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Abstract
We show numerically that a Kerr nonlinear system composed of two channel waveguides coupled periodically by circular

microresonators can be used as an all optical diode. The diode has low intensity requirements (� 50 MW/cm2) and compact

dimensions (� 100 mm).
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1. Introduction

Among the driving forces in the study of nonlinear

optics in waveguiding structures is the possibility of

constructing fast, efficient devices for use in all-

optical computation, or in the routing of signals for

telecommunications. To this end, various authors have

proposed devices based on nonlinear switching in

periodic, Kerr nonlinear media [1–3]. Such devices

have often been discussed with an implementation in
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Bragg gratings [3,4] in mind. These gratings possess

photonic band gaps (PBGs), which are frequency

regions in which light of low intensity cannot

propagate. Light of high intensity, though, can form

into a gap soliton and propagate through (or switch out

of) the structure [4,5]. The excitation of a gap soliton

involves balancing the group velocity dispersion

(GVD) experienced by light with the self phase

modulation (SPM) induced by a Kerr nonlinearity [5].

Unfortunately, Bragg gratings typically exhibit enor-

mous GVD at the frequency ranges where switching

should occur, so the switching intensity can be quite

large. However, it has recently been theoretically pre-

dicted [6] that side-coupled microresonator structures
.
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Fig. 1. (a) Schematic of the microresonator structure (top–down view). The left-most resonator has a larger self-coupling coefficient ðs ¼ 0:99Þ
than the other resonators. A typical coupling point is indicated by the dotted rectangle. Also indicated is the field configuration used in the

coupling matrix given in the text. (b) Cross-section of the channel waveguide. The light is confined in the AlGaAs region by air in the lateral (x)

direction, and by AlGaAs in the transverse (y) direction.
(Fig. 1a—top–down view; Fig. 1b—cross-section),

which consist of two channel waveguides periodically

coupled by microresonators, exhibit two types of PBGs:

a familiar Bragg gap associated with the periodicity

of the structure; and a resonator gap, associated with

the resonant frequency of the microresonators (see

Fig. 4a). The two types of gap have very different

properties. Specifically, the GVD experienced by light

with frequency content slightly outside a resonator

gap can be orders of magnitude smaller than the GVD

slightly outside a Bragg gap. Since the energy required

for gap soliton formation scales with the GVD [7],

gap soliton effects should occur at a much lower

intensity in resonator gaps than in Bragg gaps [6];

hence, microresonator structures can potentially be

used for low-intensity nonlinear logical operations

such as all-optical AND gates [11] and optical memory

[12].
In this paper we propose a side-coupled micro-

resonator structure as an all-optical diode, a device

that transmits light of a given frequency and intensity

in only one direction. The basic device operation is as

follows. Light travelling in the forward (backward)

direction in the lower channel waveguide is coupled,

via the microresonators, to light travelling in the

backward (forward) direction in the upper channel

waveguide. In general this coupling is quite weak, but

when the carrier frequency of the light is close to an

integer multiple of the resonant frequency, vr, of the

microresonators, then the effect of the coupling is

enhanced, and a resonator stop gap opens in the

transmission spectrum [6]. However, in the presence

of a Kerr nonlinearity, light of high intensity can form

into a gap soliton, and hence transmit through the

resonator stop gap [6], which leads to intensity-

dependent switching. It has been shown that switching
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behaviour in a Kerr nonlinear structure is facilitated by

apodization [6], that is, by making the coupling to the

first and last resonators slightly weaker than the

coupling to the middle resonators, hence allowing

light to ‘ease into’ the structure. It is this observation

that leads to the construction of our diode. We apodize

only the left-most microresonator so that light incident

from the left can ‘ease into’ the structure, and will

switch at a lower intensity than light incident from the

right. We show below that for a certain range of

intensities, light incident from the left is partially

transmitted, while light incident from the right is

almost fully reflected.

