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Two-dimensional Green’s function and local density of states in photonic crystals consisting
of a finite number of cylinders of infinite length
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Using the exact theory of multipole expansions, we construct the two-dimensional Green’s function for
photonic crystals, consisting of a finite number of circular cylinders of infinite length. From this Green’s
function, we compute the local density of states~LDOS!, showing how the photonic crystal affects the
radiation properties of an infinite fluorescent line source embedded in it. For frequencies within the photonic
band gap of the infinite crystal, the LDOS decreases exponentially inside the crystal; within the bands, we find
‘‘hot’’ and ‘‘cold’’ spots. Our method can be extended to three dimensions as well as to treating disorder and
represents an important and efficient tool for the design of photonic crystal devices.
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Photonic crystals, proposed by Yablonovitch@1# and John
@2#, are now a very active area of research@3–5# with the
capacity for significant impact both in fundamental scien
and applications. In these materials, periodic dielectric c
stant variations prohibit the propagation of light in certa
directions for certain bands of frequencies, thus allowing f
reaching control over the radiation dynamics of active ma
rials embedded in them. Applications of photonic cryst
include microscopic lasers@6#, resonant antennas@7#, optical
fibers with photonic crystal cores@8#, and optical switches
@9#. With such applications in mind, the recent success
realizations@10–15# of two- and three-dimensional photon
crystals in the near-infrared and visible represent key m
stones on the road to an integrated photonics.

Even though both pioneering works@1,2# were concerned
with changes to the density of states by the photonic crys
to date both theoretical and experimental characterizatio
finite-sized structures have largely been concerned with a
lyzing transmittance and reflection spectra@4#. This, how-
ever, provides little insight into how a photonic crystal mod
fies the electromagnetic vacuum as envisaged
Yablonovitch @1# and John@2#. This modification is encap
sulated by the spatially resolved or local density of sta
~LDOS!, the key quantity determining the radiation dynam
ics of fluorescent sources in a photonic crystal@16–18#. In
three dimensions, it quantifies the coupling of an atom w
transition frequencyv at positionr to the modes of the pho
tonic crystal and thus describes, for instance, how the p
tonic crystal affects the atom’s emission rate. For infin
structures, the LDOS vanishes inside a complete band
and thus an excited two-level atom with a correspond
transition frequency cannot decay. Rather, a bound pho
atom state is formed@19#. The LDOS was calculated befor
for only a few isolated positions in infinite three-dimension
photonic crystals@20–22# and for one-dimensional structure
@23#.

In this paper, we extend the exact formalism of multipo
expansions @24–26# to construct the two-dimensiona
Green’s functionG(r ,r s ;v) of finite-sized two-dimensiona
photonic crystals composed of circular cylinders of infin
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length. Such two-dimensional geometries have recei
much attention lately because of their light-guiding prop
ties @27#. Multipole methods were previously used for tran
mission and reflection calculations, but never in situatio
where the source may be inside a scatterer, which is requ
for a complete characterization of the Green’s function. W
use the Green’s function to calculate the LDOS,r(r ;v), via
@28,29#

r~r ;v!52
2v

pc2 Im@G~r ,r ;v!#. ~1!

Here,G(r ,r s ;v) is the electromagnetic Green’s function fo
a source at locationr s and observation point atr . The source,
a line antenna of infinite length parallel to the cylinder ax
radiates with harmonic time dependence exp(2ivt). We note
that in vacuum,@2v/(pc2)#21r(r ;v)50.25. The clusters
that we consider have features that differ from the cor
sponding infinite structure. For instance, for frequencies
side the photonic band gap of the infinite structure and lo
tions deep inside the cluster, the LDOS is small but does
vanish @see Figs. 1~a! and 2~a!#. Additional features appea
closer to the cluster surface.

The clusters we consider consist ofNc parallel, nonover-
lapping dielectric cylinders with radiial and refractive indi-
cesnl centered at positionscl in a medium with refractive
index nb51. For propagation perpendicular to the cylind
axes, which is the only direction that needs to be conside
in a two-dimensional problem, the polarizations of the ele
tromagnetic waves decouple. The problem can then be sp
fied by a single field componentG, i.e., G5Ez ~TM polar-
ization! andG5Hz ~TE polarization!, when the electric and
magnetic fields are polarized parallel to the cylinder ax
respectively. Here we only consider TM polarization, t
derivation for TE polarization being similar. The Green
function G satisfies the wave equation

¹2G1k2n2~r !G5d~r2r s! ~2!
©2001 The American Physical Society12-1
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FIG. 1. Contour plot of
log10(rpc2/2v) versus position,
using a logarithmic scale.~a! l/d
53.5, in the low-transmission re
gion; ~b! l/d52.5, in the high-
transmission region.
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together with the boundary conditions that at the surface
each cylinder,G and its normal derivative]G/]n are con-
tinuous.

