

(
GR+ +GR−

)
+

1

2
α
(
GR+ −GR−

)
, (5.30b)

GR1,2 = GR2,1 =
1

2

√
1− α2

(
GR+ −GR−

)
(5.30c)

and

GL1,1 =
1

2

(
GL+ +GL−

)
+

1

2
α
(
GL+ −GL−

)
, (5.31a)

GL2,2 =
1

2

(
GL+ +GL−

)
− 1

2
α
(
GL+ −GL−

)
, (5.31b)

GL1,2 = GL2,1 =
1

2

√
1− α2

(
GL+ −GL−

)
. (5.31c)

Note that the magnetic field has broken the symmetry between the two chains. The intra-
chain propagators became different, depending on the chain and the chirality. As shown
in fig. 5.5, magnetic field forces the electrons to perform loops around the plaquettes.
Consequently, electrons on chain 1 collect a different phase than the electrons on chain 2
and the symmetry is broken.

Figure 5.5.: Ladder in a magnetic field. Magnetic field forces the electrons to perform
loops, therefore the electrons on different chains acquire different phases.
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6. Weak Localization in the 2-chain
ladder

We now want to turn to the main problem, the magnetoresistance induced by weak local-
ization. The weak localization correction for a single chain has been calculated by [19, 37],
which inspired this work.

The underlying ladder model has been discussed in the last chapter, including disorder and
e-e interaction. As already noted in sec. 3.2 and 4.2, e-e interaction scatters only forwards
whereas disorder scatters only backwards in our model. Disorder has already been treated
in the last chapter and is accounted via a relaxation time τ , but what is still missing is a
treatment of the electron-electron interaction. e-e interaction leads to two relevant effects.
First of all, impurity scattering becomes renormalized [17, 30] and leads to a renormalized
relaxation time τ → τ̃ . We have not looked at this effect in detail and assumed that we
use the renormalized τ̃ throughout the whole thesis.

The second effect of e-e interaction is dephasing. This mechanism has been explained in
sec. 2.3 and serves as a cutoff for the weak localization correction. We restrict ourselves to
the case of strong dephasing (τφ/τ � 1), which is valid for sufficiently high temperatures
and low enough disorder densities. In this case we only have to retain the shortest possible
Cooperon, which is the one with two impurities. Such a process is presented in fig. 6.1,
including the according physical processes in real space. It can be seen that the A-process
cannot scatter on both impurities, since we include only backscattering off impurities.
Thus, diagrams containing two impurities yield zero.

R

A

1 2

2 1

R
1

2

A

2

1

Figure 6.1.: 2-impurity Cooperon with the according physical processes in real space. The
R process can scatter on both impurities, whereas the A process scatters only
on one impurity. Scattering on the second one is not possible because we
include only backscattering off impurities.
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32 6. Weak Localization in the 2-chain ladder

Figure 6.2.: WL-diagrams with 3 impurities. Solid lines are electron Greens-functions
(already dressed by e-e-interactions), dashed lines denote backscattering off
impurities.

So the leading order contributions to the weak localization are the diagrams with 3 impu-
rities, which are shown in fig. (6.2). We will focus our calculation here on the fully crossed
diagram, it will turn out the the other ones yield the same result.

In order to get magnetoresistance, one has to enclose a finite space when the electron gets
scattered off the impurities. One possible process is presented in fig. 6.3. Of course this is
not the only possible setup for the impurities, others can also yield magnetoresistance. In
order to symmetrize the problem, we sum over all possible setups.

The remaining question is how to tackle e-e interaction, this is done using two approaches.

• phenomenological approach
In this approach we do not care about the exact structure of the interaction. We
already discussed the effects of e-e interaction and take it into account via a phe-
nomenological dephasing time τφ. This technique is very qualitatively, but in the
end it yields an analytical result.

• microscopic approach
The second approach takes interaction into account in a proper way using Functional
Bosonization. This approach is quantitative, in contrast to the first one, but leads
to a complicated integral.

After calculating the correction, both approaches are compared in the very end for two
reasons: First of all, the validity of the phenomenological model has to be checked and sec-
ond, we want a connection of the phenomenological dephasing time τφ to system-inherent
quantities.

Figure 6.3.: Example of a possible impurity setup. The path connecting all 3 impurities
encloses a finite area, which is drawn shaded.
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6.1. Phenomenological approach 33

6.1. Phenomenological approach

In this section we want to calculate the conductivity correction of the 3-impurity diagrams.
The diagram we are going to calculate is given in fig. 6.4. Note that this is a current bubble
and the vertices are dressed by a factor of evf . In addition, the Diffuson correction has
been included, denoted by triangles attached to the vertices.

We use the Greens functions (5.29), but we have to modify them. As mentioned in sec.
2.2, low-angle scattering doesn’t affect the conductivity, so we take only backscattering off
impurities into account. Consequently, the disorder-induced relaxation time τq (given by
eq. (2.6)) has to be modified and becomes replaced by τ = τq/2. Now the retarded Greens
function reads

.G
R/L
± (ω, k) =

1

ω − εR/L± (k) + i/2τq
=

1

ω − εR/L± (k) + i/4τ
(6.1)

Since each current vertex is renormalized by the Diffuson (see section 2), we have to add
a factor of τ/τq to each of them. The correction for the fully crossed diagram reads

= σC3 = −2

(
τ

τq
evf

)2

DC3. (6.2)

The factor τevf/τq comes from the 2 current vertices, the factor 2 represents the two
choices we have to choose chirality and the Kernel DC3 is given by

DC3 =
1

(2πρτ)3

∑

ijklm=1,2

∫
dε

2π

(
−∂fε
∂ε

)∫
dp

2π

dp1

2π

dp2

2π

dQ

2π

GRi,j(p)G
L
j,k(p1)GRk,l(p2)GLl,m(−p+Q)×

×
[
GRi,l(p)G

L
l,k(−p2 +Q)GRk,j(−p1 +Q)GLj,m(−p+Q)

]∗
. (6.3)

The sum stands for the different chain setups, the ε-integration comes from summation
over Matsubara frequencies (this can be looked up in detail in Appendix B). It turns out

p

p

p1

−p2 +Q −p1 +Q

p2

−p +Q

−p +Q

Figure 6.4.: Feynman diagram of the fully crossed 3-impurity Cooperon with corresponding
momenta.
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34 6. Weak Localization in the 2-chain ladder

that the integrand is energy-independent, so we only have to integrate over the derivative
of the Fermi-function. The factor (2πρτ)−1 comes from averaging over the scattering
potential (ρ is the density of states at the Fermi point)

1

L

〈
|U(k)|2

〉
=

1

2πρτ
, (6.4)

and the Greens functions in chain space are given by (5.30) and (5.31).

The calculation of the integral is done using Mathematica, because the expression gets
very big if one inserts the Greens functions in chain basis and sums over all possible chain
setups. For this purpose we introduced an All-In-One Greens function

G
R/L
a,b =

1

2

√
1− 1− (−1)a+b

2
α2
(
G
R/L
+ + (−1)a+bG

R/L
−

)

± (−1)a + (−1)b

2

α

2

(
G
R/L
+ −GR/L−

)
. (6.5)

Since the calculation is done in Mathematica we present only the cornerstones and some
important results. First we notice that the pi-integrations in 6.3 factorize, so it is straight-
forward to start with these. We start with the Greens functions connected to the current
vertices.All of them contain momentum p and can be expanded using partial fraction
decomposition:

G
R/L
± (p)(G

R/L
± (p))∗ = 2iτ(G

R/L
± (p)− (G

R/L
± (p))∗), (6.6a)

G
R/L
+ (p)(G

R/L
− (p))∗ = iC(G

R/L
+ (p)− (G

R/L
− (p))∗), (6.6b)

G
R/L
− (p)(G

R/L
+ (p))∗ = iC∗(G

R/L
− (p)− (G

R/L
+ (p))∗), (6.6c)

with the factor

C =

(
1

2τ
+ i∆ε

)−1

. (6.7)

Equations (6.6) reduce the p-integrand from a product of 4 Greens functions to a sum over
products of 2 Greens functions. The only remaining integrals are all of the same form:

F pqij (Q) =
1

2πρτ

∫
dp

2π
Gpi (p)G

q∗
j (Q− p) = F qpji (Q)∗. (6.8)

Remember that upper indices denote chirality (R/L) whereas lower ones denote band index
(+/-). So in the end we are left with the Q-integration over a product of 3 F-functions.
Of course, we have to sum up all the different combinations of F-functions we get from
summing over the chain setups.