The theoretical and experimental feasibility of all-

optical diodes in a variety of geometries has been

investigated. Dowling et al. [23,24] proposed a diode

in a Bragg structure composed of alternate stacks of

linear and Kerr nonlinear media. Mingaleev and

Kivshar [8] investigated the feasibility of an all-optical

diode in a Kerr nonlinear photonic crystal waveguid-

ing structure using optical bistability. An experimental

demonstration of an all-optical diode using a quasi-

phase matching technique, was realized by Gallo et al.

[10]. We believe that our diode proposal has some

significant advantages over these other proposals,

notably because of its simplicity and low energy

requirements.

In Section 2 of this paper we discuss the numerical

technique that we use to model light propagation in the

resonator structure. In Section 3 we discuss the general

linear properties of finite and infinite microresonator

structures. In Section 4 we apply the numerical

technique to the diode structure, and discuss our

results.
2. Device modeling

Linear properties of microresonator structures can

be modelled using finite-difference, time domain

(FDTD) simulations [13]. In FDTD simulations the

full Maxwell equations are used to simulate the

propagation of a short pulse through the structure,

generating a transmitted and reflected pulse. By

comparing the Fourier transforms of the transmitted

and reflected light to that of the incident light, the

transmission/reflection spectrum of the structure can

be determined. However, such simulations are
intensely time-consuming, and are therefore not

amenable to the solution of nonlinear problems in

microresonator structures. The difficulty with using

FDTD to solve nonlinear problems is two-fold. First,

in nonlinear problems the device operation is

intensity-dependent, so the FDTD simulation must

be re-run for each intensity being used. Second, the

different frequencies in a pulse interact nonlinearly, so

a simulation run with, say, 10 ps pulses does not

necessarily give insight into device operation using

100 ps pulses. Consequently, in this paper we use an

approximate numerical technique to model device

operation. The model includes all of the relevant

physics, and can reproduce the results of the FDTD for

linear device operation [13].

We model the propagation of light in two steps.

First, we note that typical resonators are fabricated in

AlGaAs and confined in the lateral direction by air

(Fig. 1b). The large index contrast between AlGaAs

(n’ 3) and air means that the waveguide modes are

tightly confined in the lateral direction to the AlGaAs

region. We therefore assume, as is common [14,15],

that evanescent tail coupling between the channel

waveguides and the resonators occurs only at the

points of smallest separation between them. We call

these points (one of which is indicated schematically

by the rectangle in Fig. 1a) the ‘coupling points’.

Away from the coupling points, the light is confined to

a mode of either the waveguide or the resonator, and

hence the primary consequence of propagation is the

accumulation of linear and nonlinear phase, and linear

and nonlinear loss. To describe this propagation we

define a field, Aðz; tÞ, which represents the amplitude

of the guided mode at position z and time t, with z ¼ z

in the channel waveguides, and z ¼ Ru in the

microresonators, where R is the microresonator radius,

and u is the polar angle. The field Aðz; tÞ is normalized

such that its square modulus gives the intensity of light

in the mode. We characterize the linear phase

accumulation of the mode using an effective index

of refraction, neff , assumed to be equal for the

channel waveguides and the microresonators. Further-

more, we assume that neff is independent of frequency,

which amounts to ignoring the material dispersion of

the system; this is justified because the dispersion

time for 100 ps pulses at 1.55 mm in typical

AlGaAs structures is about 70 ns [16], while in this

paper we consider time-scales of about 1 ns. We
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Fig. 2. Linear reflection spectrum for two channel waveguides

coupled by a single resonator with self-coupling coefficient s ¼
0:98 (solid line) and s ¼ 0:99 (dashed line).
characterize self-phase modulation (SPM) using a

nonlinear index of refraction coefficient, n2, and

we ignore other nonlinear effects, such as third

harmonic generation, which are not phase matched,

and hence should play a negligible role in the field

dynamics. The effects of linear loss, two-photon

absorption and three-photon absorption, are charac-

terized by the coefficients a1, a2 and a3, respectively.

