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Two-dimensional Green’s function and local density of states in photonic crystals consisting
of a finite number of cylinders of infinite length
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Using the exact theory of multipole expansions, we construct the two-dimensional Green'’s function for
photonic crystals, consisting of a finite number of circular cylinders of infinite length. From this Green’s
function, we compute the local density of stat@$OS), showing how the photonic crystal affects the
radiation properties of an infinite fluorescent line source embedded in it. For frequencies within the photonic
band gap of the infinite crystal, the LDOS decreases exponentially inside the crystal; within the bands, we find
“hot” and “cold” spots. Our method can be extended to three dimensions as well as to treating disorder and
represents an important and efficient tool for the design of photonic crystal devices.
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Photonic crystals, proposed by Yablonovifdj and John length. Such two-dimensional geometries have received
[2], are now a very active area of reseaf@-5] with the  much attention lately because of their light-guiding proper-
capacity for significant impact both in fundamental scienceties[27]. Multipole methods were previously used for trans-
and applications. In these materials, periodic dielectric conmission and reflection calculations, but never in situations
stant variations prohibit the propagation of light in certainwhere the source may be inside a scatterer, which is required
directions for certain bands of frequencies, thus allowing farfor a complete characterization of the Green'’s function. We
reaching control over the radiation dynamics of active mateuse the Green'’s function to calculate the LDQ®;; ), via
rials embedded in them. Applications of photonic crystalg[28,29
include microscopic lasef§], resonant antenn&g], optical
fibers with photonic crystal cord$], and optical switches >

. . . . . w
[9]. With such applications in mind, the recent successful p(riw)=——=Im[G(r,r;o)]. )
realizationg 10—15 of two- and three-dimensional photonic mC
crystals in the near-infrared and visible represent key mile-

stones on the road to an integrated photonics. Here,G(r,r;w) is the electromagnetic Green’s function for
Even though both pioneering works,2| were concerned 3 source at location, and observation point at The source,
with changes to the density of states by the photonic crystah |ine antenna of infinite length parallel to the cylinder axes,
to date both theoretical and experimental characterization & diates with harmonic time dependence exipft). We note
fini_te—sized structures have Iarge]y been concerned with ananat in vacuum/[ 2w/ (mc?) ] 1p(r;w)=0.25. The clusters
lyzing transmittance and reflection specfrd. This, how-  that we consider have features that differ from the corre-
ever, provides little insight into how a photonic crystal modi- sponding infinite structure. For instance, for frequencies in-
fies the electromagnetic vacuum as envisaged byide the photonic band gap of the infinite structure and loca-
Yablonovitch[1] and John{2]. This modification is encap- tions deep inside the cluster, the LDOS is small but does not
sulated by the spatially resolved or local density of stateg/anish[see Figs. () and 4a)]. Additional features appear
(LDOSY), the key quantity determining the radiation dynam-¢jgser to the cluster surface.
ics of fluorescent sources in a photonic cry$8-18. In The clusters we consider consisti§ parallel, nonover-
three dimensions, it quantifies the coupling of an atom withapping dielectric cylinders with rada, and refractive indi-
transition frequency» at positionr to the modes of the pho-  cesp centered at positions in a medium with refractive
tonic crystal and thus describes, for instance, how the phgpgex n,=1. For propagation perpendicular to the cylinder
tonic crystal affects the atom’s emission rate. For infiniteayes which is the only direction that needs to be considered
structures, the LDOS vanishes inside a complete band gag, 3 two-dimensional problem, the polarizations of the elec-
and thus an excited two-level atom with a correspondingromagnetic waves decouple. The problem can then be speci-
transition frgquency cannot decay. Rather, a bound photon;eg by a single field componef®, i.e., G=E, (TM polar-
atom state is formeffl9]. The LDOS was calculated before j;aion) andG=H, (TE polarization, when the electric and
for only a few isolated positions in infinite three-d|menS|onaImagnetiC fields are polarized parallel to the cylinder axes,
photonic crystal$20—22 and for one-dimensional structures respectively. Here we only consider TM polarization, the

[23]. . ) i derivation for TE polarization being similar. The Green’s
In this paper, we extend the exact formalism of multipoles,ction G satisfies the wave equation

expansions [24—26 to construct the two-dimensional
Green'’s functionG(r,rg; w) of finite-sized two-dimensional ) -
photonic crystals composed of circular cylinders of infinite VEG+kn(r)G=4(r—ry) 2
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06 log,o(pc?/2w) versus position,
2o o/ using a logarithmic scalda) \/d

=3.5, in the low-transmission re-
gion; (b) A/d=2.5, in the high-
transmission region.