In order to compute the F-functions, we use the Greens functions in band space (6.1), but
we insert a phenomenological dephasing time τφ � τ
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6.1. Phenomenological approach 35

G
R/L
± (ω, k)→ 1

ω − εR/L± (k) + i/4τ + i/2τφ

−→
τφ�τ

1

ω − εR/L± (k) + i/2τφ
. (6.9)

Note that the effect of dephasing is only important for the effect of weak localization, that
is, when two paths interfere coherently (see 2.3 for details). Having said this, dephasing
has to be included only in the Greens functions describing the loop, which are the ones
depicted in fig. 6.4. The Greens functions in the Diffuson correction do not get this extra
τφ, since the effect of dephasing has no effect here.

We can now compute the F-functions and get

FLR++(Q) = FLR−−(Q) =
1

2τ

1

1/τφ + ivfQ
, (6.10a)

FLR+−(Q) =
1

2τ

1

1/τφ + ivf (Q−∆k)
, (6.10b)

FLR−+(Q) =
1

2τ

1

1/τφ + ivf (Q+ ∆k)
, (6.10c)

where we used ρ = (πvf )−1. One immediately sees that the F-functions contain only single
poles, so the Q-Integration is just a simple residual integral.

The calculation has so far only governed the fully crossed 3-impurity diagram. As shown
in Fig. 6.4, one has to include 2 other diagrams. The calculation of these diagrams is
very similar to the calculation of the fully crossed diagram and it turns out that the two
diagrams on the right of Fig. 6.4 yield the same result as the fully crossed diagram, so

+ + = σWL = 2σC3 (6.11)

One can also check that Drude conductivity is not influenced by our model because we
have only one Fermi velocity, so there’s still

σD =
e2vfτ

π
. (6.12)

We have now prepared everything, and after evaluating the Q-integration and summing
over all chains we get

σWL = −1

8
σD

(τφ
τ

)2
Kphen(α, vfτφ∆k). (6.13)

Kphen is given by
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36 6. Weak Localization in the 2-chain ladder

Kphen(α, vfτφ∆k) =
1

4

[
α0

(
5 +

1

1 + (vfτφ∆k)2
+

2

(1 + (vfτφ∆k)2)2

)

+α2

(
−9 +

−9

1 + (vfτφ∆k)2
+

−2

(1 + (vfτφ∆k)2)2

+
32

4 + (vfτφ∆k)2
+

192

(4 + (vfτφ∆k)2)2

)

+α4

(
15 +

15

1 + (vfτφ∆k)2
+

−2

(1 + (vfτφ∆k)2)2

+
−48

4 + (vfτφ∆k)2
+

−256

(4 + (vfτφ∆k)2)2

)

+α6

(
−3 +

−7

1 + (vfτφ∆k)2
+

2

(1 + (vfτφ∆k)2)2

+
16

4 + (vfτφ∆k)2
+

64

(4 + (vfτφ∆k)2)2

)]
, (6.14)

with

α =
vπf√

(vπf)2 + t2⊥

∈ [0, 1] (6.15)

and

∆k =
2

vf

√
(vfπf)2 + t2⊥. (6.16)

This result looks very complicated at first glance, but Kphen nevertheless exhibits some
specific structure. The most obvious feature is the appearance of different powers of
α. Note that the formula is exact, although it looks like a power series expansion in α.
The highest power of α is determined by the number of impurities in the Cooperon. Every
factor of α is multiplied by a prefactor which contains even more functions. This prefactors
exhibit also a very special structure, as they consist of just a few functions, but each with
a different prefactor.
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6.2. Microscopic approach 37

6.2. Microscopic approach

In the last section we derived a weak localization correction using disordered Greens func-
tions and inserting a phenomenological dephasing time. This led us to an analytical result
which we can study easily, but we still do not know how reasonable this approach is. In
this section we want to use the Functional Bosonization technique explained in section 4.
Using this approach, we include electron-electron interaction (which leads to dephasing)
properly, therefore we are able to check if the simple approach is correct.

Let us briefly recatch the results obtained in sec. 4. The full Greens function can be
written as a product of the free Greens function with a phase factor,

GR(x, τ) = gR(x, τ) exp[−BRR(x, τ)]. (6.17)

Interaction is included in the Bµν-correlators, these are given in Appendix C. Impurity
vertices lead to factors of

Q(x, τ) = exp [BRR(x, τ) +BLL(x, τ)− 2BRL(x, τ)] (6.18)

and Q−1(x, τ). Each pair of impurity vertices at (xN , τN ) and (xN ′ , τN ′) leads to a factor
of Q(xN−xN ′ , τN−τN ′) if the incident chiralities are the same and to a factor of Q−1(xN−
xN ′ , τN − τN ′) if they are different. Every pair of impurity vertices has to be accounted by
such a factor.

Since the derivation of the Functional Bosonization in section 4 is done for purely one
dimensional systems we have to check how the 2 chain model affects this results. The 2
chain model yields two bands with different Fermi points kf,±, so we can calculate the free
Greens function in band space:

gR±(x, τ) = T
∑

Ω

e−iΩτ
∫

dq

2π

eiqx

vf (q − kf,±)− iΩ

= T
∑

Ω

e−iΩτ
∫

dq

2π

ei(q+kf,±x)

vfq − iΩ

= eikf,±xT
∑

Ω

e−iΩτ
∫

dq

2π

eiqx

vfq − iΩ
= eikf,±xgR0 (x, τ), (6.19)

and in analogy

gL±(x, τ) = e−ikf,±xgL0 (x, τ). (6.20)

Note that free Greens functions in the 2 chain model reduce to the simple Greens functions

g
R/L
0 (x, τ) given by (4.14) and a phase factor which contains the band property (namely,

the Fermi point kf,±). The Bµ,ν-correlators (see equation (4.19)) aren’t affected by the
shift of the Fermi points because they are bosonic correlators and only couple densities.
The only way the Fermi points could appear in this correlator is upon backscattering, but
as already discussed we neglect backscattering in the interaction.
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38 6. Weak Localization in the 2-chain ladder

As before, one starts the calculation in real space and has to perform a transformation
into band space. The transformation is given by eq. (5.30) and (5.31), inserting eq. (6.19)
into the transformation rules gives

gR1,1 =
1

2

(
gR+ + gR−

)
− 1

2
α
(
gR+ − gR−

)

=

{
1

2

(
eikf,+x + eikf,−x

)
− 1

2
α
(
eikf,+x − eikf,−x

)}
gR0 , (6.21)

for example. Note that the free Greens functions and the phase factors separate completely,
this holds for any transformation given in eq. (5.30) and (5.31).

The calculation of the weak localization correction for one 1D chain has been performed
in [37] and is quite complicated. We want to adopt this calculation for our model of 2
chains or 2 bands, respectively. The interested reader might consider the original paper
for technical details of the calculation.

We consider only forward scattering in the interaction, so in terms of the g-ology model
(explained in sec. 3.2) we include only the g2 and g4 processes. Hence, the interaction
Hamiltonian (5.2c) reads

Hint =
1

2

∑

µss′

∫
dx(nµsg4nµs′ + nµsg2n−µs′), (6.22)

with the densities nµ,s, chirality µ = R/L and band index s = ±. Since both interaction
processes relate to the V (q = 0) matrix element, we set g2 = g4 = g. The two bands
introduce two types of species to our model, the band index s thus serves as a pseudospin.
Consequently, we use the spinful Bµν-correlators given in Appendix C.

R

L R

L

L

RL

R

1

2

3

3̄
2̄

1̄

Figure 6.5.: Cooperon in the functional bosonization approach. The solid lines are free
electron Greens functions, the dashed line is an impurity scattering line and
the wavy lines are phase factors due to electron-electron interaction.
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6.2. Microscopic approach 39

The weak localization correction is still given by the Cooperon with 3 impurities, electron-
electron interaction is included via the phase factors attached to the impurity scattering
vertices, which leads to the diagram presented in fig. 6.5.