With these approximations, the field evolution is

described by [6]

1

dz
Aðz; t þ dtÞ ¼ 1

dz
þi

v̄

c
½neff þ n2I�

� �
Aðz

	 dz; tÞ 	 1

2
ða1 þ a2I

þ a3I2ÞAðz 	 dz; tÞ; (1)

where dz and dt ¼ dz=ðc=neffÞ are the discretization

length- and time-steps, v̄ is the carrier frequency, and

I 
 jAðz 	 dz; tÞj2. In writing Eq. (1) we have assumed

that the mode profile of light is strongly localized

within the waveguide core, as is common in semi-

conductor waveguiding structures.

When light impinges on a coupling point, we

describe the coupling between the channel wave-

guides and the resonators by a matrix. Using this

approach, we assume [14,15] that the coupling is well-

described by a self- (s) and a cross- (k) coupling

coefficient. Furthermore, we assume that there is no

reflection at the coupling points, so that the fields Ei (a

typical set is shown in Fig. 1a) are related via

E4

E2

� �
¼ s ik

ik s

� �
E3

E1

� �
: (2)

To conserve energy we require jsj2 þ jkj2 ¼ 1 and

s�k ¼ sk�. We have used the approach of Rowland

and Love [17] to estimate the intensity dependence of

the strength of s and k; the indicated dependence,

for the coupling geometries and materials that we

consider, is negligible. Therefore, we assume that

there is no nonlinearity in a small region around the

coupling points, which simplifies the numerics with-

out affecting the basic physics. For a given structure,

the values of s and k can be determined by FDTD

simulations [13], or by a modified coupled mode

theory [17].
3. Linear properties of the resonator structure

In this section we discuss the general linear

properties of our structure. We start by simulating

the linear properties of a two-channel microresonator

device in the absence of loss (a1;2;3 ¼ 0). We assume

that neff ¼ 3, which is appropriate for AlGaAs [18].

We consider resonators with circumference

2pR ¼ 26 mm, for which the fundamental resonant

frequency is vr ¼ c=ðneffRÞ, and the 50th resonance

occurs at a vacuum wavelength l ¼ 1:56mm. In the

absence of nonlinearity, the reflection spectrum of

channel waveguides coupled by a single resonator is

well described by a Lorentzian lineshape [19]:

r ¼ ð	1ÞNþ1geif

g 	 iD
; (3)

where N indexes the resonance, D ¼ v	 Nvr is the

frequency detuning from the Nth resonance, f

accounts for the phase accumulated in the waveguides,

and 2pg ¼ vrð1 	 s2Þ=s2 is the width of the reso-

nance. In Fig. 2 we plot the reflectivity (jrj2) of a single

resonator with s ¼ 0:98 (solid line) and s ¼ 0:99

(dashed line). The reflection spectrum of the resonator

with s ¼ 0:98 is slightly wider, since the smaller value

of s (self-coupling) implies a larger value of k (cross-

coupling). The reflection spectra are accompanied

by a Lorentzian build-up of the intensity in the micro-

resonators relative to the intensity in the channel

waveguide. To quantify this build-up we define Ii as

the intensity of the incident light in the channel
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waveguide, and Ires as the intensity of the field inside

the resonator respectively. We then find that for s’ 1,

the intensity build-up in the resonator is:

Ires

Ii
¼ ð1 	 s2Þ

ð1 	 s2Þ2 þ ð4p2s2D2=v2
r Þ
: (4)

At the resonant frequency (D ¼ 0), this build-up is

1=ð1 	 s2Þ, so that with small coupling between the

ring and waveguide (s’ 1) the intensity enhancement

inside the resonator is increased. The generalization of

Eq. (4) in the presence of Kerr nonlinearity has been

presented, and the effect of bistability investigated

[19]. It has been shown that for a positive Kerr

nonlinearity bistability only occurs when D< 0. For

D> 0 no bistability occur within the intensity range of

interest.