In the vicinity of thel th cylinder and usinglocal coordi-
nates rl , u l to facilitate imposition of boundary conditions
the Green’s functionG can be written as

G~r l !5 (
m52`

`

@Am
l Jm~krl !1Bm

l Hm
(1)~krl !#e

imu l, ~3!

while inside the cylinder it may be expanded as

G~r l !5 (
m52`

`

Cm
l Jm~krl !e

imu l, ~4!

whereAm
l , Bm

l , andCm
l depend on the source position. Her

Jm and Hm
(1) are Bessel and outgoing Hankel functions

orderm, respectively. By imposing the boundary conditio
on the surface of each cylinder, we express the coefficie
Am

l andCm
l in terms of theBm

l .

FIG. 2. Sections through Fig. 1 atx50. ~a! l/d53.5 andNc

521, 45, 81, and 149~top to bottom!; ~b! l/d52.5 andNc521
~solid line! and 81~dashed line!.
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Applying now Green’s theorem over the total structu
and using Sommerfeld’s radiation condition at infinity, t
gether with the subsequent application of Graf’s addit
theorem, we derive a partitioned system of linear equati
in the modal coefficientsBm

l ( l 51,2, . . . ,Nc),

M p
l Bp

l 1 (
q51

Nc

(
m52`

`

Hp2m
(1) ~krlq!ei (m2p)u lqBm

q 5Kp
l , ~5!

where the first sum excludes the termq5 l , andM p
l is

M p
l 5

nlJp8~nlkal !Hp
(1)~kal !2Jp~nlkal !Hp

(1)8~kal !

nlJp8~nlkal !Jp~kal !2Jp~nlkal !Jp8~kal !
. ~6!

Here, r lq is the distance between the centers of cylinderl
and q, and u lq is the argument ofr lq[rq2r l . Finally,
primes denote differentiation with respect to the argume
The source contributionKp

l in Eq. ~5! is

Kp
l 52

1

4i
Hp

(1)~krls!e
2 ipu ls ~7!

when the source is in the background medium, and

Kp
l 52

Jp~knlr ls!e
2 ipu ls/~2pkal !

nlJp8~nlkal !Jp~kal !2Jp~nlkal !Jp8~kal !
~8!

when the source is inside cylinderl. Finally, Kp
l 50 when the

source is inside any of the cylindersqÞ l .
Solving the inhomogeneous linear set~5! for the multi-

pole coefficientsBm
l allows us to construct the Green’s fun

tion of the cluster. Five different cases need to be dis
guished. First, whenr and r s are in the same cylinder,

G~r ,r s!5G0~r ,r s!1 (
m52`

`

Cm
l Jm~knlr l !e

imu l, ~9!

whereG05H0
(1)(knl ur2r su)/(4i ) is the Green’s function for

a homogeneous medium with refractive indexnl . If r andr s
are in different cylinders, or ifr is in one of the cylinders,
andr s is in the background medium, thenG is given by Eq.
~9!, but without theG0 term. In contrast, if bothr andr s are
in the background medium, then
2-2
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G~r ,r s!5G0~r ,r s!1(
l 51

Nc

(
m52`

`

Bm
l Hm

(1)~krl !e
imu l,

~10!

with nl in G0 replaced by unity. Finally, if the sourcer s is
situated in one of the cylinders andr is in the background
medium, thenG is given by Eq.~10! without theG0 term.

We take all cylinders to have the same radiusa and re-
fractice indexnc53. The cylinders are arranged in a squa
lattice with periodd, anda/d50.3, corresponding to an are
fraction of 28.3%. The dashed line in Fig. 3 shows the n
mal incidence transmission through such a structure that
a thickness of 10d and infinite transverse dimension@30,31#.
It shows two low-transmission regions for 3,l/d,5 and
1.8,l/d,2.1.

The clusters for which we calculate the LDOS are co
structed hierarchically by adding shells to a central cylin
such that the emerging structure comprises a finite-sized
tion of a two-dimensional photonic crystal. Since the cyl
ders in each shell have the same distance to the clus
center, as the size increases, the cluster acquires an app
mately circular form.

The accuracy of solutions~9! and ~10!, describing the
field inside and outside the cylinders, respectively, is g
erned by the highest order of circular harmonicsN that is
retained. It can be tested by checking the degree to which
boundary conditions on the cylinder surfaces are satisfied
an example, at a wavelengthl/d53.5 and for a cluster of 45
cylinders, the boundary conditions were satisfied with a re
tive accuracy of better than 1027 for N510. We also
checked the reciprocity conditionG(r ,r s)5G(r s ,r ) for vari-
ous field and source points and achieved a relative accu
of 10210. Thus, by using sufficient multipole coefficients, th
Green’s function can be found to any desired accuracy.
calculations below have relative accuracy better than 1024. It

FIG. 3. Solid line: Normal incidence transmissivity of a 1
layer-thick stack of cylinders, with parameters given in the te
versus wavelength ~right-hand scale!. Dashed line:
@2v/(pc2)#21r(v) versusl in the central cell forNc5149. The
inset shows a part of the band diagram for the infinite structure
G-X-M . The vertical lines are included to aid the eye.
04661
-
as

-
r
c-

-
r’s
oxi-

-

he
s

-

cy

ll

is important to note from Eq.~5! that, for a given frequency
the source coefficientsBp

l , which constitute the complete
solution, may be found from a single matrix inversion; o
method is therefore computationally very efficient.