As discussed in section 4.2, averaging leads us to a bunch of Q(x, τ)- and Q−1(x, τ)-
functions which contain the interaction. The weak localization correction reads after av-
eraging over the Θ-field:

σWL(iΩm) = 4(evf )2

(
v2
f

2l0

)3
1

Ωm

T

L

∑

ijklm

∫ 1/T

0
dτ1dτ̄1dτ2dτ̄2dτ3dτ̄3

∫
dx1dx2dx3

× [gR0 (x1 − x3, τ1 − τ̄3)Q−1(x1 − x3, τ1 − τ̄3)][gLj,k(x2 − x1, τ2 − τ1)Q−1(x2 − x1, τ2 − τ1)]

× [gRk,l(x3 − x2, τ3 − τ2)Q−1(x3 − x2, τ3 − τ2)][gL0 (x1 − x3, τ̄1 − τ3)Q−1(x1 − x3, τ̄1 − τ3)]

× [gRj,k(x2 − x1, τ̄2 − τ̄1)Q−1(x2 − x1, τ̄2 − τ̄1)][gLi,j(x3 − x2, τ̄3 − τ̄2)Q−1(x3 − x2, τ̄3 − τ̄2)]

×Q(x1 − x3, τ1 − τ3)Q(x1 − x3, τ̄1 − τ̄3)Q(x1 − x2, τ1 − τ̄2)Q(x2 − x1, τ2 − τ̄1)

×Q(x3 − x2, τ3 − τ̄2)Q(x2 − x3, τ2 − τ̄3)Q−1(0, τ1 − τ̄1)Q−1(0, τ2 − τ̄2)

×Q−1(0, τ3 − τ̄3)W in,R
i,j,l (x1 − x3, τ1, τ̄3,Ωm)Wout,L

j,l,m (x1 − x3, τ̄1, τ3,Ωm). (6.23)

One can easily check the averaging by comparing the Q(x, τ)-functions in eq. (6.23) with
fig. 6.5. The prefactor 4 = 2 · 2 stems from the two choices of chirality and the two
diagrams left (see fig. 6.2). The sum is over all possible chain setups, the factor (evf )
stems from the the two current vertices and the factor of v2

f/2l0 comes from the disorder
potential

1

L

〈
|Ub(k)|2

〉
=

1

2πτ

1

ρ
=

vf
2πl0

πvf =
v2
f

2l0
, (6.24)

where we used ρ = (πvf )−1. The W factors stem from integration over the two Greens
functions attached to the current vertices over the external coordinates and times:

∫
dxidτie

−iΩmτigR/Lr,s (x1 − xi, τ1 − τi)gR/Lr,t (xi − x3, τi − τ̄3)

= g
R/L
0 (x1 − x3, τ1 − τ̄3)W in,R/L

r,s,t (x1 − x3, τ1, τ̄3,Ωm). (6.25)

TheW functions have been calculated in Appendix A, but only in band space. This means
that we inserted equation (6.5) in equation (6.25) and calculated the integral which yields

W in,R
i,j (x, τα, τβ,Ωm) =

= −i sgn(Ωm)

|Ωm|+ 2vf/l + isgn(Ωm)vf∆k

(
e−iΩmταeikf,jx − e−iΩmτβeikf,ix

)
, (6.26)

where i, j = ± are band indices and ∆k = kf,j − kf,i. The W functions fulfill the relations

W in/f,R(x, τα, τβ,Ωm) = −W in/f,L(−x, τα, τβ,Ωm),

W in,R/L(x, τα, τβ,Ωm) =Wout,R/L(x, τα, τβ,−Ωm). (6.27)
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40 6. Weak Localization in the 2-chain ladder

Since we include only backscattering off disorder we have to replace the scattering rate
2vf/l = 2/τ in the vertices by vf/l, in analogy to the Diffuson correction on the phe-
nomenological model. We introduce a new set of variables:

xa = x1 − x3,

xb = x3 − x2,

xc = x1 − x2,

τa = τ1 − τ̄3,

τb = τ3 − τ2,

τc = τ2 − τ1,

τ̄a = τ̄1 − τ3,

τ̄b = τ̄3 − τ̄2,

τ̄c = τ̄2 − τ̄1. (6.28)

The next steps are the same as in [37] and can be looked up in the paper in detail. Note
that the only thing new to these formulas are the phase factors containing the different
Fermi points and a sum over different chains. These phase factors are the only functions
which are connected to the summation indices, so the summation is completely decoupled
from the Greens functions and the Q-correlators

After summing over all chains and performing the same steps as in [37] we find

σWL

σD
= lim

Ω→0

{
−2πT

Ωm

v4

32l4
v4

(|Ωm|+ v/l)2

∑

n

∫ ∞

0
dxadxbdxcδ(xa + xb − xc)

×Gr+(xa, iεn + iΩm)Gr+(xb, iεn + iΩm)Gr+(xc, iεn + iΩm) (6.29)

×Ga+(xa, iεn)Ga+(xb, iεn)Ga+(xc, iεn)AWL(α,∆kxa,∆kxb,∆kxc)

}

iΩm→Ω+i0

,

where the space-energy Greens functions are given in Appendix C. The Kernel AWL is
given by

AWL(α, xa, xb, xc) =
1

4

{
α0
[
5 + cos(2xa) + cos(2xb) + cos(2xc)

]

+α2
[
− 9 + 6

(
cos(xa) + cos(xb) + cos(xc)

)

− 1
(
cos(2xa) + cos(2xb) + cos(2xc)

)

− 2
(
cos(xa − xb) + cos(xa + xc) + cos(xb + xc)

)]

+α4
[
15− 8

(
cos(xa) + cos(xb) + cos(xc)

)

− 1
(
cos(2xa) + cos(2xb) + cos(2xc)

)

+ 4
(
cos(xa − xb) + cos(xa + xc) + cos(xb + xc)

)]

+α6
[
− 3 + (cos(2xa) + cos(2xb) + cos(2xc))

+ 2
(
cos(xc − xa) + cos(xa + xb) + cos(xc − xb)

)

− 2
(
cos(xa − xb) + cos(xa + xc) + cos(xb + xc)

)]}
, (6.30)
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with

α =
vπf√

(vπf)2 + t2⊥

∈ [0, 1] (6.31)

and

∆k =
2

vf

√
(vfπf)2 + t2⊥. (6.32)

After inserting the Greens functions, summing over the Matsubara frequencies, performing
the analytical continuation iΩm → Ω + i0 and going to the DC limit Ω → 0 we find for
the weak localization correction

σWL = −1

8
σD

(
lee
l

)2

Kmicro

(
α,

∆klee
2

)
, (6.33)

with the relaxation length l = vfτ and the electron-electron scattering length lee ' v2
f/gT

(g is the interaction strength, T is the temperature). The function Kmicro is given by

Kmicro(α, γ) =
π

4

∫ ∞

−∞

dz

cosh2(πz)

∫ ∞

0
dx

∫ ∞

0
dy× (6.34)

×R(x, z)R(y, z)R(x+ y + xy, z)AWL (α, γx, γy, γ(x+ y)) ,

with

R(x, z) =2 F1(1/2 + iz, 1/2, 1;−x)2F1(1/2− iz, 1/2, 1;−x), (6.35)

where 2F1 is the Gauss hypergeometric function.

In order to get the actual correction we have to choose a specific value of ∆klee and evaluate
the integral in eq. (6.34). Note that the function Kmicro has a similar form as Kphen (given
in eq. (6.14)). Kmicro exhibits the same powers of α times a prefactor. In addition, the
structure of the prefactors also shows recurring functions, as seen in the phenomenological
model.
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42 6. Weak Localization in the 2-chain ladder

6.3. Comparison of the two approaches

In the last two sections we have calculated the weak localization correction of the 2-chain
ladder twice, using a phenomenological and a microscopic approach. In the phenomeno-
logical approach we have guessed the effect of e-e interaction and introduced a phenomeno-
logical dephasing time τφ. Since we do not know how good our guess was, was calculated
the correction in a microscopic approach again using Functional Bosonization. Using this
method we included interaction properly, it is taken into account via the electron-electron
scattering length lee ' v2

f/gT (g is interaction strength, T is temperature).

In this section we want to proof the validity of the first (phenomenological) approach by
comparing it with the second (microscopic) one. We also want to find a relation between
the length scales of the two approaches, vfτφ and lee.

The two approaches led to

σphenWL = −1

8
σD

(τφ
τ

)2
Kphen(α, vfτφ∆k) (6.36)

and

σmicroWL = −1

8
σD

(
lee
l

)2

Kmicro

(
α,

∆klee
2

)
. (6.37)

On first glance, both results look pretty similar, they are both proportional to the Drude
conductivity and to some ratio of τφ/τ or lee/l, respectively. The remaining functions are
given in eq. (6.14) (Kphen) and 6.34 (Kmicro). Both functions exhibit a special structure
in α:

K = α0p0 + α2p2 + α4p4 + α6p6. (6.38)

The pi-functions, however, are different in the two approaches. In the phenomenological
model it holds pi = pi(vf∆kτφ), whereas in the microscopic model pi = pi(∆klee/2).
Moreover, the pi are given by a complicated integral in the microscopic model.