For a series of resonators each spaced by a distance

d the propagation Eq. (1) and the coupling matrix (2)

can be combined into a transfer matrix [6]. Without

loss of generality we assume that light travels in the

forward (backward) direction in the lower (upper)

channel waveguide. In Fig. 3 we sketch a series of

resonators. Since the resonators are spaced by d we

can, as in Fig. 3, divide the structure into a series of

unit cells of width d, with the resonator in the middle

of the cell. We then define a frequency-dependent

amplitude linðvÞ (ui
nðvÞ) that gives the strength of the

field entering the nth unit cell (lin is at the bottom left

corner of the cell, ui
n is at the upper right corner) at the

input (left-most point); and an amplitude lonðvÞ (uo
nðvÞ)

that gives the strength of the field leaving the nth unit

cell. Combining the propagation Eq. (1) and the

coupling matrix (2) we find that these amplitudes are

related via

lonðvÞ
uo

nðvÞ

� �
¼ 1

tn

t2
n 	 r2

n rn

	rn 1

 !
linðvÞ
ui

nðvÞ

" #
; (5)
Fig. 3. Schematic for a series of resonators, the resonators are

spaced by distance d.
where, in the Lorentzian approximation discussed

above [19],

rn ¼ ð	1ÞðNþ1Þ gneifn

g 	 iD
;

tn ¼ 	i
Deifn

gn 	 iD
;

where gn is the Lorentzian coupling coefficient in the

nth unit cell, fn ¼ neffvd=c is the phase accumulated

in the waveguides in the nth cell, D is the frequency

detuning from the Nth resonance, and the factor

ð	1ÞNþ1 is related to the symmetry of the resonator

mode. Because the resonance-width parameter (gn)

can vary from cell to cell, the transfer matrix approach

can be used to describe finite structures with arbitrary

apodization.

The transfer matrix (5) can be used to determine the

dispersion relation of an infinite, periodic micro-

resonator structure. Applying Bloch’s theorem to our

fields, we impose the usual condition that the output

fields differ from the input fields only by a phase [9],

lonðvÞ
uo

nðvÞ

� �
¼ eikeff d

linðvÞ
ui

nðvÞ

" #
:

Clearly eikeffd is an eigenvalue of (5), so the dispersion

relation, vðkeffÞ, can be determined using

t2
n 	 r2

n 	 tneikeffd rn

	rn 1 	 tneikeff d

				
				 ¼ 0:

In Fig. 4a we plot this dispersion relation for the

material parameters listed above, with s ¼ 0:96 and

a unit cell spacing d ¼ 16mm. On Fig. 4a we label two

distinct types of photonic band gaps: a resonator gap,

which opens at integer multiples of the resonant

frequency, vr ¼ c=ðneffRÞ; and a Bragg gap at integer

multiples of the Bragg frequency, vb ¼ pc=ðneffdÞ.
The two gaps are qualitatively different. The resonator

gap is indirect, which means that the top and bottom

edges of the gap occur at different values of the

effective wavenumber; by contrast, the Bragg gap is

direct. For both types of gap, the first derivative of the

dispersion relation vanishes at the band edges, so the

group velocity of light at the band edges is zero.

However, the bands around the resonator gap are much

flatter, which means that the group velocity dispersion

experienced by light at the edge of a resonator gap is
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Fig. 4. (a) Dispersion relation for a two channel microresonator

structures with 2pR ¼ 26mm, d ¼ 16mm, neff ¼ 3:0 and s ¼ 0:96.

(b) Transmission for finite structure with 10 resonators, all unit cells

have s ¼ 0:96. (c) Transmission for finite, apodized structure with

10 unit cells, first and last unit cells have s ¼ 0:98, all other unit

cells have s ¼ 0:98.
significantly smaller than the GVD for light at the edge

of a Bragg gap. In fact, the GVD at the edge of the

resonator gap depicted in Fig. 4a is approximately 300

times smalled that at the Bragg gap in the Figure.

Since gap soliton formation involves the balancing of

the GVD at the band edge with a Kerr nonlinearity, the

pulse intensities required for gap soliton effects in a

resonator gap are substantially lower than in a Bragg

gap [6]. We discuss these gap soliton effects further in

Section 4.