Figure 1 showspc2r(r ;v)/(2v), for a cluster withNc
581, for l/d53.5 near the center of the first low
transmission region@Fig. 1~a!#, and l/d52.5, in the high-
transmission region@Fig. 1~b!# ~color versions of these fig
ures are available at www.physics.usyd.edu.au/;ara!. The
black circles indicate the cylinder edges. From Fig. 1~a!, we
see thatr(r ;v) within the low-transmission region is sma
everywhere in the interior of the structure, and that there
boundary layer with a thickness of roughly a single latti
constant that separates the cluster’s interior from
vacuum. A section of Fig. 1~a! at x50 is shown in Fig. 2~a!,
for Nc521,45,81,149 for the same wavelength. Clearly, fo
given cluster size, the LDOS decreases exponentially
wards the center. In addition, the LDOS in the central c
decreases exponentially with cluster size. However, there
also strong regular variations of the LDOS within each ce
As we increase the cluster size, the positions of the min
and maxima exhibit no notable changes. Outside the clus
the LDOS rapidly approaches its free space value of 0
indicated by the horizonal straight line. The LDOS reach
its lowest value at the central cylinder’s edge, whe
r(r ;v)'3.331025, almost four orders of magnitud
smaller than the vacuum value. Consequently, the emis
of a line antenna located here is reduced by about four or
of magnitude. The low values for both the transmittance a
the LDOS indicate the presence of a photonic band ga
l/d53.5.

Turning now to Fig. 1~b!, for the high-transmission wave
length l/d52.5 we see thatr(r ;v) does not decreas
strongly inside the structure and varies around the vacu
value of 0.25. Figure 2~b! gives again a section atx50 for
Nc521 and 81. Inside the cluster, enhancements of as m
as 3.5 over the vacuum value can be seen. The LD
reaches its lowest value of 0.07 in the center of the cen
cell, almost three times lower than the vacuum level. Sim
suppression effects have been obtained for infinite crys
@20,21#.

Finally, we define the total density of states~DOS! r(v)
to be the weighted average of the LDOS over the Wign
Seitz cell~WSC!, i.e.,

r~v!5
1

d2E
WSC

«~r !r~r ;v!dr . ~11!

In Fig. 3, we plotr(v) in the central Wigner-Seitz cell fo
Nc5149 ~dashed line!. Note the correlation between thi
curve and the transmission data~solid line!—high transmis-
sion corresponding to a large density of states. However,
opposite is not true in general. Though the low-transmiss
regions 1.8,l/d,2.1 and 3.0,l/d,3.8 correspond to a
low density of states, for 3.8,l/d,5.0 the transmission is
low, yet the DOS is large.

The behavior for 3.8,l/d,5.0 can be understood as fo
lows. The transmission shown in Fig. 3 is for normal inc
dence, i.e., incidence in theX direction for an infinite struc-

,

n

2-3



io
tin
in
te

ni
ak
si

o
tio
n
h

o

e
fo
ic
a

ion
ia-
pro-
ran-
ted
tal

to
rial
rics

on-
n be

his
cil.

sge-

A. A. ASATRYAN et al. PHYSICAL REVIEW E 63 046612
ture. For non-normal incidence, the low-transmission reg
we are considering shifts to shorter wavelengths, indica
the presence of states that are not accessible at normal
dence, but that of course are included in the density of sta
This argument can also be cast in the language of infi
media, though the finite structures we are dealing with m
this somewhat hazardous: the normal incidence transmis
only depends on the states in theG-X section of the Brillouin
zone. However, the LDOS and the DOS that we compute
course sample the entire Brillouin zone. Indeed, a calcula
of the band structure on the Brillouin-zone edge betweeX
and M, whereM designates the zone corner, confirms t
presence of states for 3.8,l/d,5.0. This is illustrated in the
inset of Fig. 3, which shows the part of the band diagram
the infinite structure onG-X-M . It is also confirmed by re-
sults for non-normal transmission that are not shown her

In conclusion, we have developed a robust method
calculating the LDOS of finite two-dimensional photon
crystals that is based on the exact theory of multipole exp
ied

o
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sions. It is highly accurate and efficient, since a calculat
requires only a single matrix inversion for a complete d
gram such as Fig. 1. Thus, the large parameter space
vided by these structures through possible locations and t
sition frequencies of active materials may be investiga
efficiently. By spatial integration, we also obtain the to
DOS for a finite structure. The method can also be applied
disordered structures as well as to structures with mate
dispersion. Further, though we have considered dielect
only, the method is also applicable whenn is complex, i.e.,
in the presence of gain or loss@32,33#. Finally, three-
dimensional structures, which are of direct relevance to n
linear and quantum optical theories and experiments, ca
treated similarly.
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