Both approaches represent the same quantity, so

σphenWL = σmicroWL

⇒ (vfτφ)2Kphen(α, vfτφ∆k) = l2eeKmicro

(
α,

∆klee
2

)
(6.39)

holds. τφ and lee appear in two ways in this formula, as an overall prefactor and as an
argument of the function K. Since these two appearances have different origins, we treat
them both separately and call the τφ in the prefactor τ̃φ:

(vf τ̃φ)2Kphen(α, vfτφ∆k) = l2eeKmicro

(
α,

∆klee
2

)
. (6.40)

τ̃φ is determined easily, we choose ∆k = 0 and find

(vf τ̃φ)2 · 2 ' l2ee · 2.288 ⇒ vf τ̃φ ' 1.069lee. (6.41)
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To find a mapping of τφ, we calculate pmicroi for different values of ∆klee/2 and fit it with

ppheni . The fit parameter is determined by

ppheni (vf∆kτφ) = ppheni

(
2vfτφ
lee︸ ︷︷ ︸

fit parameter

∆klee
2

)
(6.42)

and the fit yields

2vfτφ
lee

' 4.337 ⇒ vfτφ ' 2.168lee. (6.43)

The second mapping yields a result which is significantly different than the first one, the
results differ by a factor of roughly 2. Nevertheless, both mappings are of the same order,
so we can accept this result.

We have plotted the pi in fig. 6.6, solid lines are the ppheni , crosses the pmicroi . The
two curves fit remarkably good, the phenomenological model describes the microscopic
one very good for small values of ∆klee as well as for large ones. Notice that we have
performed only one single fit for all 4 plots. This explains the slight deviations of the two
models in the asymptotic limit ∆k → ∞. However, there is still a region of ∆klee/2 ∈
[0.5, 2] where the microscopic model performs some oscillations which cannot be seen in the
phenomenological one (a plot of this region is presented in fig. 6.7). These are nonetheless
small deviations and can be safely ignored when concentrating on the essential physics.

In conclusion, we have shown that the phenomenological approach is a very good approx-
imation of the microscopic one. In order to analyze the results it is therefore sufficient to
look at σphenWL . Moreover, we have found a connection between τφ and lee

vfτφ ' 2.168lee, vf τ̃φ ' 1.069lee, (6.44)

and since lee ' v2
f/gT , we have now a connection between τφ and the tunable parameters

interaction strength g (given in eq. (6.22)) and temperature T .
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Figure 6.6.: Fitting of the analytics with the numerics for every pi. Solid line is the analytic
result from the phenomenological model, red crosses are the numerical results
from the microscopic one. (a) is the plot of p0, (b) of p2, (c) of p4, (d) of p6.
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Figure 6.7.: Fitting of the analytics with the numerics for every pi, but zoomed to see the
details of the plot. The properties are the same as in fig. 6.6.
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7. Results

In the last chapter, we have calculated the weak localization correction for the 2-chain
ladder. We have seen that the phenomenological model is a good approximation of the
microscopic one, so we analyze the former. The correction is given by

σWL = −1

8
σD

(τφ
τ

)2
K(τφ, t⊥, f), (7.1)

with K(τφ, t⊥, f) presented in eq. (6.14). The single chain has been calculated by [19],
their result is

σWL = −1

8
σD

(τφ
τ

)2
, (7.2)

this is just the result of our calculation for the case K = 1. Our analysis focuses on
K(τφ, t⊥, f), because all relevant parameters are included in this function and the results
can easily be compared to the single chain.

When we look at our model, we identify 2 time scales which are important: τφ and 1/t⊥.
The dephasing time τφ is the time until phase coherence is destroyed by electron-electron-
interaction and it determines the size of the electron loops, so it serves as a cutoff. The
inverse hopping rate 1/t⊥ = τ⊥ is the average time between two interchain hopping events.
In-chain hopping doesn’t exhibit a hopping time because due to the linearization of the
spectrum we also made the single chains continuous (see chapter 5 for details).

A closer look at K(τφ, t⊥, f) shows that the function can be expressed in terms of two
dimensionless variables:

τφt⊥,
vfπf

t⊥
. (7.3)

This shows us that the physical relevant parameters are the dephasing time τφ and the
magnetic flux f . Every possible configuration of K can be achieved by varying the two
relevant parameters, whereas t⊥ and vf just define the scale.

Let us briefly recall the effects we expect from weak localization as explained in sec. 2.3.
Electrons can perform loops in disordered solids, which can lead to a weak localization due
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48 7. Results

to constructive interference. The magnetic field destroys this constructive interference, the
localization effect thus vanishes. We also stated that dephasing determines the size of the
loops and that the effect becomes stronger in lower dimensions.

We start our analysis by looking at the limits of our K.

• Limit of no interchain hopping

K(τφ, t⊥ = 0, f) = 2 (7.4)

This is a reasonable result because it is just the result of 2 independent chains, as
compared with eq. (7.2). Note that the result is independent of magnetic flux, this
is also reasonable because without interchain hopping loops cannot include an area
containing magnetic field.

• Limit of strong dephasing

K(τφ = 0, t⊥, f) = 2 (7.5)

The limit of strong dephasing also leads to the result of two decoupled chains. As
mentioned before, dephasing time, or the according dephasing length lφ = vfτφ,
determines the size of the electron loop. The dephasing time goes to zero in the limit
of strong dephasing, in consequence we also have no dephasing length and the size
of the loops becomes zero. Since we have a finite spacing between the chains, loops
containing hopping cannot exist and we are therefore left with loops containing only
impurities on one chain. However, this limit is obsolete since the correction vanishes
completely as seen in eq. (7.1).

• Limit of no magnetic field

K(τφ, t⊥, f = 0) =
1

4

[
5 +

1

1 + (2t⊥τφ)2
+

2

(1 + (2t⊥τφ)2)2

]
(7.6)

In this case we don’t get the result of two independent chains in general. In the limit
τφ → 0 or t⊥ → 0 we get K = 2, so we recover again the previous limits. In the case
of τφ → ∞ or t⊥ → ∞ we get K = 5/4, so the correction is still stronger than in

0.5 1.0 1.5 2.0 2.5 3.0
ΤΦtÞ

1.4

1.6

1.8

2.0

K

Figure 7.1.: Plot of K over τφt⊥ in the limit of no magnetic field. Solid line is K, dashed
line is at K = 5/4 and denotes the asymptotic behaviour of K for large values
of τφt⊥.
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the case of a single chain. A plot of this function is given in fig. 7.1. However, the
origin of the value K = 5/4 is still not understood.

Note that for t⊥ 6= 0 and τφ 6= 0, the correction is smaller than two. This means that
the localization in the two-chain-ladder is less pronounced than in the case of two
uncoupled chains. An explanation for this result can be found in dimensionality: By
adding a second chain separated by a finite spacing we destroy the one-dimensionality
of our system and go a little bit into two dimensions. In section 2.3 we stated that
localization is stronger in lower dimensions, so our result is perfectly fine with this
statement. However, one can also give a more physical interpretation: Since our
model contains two bands with different Fermi points kf,±, scattering off an impurity
can lead to each of the two bands. This can lead to less coherent contributions when
two ways (regular and time-reversed) occupy different bands.

We can also give an expansion of K(τφ, t⊥, f) for small magnetic fields:

K(τφ, t⊥, f) =
1

4

[
5 +

1

1 + (2τφt⊥)2
+

2

(1 + (2τφt⊥)2)2

+

(
vfπf

t⊥

)2(
−9 +

192

(4 + (2τφt⊥)2)2 +
32

4 + (2τφt⊥)2
+

4

(1 + (2τφt⊥)2)3

− 5

(1 + (2τφt⊥)2)2 −
10

1 + (2τφt⊥)2

)
+O

[
vfπf

t⊥

]4
]

(7.7)

• Limit of a strong magnetic field

K(τφ, t⊥, f →∞) = 2 (7.8)

In the limit of a strong magnetic field we find again the limit of two uncoupled
chains. This totally contradicts our expectation because due to our knowledge (see
section 2.3), magnetic field should suppress localization and the correction should
therefore become smaller. In our case, however, magnetic field makes the correction
even stronger, it forces electrons to localize.

According to this result, the magnetic field seems to split the chains again into two
uncoupled ones. Having said this, the first idea is to look at the hopping itself. When
adding a magnetic field, the interchain hopping parameter becomes renormalized by
means of the Peierls substitution

t⊥ → t⊥ exp [∓i2πfx] . (7.9)

(2)

(1)
Figure 7.2.: Hopping in the continuous ladder. Interchain hopping can take place on a

scale of l⊥ = vfτ⊥.
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50 7. Results

This substitution has been done in detail in section 5.2. Since we have linearized
our model, we have made the two chains continuous. We thus do not know exactly
where the interchain hopping occurs, we just know it occurs on a scale of l⊥ = vfτ⊥.
In this spirit, we have to average over all possible hopping events on a length scale
of l⊥, as shown in fig. 7.2. This leads to a renormalized hopping parameter

t̃⊥ =

∫
dx

l⊥
t⊥e

i2πfxP

(
x

l⊥

)
, (7.10)

with a probability distribution P (x). The renormalized hopping parameter is de-
pending on the magnetic field t̃⊥ = t̃⊥(fl⊥) and becomes smaller with increasing
magnetic field. This effect can also be interpreted as destructive interference be-
tween different hopping events.