While the dispersion relation gives an excellent

qualitative understanding of pulse propagation in the

microresonator structures, in practice all structures are

finite. In Fig. 4b we plot the transmission spectrum for

a structure with 10 unit cells, each with a self-coupling

coefficient s ¼ 0:96. The stop-gap in Fig. 4b aligns

with the predicted resonator gap for the infinite struc-

ture in Fig. 4a. However, at the edges of the gap there

are huge oscillations in the transmission of the finite

structure, caused by Fabry-Perot effects at the first and

last microresonators [6]. The Fabry-Perot effects can

be minimized by apodizing the structure – that is,

gradually increasing the value of s for the first and last

sets of resonators. In practice, the required variation in

coupling can be achieved by slightly curving the

waveguide, as indicated in Fig. 1a, such that the

distance between the waveguides and the resonator

varies with position. Since the value of the coupling

coefficients is based on evanescent tail coupling, an

increase in separation distance will increase the self

coupling (s), and decrease the cross coupling (k). In

Fig. 4c we plot a transmission spectrum using a

symmetric apodization profile, such that s ¼ 0:96

except for the first and last resonator, which have

s ¼ 0:98. Notice that the ripples in the transmission

spectrum are much smaller than in the un-apodized

case, because the impedance mismatch for light enter-

ing the system is smaller for a resonator with s ¼ 0:98

than it is for a resonator with s ¼ 0:96.

Finally, we note that the length scale required for

observation of a resonator gap in a finite structure is

much smaller than that required to observe a Bragg

gap. In Fig. 4a there is a Bragg gap predicted at

v=c ¼ 4:058mm	1. However, in the transmission

spectra for the finite structures (4b,c) this Bragg

gap appears as only a very slight dip in the transmis-

sion. Close to the centre of the resonator stop gap at

v=c ¼ 4:03 of Fig. 4b the transmission drops to 10	40,
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while for the Bragg stop gap it drops only to 0.8. One

requires tens or even hundreds of resonators to observe

a significant stop gap near a Bragg frequency of the

structure [6]. However, as shown in Fig. 2, a single

resonator is sufficient to give zero transmission in the

vicinity of a resonant frequency of the resonators;

furthermore, a gap with a reasonably flat transmission

spectrum requires only two or three resonators [6].

4. Numerical simulations and discussion

We now consider two types of diode structures. The

first consists of twenty resonators, apodized such that

the leftmost resonator has s ¼ 0:99, and all the other

resonators have s ¼ 0:98. The second consists of five

resonators, such as shown in Fig. 1a, where the

leftmost resonator has s ¼ 0:99, and the other four

have s ¼ 0:98. In both structures the resonators are

spaced by 16 mm. For each structure, one can

consider the transmission spectrum associated with

light incident from either end. In the linear limit, it

follows from the general properties of quasi-one-

dimensional structures that the two spectra will be the

same. In Fig. 5 we plot the linear transmission

spectrum of the two diode structures. The dashed line

gives the spectrum of a structure with twenty

resonators, while the solid line gives the spectrum

of the five resonator structure. Both spectra exhibit a

photonic stop gap at about l ¼ 1:56mm. The
Fig. 5. Linear reflection spectrum for a 20 cell (dashed line) and 5

cell (solid line) diode structure, apodized as discussed in the text.

The large dot in the stop gap shows the carrier frequency used for the

nonlinear simulations.
oscillations at the edges of the stop gap are an

unavoidable consequence of our asymmetric apodiza-

tion profile [6]. As discussed in the previous section, in

a symmetric structure these resonances could be

further minimized, but then the diode operation of the

device in the nonlinear regime would vanish.

Although the transmissivity of our structure is

almost zero for low intensity light within the stop gap,

for light of high intensity the transmissivity can be

significantly increased. This increased intensity is

caused by the phase accumulation induced by the Kerr

nonlinearity, which shifts the light away from the

resonance condition of the microresonators, and hence

reduces the reflectivity. In Bragg gratings, this process

is sometimes referred to as gap soliton formation [5].