together with the boundary conditions that at the surface of Applying now Green’s theorem over the total structure,

each cylinderG and its normal derivativdG/dn are con- and using Sommerfeld’s radiation condition at infinity, to-

tinuous. gether with the subsequent application of Graf's addition
In the vicinity of thelth cylinder and usindocal coordi- theorem, we derive a partitioned system of linear equations

nates , 6, to facilitate imposition of boundary conditions, in the modal (:oefficient§'m (1=1,2,... No),

the Green'’s functiors can be written as

Ne o
% I pl 1 i(m— _ el
S S AL+ BLHO k1 (@ Mpo+q§=:l m;w Hé)m(knq)el(m p)0|fo'n—Kp, (5
1) m¥m | m''m | ’
m=—x

where the first sum excludes the tege |, andM'p is
while inside the cylinder it may be expanded as

. L ndp(nikapHED(kay) — Jy(mka)HEY (kay)
Giry= > C I, (kr)em, @ P mJp(mikay Jp(kay) — J(nikay) Iy (kay)

(6)

Here,rq is the distance between the centers of cylinders

whereAy,, By,, andCy, depend on the source position. Here, and g, and 6,, is the argument off,;=r,—r,. Finally,
Jn and Hﬁnl) are Bessel and outgoing Hankel functions of primes denote differentiation with respect to the argument.
orderm, respectively. By imposing the boundary conditions The source contributioI’('p in Eq.(5) is
0r|1 the sulrface of each cylilnder, we express the coefficients
A, andC_ in terms of theB . 1 .

e " Kp=— g H{ (ki e 1Pts @
0

1%

10
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,;2

when the source is in the background medium, and

. Kl = — Jp(knlrls)eiipa'sl(Zﬂ'ka{) ®
P nJp(nikay)Jp(kay) — Jp(nikay)Jp(kay)

1073

ply,w)c*n/2w

when the source is inside cylinderFinally, K'p= 0 when the
source is inside any of the cylindegs#1.

Solving the inhomogeneous linear €& for the multi-
pole coefficients, allows us to construct the Green'’s func-
tion of the cluster. Five different cases need to be distin-
guished. First, when andrg are in the same cylinder,

ply,w)c’n/2w

G(r,r)=Go(r,r)+ 2 Crdn(knr)e™,  (9)

whereGo=H{"(kn|r—r4)/(4i) is the Green's function for
a homogeneous medium with refractive index If r andrg
are in different cylinders, or if is in one of the cylinders,

FIG. 2. Sections through Fig. 1 a=0. (a) A\/d=3.5 andN,  andrsis in the background medium, théis given by Eq.
=21, 45, 81, and 149top to botton; (b) A/d=2.5 andN.=21  (9), but without theG, term. In contrast, if botlm andr are
(solid line) and 81(dashed ling in the background medium, then
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is important to note from Eq5) that, for a given frequency,
the source coefficientﬁ&'p, which constitute the complete
solution, may be found from a single matrix inversion; our
method is therefore computationally very efficient.

0 Figure 1 showsmc?p(r;w)/(2w), for a cluster withN,
=81, for N/d=3.5 near the center of the first low-

N transmission regiofiFig. 1(@], and\/d=2.5, in the high-
transmission regiofiFig. 1(b)] (color versions of these fig-

10" ures are available at www.physics.usyd.edu-aug. The

black circles indicate the cylinder edges. From Fi@) 1lwe
see thatp(r; w) within the low-transmission region is small
1_15 everywhere in the interior of the structure, and that there is a
boundary layer with a thickness of roughly a single lattice
constant that separates the cluster’s interior from the
-20 vacuum. A section of Fig. (&) atx=0 is shown in Fig. 2a),
for N;=21,45,81,149 for the same wavelength. Clearly, for a
FIG. 3. Solid line: Normal incidence transmissivity of a 10- 9iven cluster size, the LDOS decreases exponentially to-
layer-thick stack of cylinders, with parameters given in the text,Wards the center. In addition, the LDOS in the central cell
versus  wavelength (right-hand scale Dashed line: decreases exponentially with cluster size. However, there are
[2w/(7c?)] p(w) versus\ in the central cell foN,=149. The  also strong regular variations of the LDOS within each cell.
inset shows a part of the band diagram for the infinite structure ofAS We increase the cluster size, the positions of the minima

I'-X-M. The vertical lines are included to aid the eye. and maxima exhibit no notable changes. Outside the cluster,
the LDOS rapidly approaches its free space value of 0.25,
Ne o indicated by the horizonal straight line. The LDOS reaches
G(F,fs)ZGo(r,rs)+§1 m:z_m B! H(kr))em?, its .|OWSS'[ vaIuS:5 at the central cylinder's edge, _Where
p(r;w)~3.3x10" >, almost four orders of magnitude

(10 smaller than the vacuum value. Consequently, the emission

of a line antenna located here is reduced by about four orders

with n; in Gq replaced by unity. Finally, if the sourag is  of magnitude. The low values for both the transmittance and

situated in one of the cylinders amdis in the background the LDOS indicate the presence of a photonic band gap at
medium, therG is given by Eq.(10) without theG, term. Nd=3.5.