However, the decoupling of the 2 chains can already be seen in the derivation of the
ladder model in sec. 5.2. The inter-chain propagator reads

G⊥ =
1

2

√
1− α2 (G+ −G−) , α =

vfπf√
(vfπf)2 + t2⊥

. (7.11)

In the limit of f →∞, α→ 1 and consequently G⊥ → 0.

It is still worth mentioning that the limit of infinite magnetic field has to be taken
with care. In this limit it is not guaranteed that one can linearize the spectrum,
therefore the whole calculation cannot be trusted anymore. However, this limit still
yields a lot of useful information about our model.

The expansion of K(τφ, t⊥, f) for large magnetic field reads

K(τφ, t⊥, f) = 2− 3
1

(
vfπf
t⊥

)2 +
1

(
vfπf
t⊥

)4

(
9

2
+

1

(τφt⊥)2

)
+O


 1(

vfπf
t⊥

)




6

. (7.12)

It is noteworthy that the first appearance of τφ is in the 4th order of this expansion.
The 2nd order expansion is just given by a number, the behaviour of K for large
magnetic fields thus depends very weakly on τφ.

In order to get a more quantitative analysis of the conductivity correction one can introduce
a new dimensionless conductivity correction

δσ(τφ, t⊥, f) =
σWL(τφ, t⊥, f)− σWL(τφ, t⊥, 0)

σWL(τφ, t⊥, 0)
(7.13)

where σWL is given by eq. (6.13). δσ has been plotted for multiple values of τφt⊥ in fig.
7.3. The different scales on the δσ-axis are due to the different values of σWL(τφ, t⊥, 0)
depending on τφ.

As stated above, all plots approach an asymptotic limit in the case of f → ∞. From the
plots in fig. 7.3 we can see that this asymptotic limit is reached faster for higher values
of τφt⊥. However, in the cases of high τφt⊥, a minimum appears for small magnetic field.
It is apparent that the strength of this minimum grows with τφt⊥, but it seems that it
becomes saturated at τφt⊥ ' 1.5.
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Figure 7.3.: Plots of δσ over the generalized magnetic field
vfπf
t⊥

for various values of τφt⊥.

(a) τφt⊥ = 0.1; (b) τφt⊥ = 0.2; (c) τφt⊥ = 0.5; (d) τφt⊥ = 1.5.

This minimum reflects the fact that we obtain a magnetoresistance which we expected by
weak localization. It seems that for large enough dephasing times the electron can perform
a loop and therefore leads to the regular weak localization correction. However, this only
holds for small magnetic fields, large magnetic fields still lead to the splitting of the 2
chains and suppress the regular weak localization correction.

The development of the minimum can be seen in the expansion of K for small f , eq.
(7.7). The lowest order expansion consists of different competing terms, which determine
the overall sign. A sign change of the 2nd order expansion denotes the appearance of a
minimum, the sign change appears at

τφt⊥ ' 0.266. (7.14)

In the limit of weak dephasing τφ →∞ we find that the minimum is at

vπf

t⊥

∣∣∣∣
min

=
1√
2

(7.15)

with the value

δσ
∣∣∣
min

= −13

45
or K

∣∣∣
min

=
8

9
. (7.16)

The limit of τφ → ∞ has to be taken with care, since the whole calculation has been
performed under the assumption τφ � τ . Nonetheless, the numerical data shows that
these limits are reached quite fast, so taking the limit τφ →∞ is valid in this case.
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However, the regular weak localization correction can only be observed for small magnetic
fields. Large magnetic field leads still to a decoupling of the two chains and therefore
enhances the localization.
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8. Conclusion

The main goal of this thesis was to calculate the weak localization correction to the con-
ductivity of a spinless disordered 2-chain ladder.

In chapter 5 we have introduced the cornerstone of this thesis, the model of a 2-chain
ladder. In absence of a magnetic field the bandstructure consists of two cosine bands,
split by a factor of ∆ε = 2t⊥. The bandstructure has been linearized, we assumed that
both linear bands have the same Fermi velocity vf . Adding a magnetic field results in
two effects: The momentum difference between the two bands, ∆k, becomes renormalized,
furthermore one has to include a coherence factor α in the Greens function.

The actual calculation of the weak localization correction has been performed in chap-
ter 6. We have calculated the correction in a phenomenological model, which has been
validated afterwards by a microscopic one. Furthermore, we have found a mapping of
the phenomenological dephasing time τφ on the microscopic electron-electron scattering
length lee ' v2

f/gT of the form vfτφ ∼ lee. This mapping provides a connection between
the phenomenological model and system-inherent quantities like the interaction strength
g and the temperature T .

Chapter 7 is devoted to the examination and discussion of the results obtained in chapter
6. The weak localization correction to the 2-chain ladder is given by

σWL = −1

8
σD

(τφ
τ

)2
K(τφ, t⊥, f), (8.1)

where the function K(τφ, t⊥, f) is given in eq. (6.14). The analysis of the correction fo-
cuses on K(τφ, t⊥, f), since all relevant parameters are included in this function. In the
limit of no interchain hopping, the result of two uncoupled chains has been recovered, in
agreement with [19]. In the absence of a magnetic field, the weak localization correction
of the 2-chain ladder is smaller than for the case of two uncoupled chains.
A surprising result is yielded in the case of strong magnetic fields. Magnetic field apparently
suppresses interchain hopping and leads to decoupling of the two chains. Consequently,
the weak localization correction becomes stronger with increasing magnetic field. The
suppression of interchain hopping can be explained in terms of destructive interference of
different hopping paths. Another interesting effect can be seen at large dephasing times
τφ & t−1

⊥ (but still in the limit τφ � τ). In this regime one can observe a competition be-
tween the regular weak localization correction (seen at small magnetic fields f . πt⊥/2vf )
and the decoupling of the chains (large magnetic fields).
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54 8. Conclusion

After finishing the thesis there are still some unresolved questions. The most fundamental
one adresses to the mechanism which decouples the chains in the magnetic field. Although
an explanation has been given, it is still crucial to put the given statements on solid ground.
Furthermore, the limit of strong interchain hopping in the absence of magnetic field leads
to a result which is not fully understood.

Future work based on this thesis can be adressed to the analysis of carbon nanotubes, for
example. Single wall carbon nanotubes can be mapped onto the 2-chain ladder [24]. This
mapping does not hold completely in the presence of the magnetic field, in this case the
geometric structure of the nanotube has to be considered. Nevertheless, the calculation
of the weak localization correction of carbon nanotubes should be quite similar to the one
of the 2-chain ladder. In fact, a regular weak localization correction has been measured
in single wall carbon nanotubes [26]. This measurement is in contrast to the results of
this thesis, which makes the analysis of carbon nanotubes even more interesting. However,
further work must be done to make any reasonable comment on this.

The low-temperature limit of 2-chain ladders also promises exciting physics. The case
of up to two impurities has already been investigated [10] and shows interesting results,
consequently one is interested in the case of many impurities. More interesting effects are
expected by the competition between strong localization and backscattering off disorder,
which leads to a formation of a gap.
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Motivation

Eindimensionale Systeme ziehen schon lange das Interesse der Physiker auf sich. Luttinger
und Tomonaga waren die Ersten, die in den 50er Jahren versuchten eindimensionale Sys-
teme theoretisch zu behandeln, indem sie eine neues Modell namens Luttinger Flüssigkeit
vorschlugen [25, 35]. Ihre Arbeit hat gezeigt, dass sich eindimensionale Systeme deutlich
anders verhalten als Höherdimensionale. Diese Ergebnisse haben ein verstärktes Interesse
der theoretischen Physik an 1D Systemen hervorgerufen.

Es hat Jahrzehnte gedauert, bis erste experimentelle Realisierungen eindimensionaler Sys-
teme verfügbar waren, aber mittlerweile gibt es zahlreiche Beispiele. Die Bekanntesten sind
Kohlenstoff-Nanoröhrchen [7], halbleitende und metallische Nanodrähte [5, 23, 33] und die
Randzustände des Quanten-Hall-Effekts [21]. Kohlenstoff-Nanoröhrchen haben hierbei die
größte Aufmerksamkeit erhalten, wobei Experimente das typische Verhalten einer Luttin-
ger Flüssigkeit gezeigt haben.