A similar process occurs in the stop gap of our

resonator structure [11], although the nonlinear

dynamics of the pulse that propagates through the

resonator gap is less well understood. As discussed in

the previous section, a single resonator is sufficient to

give zero transmission (albeit only for a single

wavelength; see Fig. 2). Consequently, one can

discuss the formation of a nonlinear excitation that

propagates in the stop gap created by a single

resonator. With reference to Fig. 2, it is clear that

this nonlinear excitation can be formed at a lower

input intensity in the resonator with s ¼ 0:99, since its

resonance is narrower and its intensity build-up (Eq.

(4)) is higher. Therefore, light injected into the diode

structure from the left hand side (into the s ¼ 0:99

resonator) can somewhat adiabatically transform into

the appropriate gap excitation for propagation through

the other four resonators. Conversely, light injected

from the right hand side, into the s ¼ 0:98 resonator,

requires a larger input intensity to form the appropriate

nonlinear excitation.

We verify the above by simulating pulse propaga-

tion through our structure in the presence of a Kerr

nonlinearity using n2 ¼ 1:1 
 10	4 rm cm2/GW, and

nonlinear loss parameters a2 ¼ 0:05 cm/GW and

a3 ¼ 0:08 cm3/GW2, all of which are typical values

for AlGaAs [18]. However, we have verified that for

the intensity ranges discussed below, the effects of

nonlinear loss are minimal. Far more important is the

linear loss, a1. To demonstrate this, in Fig. 6a and b we

plot the transmission of the 20 cell and 5 cell structures

respectively, as a function of the intensity of light

injected from the left-hand side of the structure. We
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Fig. 6. Transmissivity as a function of incident intensity for light

incident from the left for (a) a 20 cell structure and (b) a 5 cell

structure. In both plots the solid line gives the transmission in the

absence of loss, and the dashed line simulation assumes a linear loss

a1 ¼ 0:16 cm	1 which corresponds to 0.7 dB/cm.

Fig. 7. Five cell structure: (a) nonlinear transmission as a function

of input intensity for light incident from the left (solid line) and the

right (dashed line); (b) contrast ratio g (defined in the text) as a

function of incident intensity.
use Gaussian pulses with intensity full-width, half-

maximum (FWHM) of 100 ps. We assume a carrier

wavelength of 1.5599 mm which is in the stop gap of

both structures (it is indicated by the large dot in Fig.

5), with D> 0, so that the bistability does not occur

within our intensity range of interest. In both 6a and b

the solid line represents the transmission in the

absence of linear loss (a1 ¼ 0), and the dashed line

represents the transmission when a1 ¼ 0:16 cm	1

(which corresponds to an intensity loss of 0.7 dB/cm).

For both structures, linear loss is detrimental, but in

the 5 cell structure the peak transmission is reduced

only by about 9%, while in the 20 cell structure it is

reduced by almost 45% relative to the value in the

absence of loss. Note that since the 20 cell structure is
only about 320 mm long, with a1 ¼ 0:16 cm	1 one

might naively expect a loss of about 0:022 dB’ 0:5%.

The simulated loss of 45% corresponds to an effective

loss coefficient of 70 dB/cm, which is 100 times large

than the assumed loss parameter. This enhanced loss is

due to the fact that light with frequency content in the

stop gap of the structure circulates many times through

the structure, so the effective distance that light travels

is much larger than the length of the channel

waveguides. Consequently, in the following we

concentrate on the 5 cell structure.

In Fig. 7a we plot the transmission through the 5

cell structure for light incident from the left (solid line)

and the right (dashed line) as a function of the peak

intensity of the incident pulse, using a1 ¼ 0:16 cm	1.