We take all cylinders to have the same radéuand re- Turning now to Fig. 1), for the high-transmission wave-
fractice indexn.=3. The cylinders are arranged in a squarelength A/d=2.5 we see thatp(r;w) does not decrease
lattice with periodd, anda/d=0.3, corresponding to an area strongly inside the structure and varies around the vacuum
fraction of 28.3%. The dashed line in Fig. 3 shows the norvalue of 0.25. Figure ®) gives again a section at=0 for
mal incidence transmission through such a structure that ha$,=21 and 81. Inside the cluster, enhancements of as much
a thickness of 1€ and infinite transverse dimensip80,31]. as 3.5 over the vacuum value can be seen. The LDOS
It shows two low-transmission regions fo3\/d<5 and reaches its lowest value of 0.07 in the center of the central
1.8<\/d<2.1. cell, almost three times lower than the vacuum level. Similar

The clusters for which we calculate the LDOS are con-suppression effects have been obtained for infinite crystals
structed hierarchically by adding shells to a central cylindef20,21].
such that the emerging structure comprises a finite-sized sec- Finally, we define the total density of statd30S) p(w)
tion of a two-dimensional photonic crystal. Since the cylin-to be the weighted average of the LDOS over the Wigner-
ders in each shell have the same distance to the clusterSeitz cell(WSQ), i.e.,
center, as the size increases, the cluster acquires an approxi-
mately circular form.

The accuracy of solution$9) and (10), describing the
field inside and outside the cylinders, respectively, is gov-
erned by the highest order of circular harmonidhat is  In Fig. 3, we plotp(w) in the central Wigner-Seitz cell for
retained. It can be tested by checking the degree to which the.= 149 (dashed ling Note the correlation between this
boundary conditions on the cylinder surfaces are satisfied. Asurve and the transmission ddtlid line—high transmis-
an example, at a wavelengtlid= 3.5 and for a cluster of 45 sion corresponding to a large density of states. However, the
cylinders, the boundary conditions were satisfied with a relaspposite is not true in general. Though the low-transmission
tive accuracy of better than 10 for N=10. We also regions 1.8&\/d<2.1 and 3.6<\/d<3.8 correspond to a
checked the reciprocity conditida(r,rg) =G(rg,r) for vari-  low density of states, for 38\/d<5.0 the transmission is
ous field and source points and achieved a relative accuradgw, yet the DOS is large.
of 1071 Thus, by using sufficient multipole coefficients, the  The behavior for 3.& \/d<5.0 can be understood as fol-
Green’s function can be found to any desired accuracy. Allows. The transmission shown in Fig. 3 is for normal inci-
calculations below have relative accuracy better tharf1@  dence, i.e., incidence in thé direction for an infinite struc-

1
p(w)=@fwscs(r)p(r;w)dr. 1D
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ture. For non-normal incidence, the low-transmission regiorsions. It is highly accurate and efficient, since a calculation
we are considering shifts to shorter wavelengths, indicatingequires only a single matrix inversion for a complete dia-
the presence of states that are not accessible at normal ingjram such as Fig. 1. Thus, the large parameter space pro-
dence, but that of course are included in the density of stategided by these structures through possible locations and tran-
This argument can also be cast in the language of infinitgjtion frequencies of active materials may be investigated
media, though the finite structures we are dealing with makefficiently. By spatial integration, we also obtain the total
this somewhat hazardous: the normal incidence transmissiqhos for a finite structure. The method can also be applied to

only depends on the states in thex section of the Brillouin  gisordered structures as well as to structures with material
zone. However, the LDOS and the DOS that we compute ofjispersion. Further, though we have considered dielectrics

course sample the entire Brillouin zone. Indeed, a calcul::xtim@,my the method is also applicable wheris complex, i.e.
of the band structure on the Brillouin-zone edge betw¥en j, tne presence of gain or 10§82,33. Finally, three-
and M, whereM designates the zone corner, confirms thegimensional structures, which are of direct relevance to non-

presence_of states_ for 3:8./d<5.0. This is iIIustrateq inthe  jinear and guantum optical theories and experiments, can be
inset of Fig. 3, which shows the part of the band diagram Ofyeated similarly.

the infinite structure od™-X-M. It is also confirmed by re-

sults for non-normal transmission that are not shown here. We thank P. Das for help in preparing the graphs. This
In conclusion, we have developed a robust method fowork was supported by the Australian Research Council.

calculating the LDOS of finite two-dimensional photonic K.B. acknowledges support by the Deutsche Forschungsge-

crystals that is based on the exact theory of multipole expanmeinschaft under Grant No. Bu 1107/2-1.
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