Ein sehr interessantes Feld der Festkörperphysik ist das der ungeordneten Systeme. Ander-
son hat 1958 gezeigt, dass Unordnung zur Lokalisierung von Elektronen führen kann [3],
aber es hat mehr als 20 Jahre gedauert um die Theorie der Lokalisierung zu entwickeln [1].
Diese zeigt, dass die Stärke der Lokalisierung stark von der Dimensionalität des Systems
abhängt und der Effekt in einer Dimension besonders stark ausgeprägt ist.

Obwohl die reinen, wechselwirkenden 1D-Systeme (Luttinger Flüssigkeiten) und die un-
geordneten, nicht-wechselwirkenden 1D-Systeme (die zu Lokalisierung führen) sehr gut
verstanden sind, ist immer noch wenig bekannt über die Natur ungeordneter, wechsel-
wirkender 1D-Systeme (ungeordnete Luttinger Flüssigkeit). Systeme mit einer einzigen
Störstelle wurden extensiv untersucht [20], viel problematischer ist jedoch der Fall vieler
Störstellen. Die ersten Versuche, ungeordnete Luttinger Flüssigkeiten zu behandeln wur-
den von Apel und Rice [4] und von Giamarchi und Schulz [17] vorangetrieben, mittlerweile
gibt es jedoch große Fortschritte auf diesem Gebiet [6, 19].

Ein interessanter Effekt, der durch Unordnung hervorgerufen wird, ist schwache Lokalisie-
rung. Schwache Lokalisierung ist ein quantenmechanisches Interferenzphänomen zwischen
verschiedenen Pfaden, die eine geschlossene Schleife bilden, und führt zu Quantenlokali-
sierung und zu einer Verringerung der Leitfähigkeit. Die Stärke der Lokalisierung wird
bestimmt durch die Stärke der Kohärenz, diese wiederum kann z.B. durch inelastische
Streuung zerstört werden. Diesen Effekt nennt man Dephasierung und er führt eine neue
Größe, die Dephasierungszeit τφ, ein. Diese Dephasierungszeit hängt von externen Größen
wie der Wechselwirkungsstärke und der Temperatur ab, aber die parametrische Form die-
ses Zusammenhangs wird von der Dimensionalität des Systems bestimmt. Darüber hinaus
hängt die Stärke der Lokalisierung von äußeren Magnetfeldern ab. Ein angelegtes Magnet-
feld zerstört den Interferenzeffekt und führt zu einer Schwächung des Lokalisierungseffekts.

Das Ziel dieser Diplomarbeit ist es, die Korrektur der schwachen Lokalisierung zur Leit-
fähigkeit einer spinlosen, ungeordneten Leiter zu berechnen. Wir beschränken uns hierzu
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auf den Grenzfall der starken Dephasierung, τφ � τ , dieser Fall kann durch eine genügend
schwache Unordnung oder eine ausreichend hohe Temperatur gewährleistet werden. Die
Leitfähigkeitskorrektur ist aus mehreren Gründen interessant: Zum einen wurde die Kor-
rektur der schwachen Lokalisierung für einzelne 1D-Drähte schon berechnet [19, 37] und
es ist der sinnvollste Schritt, das System auf eine Leiter auszudehnen. Desweiteren ist die
Leiter eines der einfachsten eindimensionalen Systeme, in denen schwache Lokalisierung
zu Magnetowiderstand führen kann. Dies ist nicht möglich in spinlosen 1D-Drähten, da
das Magnetfeld in diesen Systemen immer weggeeicht werden kann. 1D-Drähte mit Spin
können jedoch Magnetowiderstand aufweisen, der zugrunde liegende Mechanismus ist hier
der Zeeman-Effekt [36, 38].

Ferner können Kohlenstoff-Nanoröhrchen auf die Leiter abgebildet werden [24]. Experi-
mente haben gezeigt, dass Kohlenstoff-Nanoröhrchen Magnetowiderstand aufzeigen, des-
sen Ursprung der schwachen Lokalisierung zugeschrieben wird [26]. Die Abbildung auf
die Leiter ist jedoch im Magnetfeld nicht mehr so ohne weiteres möglich, in diesem Fall
muss die geometrische Struktur der Nanoröhrchen berücksichtigt werden. Nichtsdestotrotz
liefert diese Diplomarbeit die Grundlagen, um die Leitfähigkeitskorrektur der schwachen
Lokalisierung in Kohlenstoff-Nanoröhrchen zu berechnen.

Modell

In dieser Diplomarbeit untersuchen wir die folgende Leiterstruktur:

x

y

In dieser Abbildung stehen Punkte für Gitterpositionen und die Linien zeigen die mögli-
chen Hüpfrichtungen an. Die Dispersionsrelation der Leiter ist gegeben durch zwei Cosinus-
förmige Bänder +/− mit einem konstanten Abstand ∆ε = 2t⊥. Da wir nur an Anregungen
in der Nähe der Fermikante interessiert sind, linearisieren wir die beiden Dispersionsrelatio-
nen unter der Annahme, dass beide Bänder die gleiche Fermigeschwindigkeit vf besitzen.
Unter dieser Annahme sind die beiden linearisierten Bänder allein durch die beiden Fermi-
Impulse kf,± charakterisiert.

Ein angelegtes äußeres Magnetfeld führt zu einer Renormierung dieser Fermi-Impulse, bzw.
der Differenz der beiden Impulse ∆k = kf,+− kf,−. Das Magnetfeld erhöht diese Differenz
und schiebt somit die beiden Bänder auseinander. Darüber hinaus führt es zu sogenannten
Kohärenz-Faktoren α in den Greens-Funktionen. Die genaue Form dieser Faktoren kann
Gl. (5.23) entnommen werden.

Berechnung der Leitfähigkeitskorrektur

Die Leitfähigkeitskorrektur wird in dieser Diplomarbeit auf zweierlei Art berechnet. Zu-
nächst wird die Wechselwirkung auf eine approximative Art berücksichtigt, indem eine
phänomenologische Dephasierungszeit τφ eingeführt wird. Dieser Ansatz hat den Vorteil
einer einfachen Rechnung und führt schließlich zu einem analytischen Ergebnis. Der zweite
Ansatz benutzt die Technik der funktionalen Bosonisierung, um die Wechselwirkung auf
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einem mikroskopischen Niveau zu behandeln. Diese Methode ist mathematisch weitaus
schwieriger als die Phänomenologische und liefert als Ergebnis ein schwieriges Integral,
das numerisch ausgewertet werden muss.

Ein Vergleich der beiden Methoden zeigt, dass das phänomenologische Modell das Mikro-
skopische sehr gut beschreibt. Darüber hinaus finden wir eine Verknüpfung der phänomeno-
logischen Dephasierungszeit mit der Elektron-Elektron-Streulänge lee der Form vfτφ ∼ lee.
Die Elektron-Elektron-Streulänge ist dabei mit der Wechselwirkungsstärke g und der Tem-
peratur T über die Beziehung lee ' v2

f/gT verknüpft. Dies gibt uns die Möglichkeit, die
Dephasierungszeit durch äußere Bedingungen zu steuern.

Diskussion der Leitfähigkeitskorrektur

Im Grenzfall starker Dephasierung τφ � τ erhält man für die Leitfähigkeitskorrektur

σWL = −1

8
σD

(τφ
τ

)2
K(τφ, t⊥, f),

wobei σD die Drude-Leitfähigkeit ist und K(τφ, t⊥, f) durch Gl. (6.14) gegeben ist. Die
Analyse dieses Ergebnisses konzentriert sich größtenteils auf die Funktion K(τφ, t⊥, f), da
sie alle wichtigen physikalischen Variablen enthält. Wenn das Hüpfen zwischen den beiden
1D-Drähten der Leiter verboten wird, also t⊥ → 0, erhält man in Übereinstimmung mit [19]
den Fall zweier unabhängiger 1D-Drähte. Ohne Magnetfeld ist die Leitfähigkeitskorrektur
der Leiter kleiner als die der zwei unabhängigen Drähte.

Im Falle starker Magnetfelder erhält man wieder den Fall der beiden ungekoppelten Drähte,
das Magnetfeld verstärkt also die Lokalisierung. Dies ist ein überraschendes Resultat, nor-
malerweise führt das Magnetfeld zu einer Abschwächung der Lokalisierung. Anscheinend
interferieren verschiedene Hüpfprozesse destruktiv im Falle eines starken Magnetfelds, was
zu einer effektiven Entkopplung der beiden Drähte führt. Für genügend große Dephasie-
rungszeiten τφ & t−1

⊥ (wobei immer noch τφ � τ gelten muss) kann die erwartete Korrektur
der schwachen Lokalisierung beobachtet werden, jedoch nur im Falle ausreichend kleiner
Magnetfelder f . πt⊥/2vf . Starke Magnetfelder führen wieder zu einer Entkopplung der
beiden Drähte, was dazu führt dass man einen Wettstreit zweier konkurrierender Effekte
beobachten kann.