In the shaded intensity range (about 50–70 MW/cm2),
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light from the left experiences significant transmis-

sion, while light from the right is almost completely

reflected; this intensity range constitutes the region of

diode operation for our device. To characterize this we

define a contrast ratio, g, as the ratio of transmitted

energy when light is incident from the left to the

transmitted energy when light is incident from the

right; this gives a measure of how effectively the diode

distinguishes a logical ‘one’ from a logical ‘zero’. In

Fig. 7b we plot g as a function of the intensity of the

incident pulse. The peak contrast ratio ðg ¼ 80Þ
occurs at an incident intensity of 56 MW/cm2. By

choosing a carrier frequency which gives lower

transmission in the linear regime we could substan-

tially enhance g, but at the expense of a higher

switching threshold. In Fig. 8 we plot the transmitted

pulse for light incident from the left for an input

intensity of 60 MW/cm2. This transmitted light has a

slightly asymmetric profile due to the frequency and

intensity dependence of the group delay inside the

structure. Furthermore, because of self-phase mod-

ulation it is compressed by a factor of about 3, which

means that although the energy transmission is 34%,

the peak transmitted intensity is about 90% of the peak

incident intensity. As a consequence of this compres-

sion, the frequency spectrum of the pulse is broadened

by a factor of about 3. Finally, we note that although

our device is only 80 mm long, the delay between the

input and the transmitted pulse is about 70 ps, so that

the group delay experienced by the transmitted light is

about 100 times larger than in a straight waveguide of

the same length. This enhanced group delay, and the
Fig. 8. Output pulse shape for light incident from the left of the

structure with incident intensity 60 MW/cm2.
consequent enhancement of the effect of the Kerr

nonlinearity, is primarily responsible for the low

operating intensity for our device.

The main limitation of our proposed diode is linear

loss in the structure. This linear loss has two sources:

radiation loss induced by the bend in the micro-

resonators [20]; and scattering loss caused by

imperfections in the etching of the channel wave-

guides and resonators. While the bending loss in

typical AlGaAs resonators is typically very small [20],

the scattering loss in presently fabricated AlGaAs

resonators can reach about 58 dB/cm (13.25 cm	1)

[20,21]. However, it is to be expected that as the

fabrication process matures, this loss will reach more

manageable levels. We have chosen a1 ¼ 0:16 cm	1

for the microrings, which is slightly larger than the

scattering loss in straight AlGaAs waveguides [22]

and hence seems to be a reasonable target value. In the

absence of linear loss, the contrast ratio is about 100

for a 5 cell structure, and 180 for a 20 cell structure.

Therefore, if the losses can be controlled, a longer

structure is more effective.

The diode structure that we propose in this paper

has several attractive features including a low

operating intensity, compact dimensions (<100

mm), excellent contrast ratio and good energy

transmission. We note that the nonlinear diode

previously proposed by Dowling and coworkers

[23,24], based on a Bragg stack geometry, is

competitive with our proposal. While our structure

has better energy transmission and a cleaner output

pulse, the Bragg stack geometry has a smaller

operating intensity. However, the Bragg stack proposal

has the significant drawback that its construction

requires the complicated growth of alternating stacks

of linear and Kerr nonlinear materials. The structure

that we propose in this paper is based on the rapidly

developing technology of microring resonators, and

may thus be easier to fabricate. Highly efficient two-

channel microresonator structures have been fabri-

cated [25]; and researchers have observed the

enhancement of nonlinear effects in one-channel

structures [26] and two-channel structures [21]. As

regards the diode experimentally demonstrated by

Gallo et al. [10] in a quasi phase matched system, we

note that it used 20 ns pulses, rather than the more

telecommunications-friendly 100 ps pulses in our

scheme; furthermore, the threshold power for their
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diode operation was 1.6 W, whereas our diode

operates about about 50 MW/cm2 which, given a

typical effective mode area of � 1:0mm2 for a

microresonator in AlGaAs, translates to about 0.5 W.

In closing, we note that although we have

concentrated on circular microresonators in conven-

tional waveguiding structures, it has been demon-

strated theoretically that side-coupled resonators can

be fabricated in photonic crystal (PC) waveguiding

structures [27]. In principle, PC structures can be

infiltrated with nonlinear materials, and hence should

be able to support the diode operation described in this

paper.
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