Während der Diplomarbeit konnten nicht alle Fragen geklärt werden. Vor allem der Mecha-
nismus, der zur Entkopplung der beiden Drähte im starken Magnetfeld führt muss stärker
untersucht werden. Wir haben zwar eine qualitative Erklärung gegeben, diese muss jedoch
noch durch eine ausführliche Rechnung bestätigt werden.

Ausblick

Die Untersuchung von Kohlenstoff-Nanoröhrchen ist eine naheliegende Fortsetzung dieser
Diplomarbeit, da diese auf die Leiter abgebildet werden können [24]. Experimente haben
gezeigt, dass Kohlenstoff-Nanoröhrchen einen Magnetowiderstand aufweisen, der der (re-
gulären) schwachen Lokalisierung zugeschrieben wird [26]. Diese Experimente zeigen nicht
die Verstärkung der Lokalisierung, wie sie in dieser Diplomarbeit vorhergesagt wurde. Je-
doch muss auch erwähnt werden, dass sich Nanoröhrchen im Magnetfeld anders verhalten
als Leiterstrukturen. Ohne eine ausführliche Untersuchung kann über das Verhalten von
Nanoröhrchen keine Aussage getroffen werden.

57



58 8. Deutsche Zusammenfassung

Spannende Physik wird auch bei sehr niedrigen Temperaturen in Leitermodellen erwartet.
Erste Arbeiten über das Verhalten einzelner Störstellen zeigen ein interessantes Verhalten
[10], folglich ist man am Verhalten der ungeordneten Leiter interessiert. Ferner erwar-
tet man interessante Effekte beim Wettbewerb zwischen starker Lokalisierung und der
Rückstreuung an Störstellen, was zur Bildung einer Bandlücke führt.
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Appendix

A. Calculation of the W-functions

In this Appendix we calculate the W-functions used in section 6.2. Note that in section
6.2 we start in the chain basis, whereas the calculation here is done in the band basis. The
W-functions are obtained by evaluating the diagram

[xα, τα]

[xβ, τβ]

i

j

Since this is the initial vertex, all Greens functions are right-movers, i and j indicate the
bands. We calculate this diagram for arbitrary bands, because every combination of bands
appears in the complete calculation of the Cooperon. With the definition of the Greens
function

gR/Lp (x, τ) = ∓ iT

2vf
sinh−1

[
πT

(
x

vf
± iτ

)]
exp [±ikf,px] , (A.1)

the diagram is given by

=

∫
dxidτie

−iΩτie−Γ[|xα−xi|+|xβ−xi|]gRi (xα − xi, τα − τi)gRj (xi − xβ, τi − τβ)

= gR0 (xα − xβ, τα − τβ)W in,R
i,j (xα, τα;xβ, τβ), (A.2)

where we included a long-distance cutoff Γ = l−1. Note that the second line forecloses
a result obtained later, but it is showed here for the sake of clarity. We start with the
integration over time and use the residue theorem and the Lemma of Jordan. These
theorems will not be explained here, they can be looked up in lots of mathematical books.

To use the residue theorem we have to find the poles of the integrand. sinh−1(az) has
poles on the imaginary axis at z = iπn/a with strength a−1(−1)n. In general there is
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an infinite number of poles (n = 0,±1,±2, ...), but we restrict ourselves to the pole with
n = 0 because this pole has the biggest residue.

The Lemma of Jordan allows us to close the contour of the integral along the real axis
in complex infinity, but only as long as the integrand tends fast enough to zero. The
important part of the integral which needs to fulfill this condition is the exp[−iΩτi]-part.
One can easily check that for Ω > 0 the integrand tends to zero at negative complex
infinity, so the contour has to be closed in the lower half plane. Similarly, for Ω < 0 the
contour has to be closed in the upper half plane.

The poles of the Greens functions can be found at

τi,1 = τα − i
xα − xi
vf

, (A.3a)

τi,2 = τβ − i
xβ − xi
vf

. (A.3b)

Note that one has to check carefully on which half plane the poles are, because the sign
of Ω tells us where to close the contour. Evaluating the integral A.2 yields

gR0 (xα − xβ, τα − τβ)W in,R
i,j =

= (−1)2πi
−iT
2vf

1

iπT

∫
dxie

−Γ[|xα−xi|+|xβ−xi|]eikf,i(xα−xi)eikf,j(xi−xβ)

{
−Θ(Ω)

[
Θ(xα − xi)e−iΩτα−Ω(xα−xi)/v−iT

2vf
f(α− β)

Θ(xβ − xi)e−iΩτβ−Ω(xβ−xi)/v−iT
2vf

f(β − α)
]

+Θ(−Ω)
[
Θ(xi − xα)e−iΩτα−Ω(xα−xi)/v−iT

2vf
f(α− β)

Θ(xi − xβ)e−iΩτβ−Ω(xβ−xi)/v−iT
2vf

f(β − α)
]}
. (A.4)

The (−1) in front is due to the sorting of the arguments of the sinh’s to the correct pole
structure (z − z0)−1, the 2πi comes from the residue theorem, the factor −iT/2vf is the
prefactor of the sinh and (πT i)−1 is the strength of the pole. The negative sign in front
of Θ(Ω) stems from the integration in the lower half plane. We also used a short handed
notation

f(α− β) = sinh−1

[
πT

(
xα − xβ
vf

+ i(τα − τβ)

)]
. (A.5)

Most parts of the prefactor cancels out, the only thing remaining is i/vf . Furthermore we
can identify

−iT
2vf

f(α− β) = gR0 (xα − xβ, τα − τβ). (A.6)

Using the Θ-functions, we can insert some moduli and get
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W in,R
i,j =

−i
vf
ei(kf,ixα−kf,jxβ)×

×
∫
dx

{
e[−i(Ωτα−∆kx)−|Ω||xα−x|/vf−Γ(|xα−x|+|xβ−x|)]×

× (Θ(Ω)Θ(xα − x)−Θ(−Ω)Θ(x− xα))−
−e[−i(Ωτβ−∆kx)−|Ω||xβ−x|/vf−Γ(|xα−x|+|xβ−x|)]×

× (Θ(Ω)Θ(xβ − x)−Θ(−Ω)Θ(x− xβ))

}

=
−i
vf
ei(kf,ixα−kf,jxβ)

∫
dx [ξα − ξβ] , (A.7)

where the function ξα is given by

ξα =e[−i(Ωτα−∆kx)−|Ω||xα−x|/vf−Γ(|xα−x|+|xβ−x|)]×
×
{

Θ(Ω)Θ(xα − x) [Θ(xβ − x) + Θ(x− xβ)]

−Θ(−Ω)Θ(x− xα) [Θ(xβ − x) + Θ(x− xβ)]
}
, (A.8)

with ∆k = kf,j−kf,i. ξβ is the same as ξα but with α↔ β. Note that we inserted a factor
of Θ(x) + Θ(−x) = 1. Using all the Θ functions helps us evaluating the moduli. After the
moduli have been evaluated, it is easy to compute the integrals. We still have to retain
the Θ functions, but in the end we get

∫
dxξα =

eΓ|xα−xβ |

|Ω|/vf + 2Γ + isgn(Ω)∆k
e−iΩταei∆kxα

{
sgn(Ω)+

+
2Γ

|Ω|/vf + isgn(Ω)∆k
(Θ(Ω)Θ(xα − xβ)−Θ(−Ω)Θ(xβ − xα))×

×
(

1− e−(|Ω|/vf+isgn(Ω)∆k)|xα−xβ |
)}
, (A.9)

so eventually

∫
dx(ξα − ξβ) =

eΓ|xα−xβ |

|Ω|/vf + 2Γ + isgn(Ω)∆k

{
sgn(Ω)

[
e−iΩταei∆kxα − e−iΩτβei∆kxβ

]
+

+
2Γ

|Ω|/vf + isgn(Ω)∆k

(
1− e−(|Ω|/vf+isgn(Ω)∆k)|xα−xβ |

)
×

×
[
(Θ(Ω)Θ(xα − xβ)−Θ(−Ω)Θ(xβ − xα)) e−iΩταei∆kxα−

− (Θ(Ω)Θ(xβ − xα)−Θ(−Ω)Θ(xα − xβ)) e−iΩτβei∆kxβ
]}
. (A.10)

We are now quite finished with the calculation and the result has become quite big, so
we try to simplify it. First of all we don’t need the cutoff anymore since the integrand in
(6.23) is decaying on a scale of lee � l. One can also see that the second term in the big
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curly brackets is proportional to Γ = l−1 and can be omitted for lφ/l � 1. Performing
these simplifications and inserting the result in equation (A.7) yields

W in,R
i,j = −i sgn(Ω)

|Ω|+ 2vf/l + isgn(Ω)vf∆k

(
e−iΩταe−ikf,j(xβ−xα) − e−iΩτβe−ikf,i(xβ−xα)

)
.

(A.11)
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B. Matsubara sum for DC-current

This appendix is devoted to the calculation of the Matsubara sum in eq.(6.3). We know
from chapter 2, that the conductivity is in principle given by closed fermionic loops (see
e.g. fig. 2.1) times some prefactor. Since our goal is simply to perform the Matsubara
sum, we forget about most of the prefactor and only consider the prefactor T/νn in our
calculation. When we forget about the momentum, the simplest bubble reads:

iωr + iνn

iωr

= − T
νn

∑

ωr

G(iωr + iνn)G(iωr). (B.1)

We keep in mind that there is still a momentum integration to be done. Remembering the
structure of the time-ordered Greens function

G(iωr, k) =
1

iωr − ε(k) + isgn(ωr)/2τ
, (B.2)

one notices that the integral B.1 is only different from zero when the poles of the Greens
functions lie on different half planes. This restricts our Matsubara sum to the region
−νn < ωr < 0.

We write now the sum over Matsubara frequencies as an integral

T
∑

ωr

F (iωr) = −
∮

C

dε

2πi
F (ε)f(ε) (B.3)

where f(ε) is the Fermi distribution function and C is a contour enclosing all Matsubara
frequencies. This method can be looked up in [8, 11], for instance.

We now extend the integration contour to ±∞ as depicted in fig. B.1. The integration
paths at ±∞ vanish, so one is left with

∮

C

dε

2πi
F (ε)f(ε) =

∫ ∞

−∞

dε

2πi
f(ε− iνn)F (ε− iνn)−

∫ ∞

−∞

dε

2πi
f(ε)F (ε). (B.4)

Interpreting G(iωr + iνn)G(iωr) = Fiνn(iωr) we find

− T
νn

∑

ωr

G(iωr + iνn)G(iωr) =

=
1

νn

1

2πi

[∫ ∞

−∞
dεf(ε− iνn)F (ε− iνn)−

∫ ∞

−∞
dεf(ε)F (ε)

]

=
1

iνn

1

2π

[∫ ∞

−∞
dεf(ε− iνn)F (ε− iνn)−

∫ ∞

−∞
dεf(ε)F (ε)

]

−→ 1

ν

1

2π

[∫ ∞

−∞
dεf(ε− ν)F (ε− ν)−

∫ ∞

−∞
dεf(ε)F (ε)

]
. (B.5)

In the last line we have performed the analytic continuation iνn → ν+ i0. Notice that our
formula has the structure of a difference quotient, so taking the DC limit ν → 0 leads us
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Re(ǫ)

Im(ǫ)

−iνn

Im(ǫ)

Re(ǫ)

−iνn

Figure B.1.: Deformation of the integration contour. Dots denote fermionic Matsubara fre-
quencies. νn is a bosonic matsubara frequency, so it lies between to fermionic
ones.

to a derivative. Assuming F (ε) is mostly flat, we can take it out of the derivative and one
finally gets

− T
νn

∑

ωr

G(iωr + iνn)G(iωr) =

∫
dε

2π
F (ε)

(
−df(ε)

dε

)
, (B.6)

where F (ε) is given by

F (ε) = GR(ε)GA(ε). (B.7)

GR is the retarded, GA the advanced Greens function, this structure stems from our
analytic continuation iνn → ν + i0.

We can apply the same technique for bubbles containing disorder lines: Since scattering off
disorder does not change frequency, the upper Greens functions still carry the frequency
iωr+ iνn and the lower ones iωr. So including disorder scattering just affects the structure
of the F (iωr)-function, but the general technique can still be applied.
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C. Full Greens function in the Functional Bosonization ap-
proach

This Appendix is devoted to the Full Greens functions obtained by the Functional Bosoniza-
tion approach presented in chapter 4. The whole derivation can be looked up in [19] and
[37].

We start in space-time-representation. The Full Greens function is given by

GR(x, τ) = gR0 (x, τ) exp [−B++(x, τ)] , (C.1)

g
R/L
0 (x, τ) is the free Greens function

gR0 (x, τ) = ∓ iT

2vf

1

sinh [πT (x/vf ± iτ)]
(C.2)

and the Bµν(x, τ)-correlators are defined by

BR,R/L(x, τ) = T
∑

n

∫
dq

2π

(
eiqx−iΩnτ − 1

) V (q, iΩn)

(vfq − iΩn)(±vfq − iΩn)
,

BLL(x, τ) = BRR(x, τ),

BLR(x, τ) = BRL(x, τ). (C.3)

V (q, iΩn) is the dynamically screened interaction. Introducing a dimensionless coupling
constant y ' g/2πvf and a renormalized Fermi velocity u = vf

√
1 + 4y one finds for the

spinless case

BRR(x, τ) = − ln η(x, τ)− ỹ

2
ln ς(x, τ), BRL(x, τ) = − ỹr

2
ln ς(x, τ) (C.4)

and for the spinful case

BRR(x, τ) = −1

2
ln η(x, τ)− ỹ

4
ln ς(x, τ), BRL(x, τ) = − ỹr

4
ln ς(x, τ). (C.5)

The functions ς and η are given by

ς(x, τ)
(πT/Λ)2

sinh [πT (x/u+ iτ)] sinh [πT (x/u− iτ)]
,

η(x, τ) =
vf
u

sinh [πT (x/vf + iτ)]

sinh [πT (x/u+ iτ)]
, (C.6)

where Λ is some high-energy cutoff and the prefactors are given by

ỹ =
(u− vf )2

2uvf
, ỹr =

u2 − v2
f

2uvf
. (C.7)
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Using these functions one finds for the spinless Greens function

GR(x, τ) = − i

2πu

πT

sinh [πT (x/u+ iτ)]

{
πT/Λ

sinh [πT (x/u+ iτ)]

πT/Λ

sinh [πT (x/u− iτ)]

}ỹ/2

(C.8)

and for the spinful one

GR(x, τ) = − i

2π
√
uvf

{
πT

sinh [πT (x/vf + iτ)]

πT

sinh [πT (x/u+ iτ)]

}1/2

×
{

πT/Λ

sinh [πT (x/u+ iτ)]

πT/Λ

sinh [πT (x/u− iτ)]

}ỹ/4
. (C.9)

Since we only the spinful Greens functions need in our calculation, we perform the next
steps only for these and leave the spinless ones as they are. In section 6.2 we need the
space-energy-representation of the Greens functions, so we Fourier transform eq. (C.9)
with respect to τ and get

∫ 1/T

0
dτ exp iεnτG

R(x, τ) = GRr (x, iεn)−GRa (x, iεn) (C.10)

where εn are fermionic Matsubara frequencies and

GRr (x, iεn) = Θ(εn)Θ(x)G(x, εn), GRa (x, iεn) = Θ(−εn)Θ(−x)G(x, εn), (C.11a)

G(x, εn) =
exp(−|εnx|/u+ |x|/2lee)

i
√
uv

2F1[1/2 + ξn, 1/2, 1;χ(|x|)], (C.11b)

χ(x) = 1− exp(2x/lee), ξn = εn/2πT. (C.11c)

2F1(a, b, c; z) is the hypergeometric function and for left movers GRr,a(x, iεn) = GLr,a(−x, iεn)
holds. Note that the indices a and r do not denote retarded and advanced Greens functions,
these are just indices denoting the behaviour of the Θ-functions.

We also show the momentum-energy Greens functions for completeness, although we don’t
need these in our calculation. Fourier transforming the space-energy Greens functions and
analytically continuing the result yields

GRR/A(q, ε) =
2lee√
uvf
P(±κu)P(±κvf ) (C.12)

with

κu = (ε/u− q)lee, κvf = (ε/vf − q)lee (C.13)

and

P(z) =
Γ [(1− 2iz)/4]

Γ [(3− 2iz)/4]
. (C.14)
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The electron-electron scattering length is defined by

lee =
u−

2πT
(C.15)

with

1

u−
=

1

2

(
1

vf
− 1

u

)
. (C.16)
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